37
Final version: 16072015 Supervisor: prof.dr.ir. H.A. Reijers Prof.dr.ir. H.A. Reijers, VU University Amsterdam. Signature: Dr. H. Leopold, VU University Amsterdam. Signature: The added value of Internet of Things P.J.L. Frima 10747966 Thesis Master Information Studies – Business Information Systems University of Amsterdam, Faculty of Science

Thesis the added value of Internet of Things

Embed Size (px)

Citation preview

Page 1: Thesis the added value of Internet of Things

Final  version:  16-­‐07-­‐2015      Supervisor:  prof.dr.ir.  H.A.  Reijers  Prof.dr.ir.  H.A.  Reijers,  VU  University  Amsterdam.  Signature:      Dr.  H.  Leopold,  VU  University  Amsterdam.  Signature:            

The  added  value  of  Internet  of  Things      

 

 

 

P.J.L.  Frima  -­‐  10747966    Thesis  Master  Information  Studies  –  Business  Information  Systems    University  of  Amsterdam,  Faculty  of  Science  

   

Page 2: Thesis the added value of Internet of Things

II    

Preface  

This  thesis  is  the  conclusion  of  my  study  for  the  master  of  Business  Information  Systems  at  the  University  of  Amsterdam.  This  master  study  was  preceded  by  the  bachelor  study  Technology  Management  at  the  University  of  Groningen.    

I  would  like  to  thank  several  people  for  their  help  and  contribution  to  this  thesis.    

First  of  all,  I  would  like  to  thank  prof.dr.ir.  Hajo  Reijers  for  his  support,  feedback  and  input  for  my  thesis.  Also  I  would  like  to  thank  dr.  Henrik  Leopold  for  being  my  second  supervisor.  

I  would  like  to  thank  Rob  de  Maat,  for  providing  me  with  the  opportunity  to  conduct  my  research  at  Deloitte.  Rob’s  enthusiasm,  expertise  and  bright  feedback  were  very  useful.  Also,  I  would  like  to  thank  the  people  who  provided  their  insights  during  the  interviews,  especially  the  respondents  from  Canon,  KPN  and  the  Port  of  Amsterdam  and  the  validation  sessions.  

Finally,  I  would  like  to  thank  my  family  and  friends  for  their  great  support  during  my  master  study.  

   

Page 3: Thesis the added value of Internet of Things

III    

Abstract  

The  focus  of   this   thesis   is   to  study   in  which  processes  value  can  be  added  using   Internet  of  Things  (IoT).   Also,   the   current   types   of   emerging   applications   and   inhibitors   for   IoT   are   discussed.  Many  organizations  working   in   supply   chains,   struggle  with   the   question  where   to   apply   the   concept   in  their  organization.  This  is  because  of  the  many  potential  IoT  applications.  To  be  able  to  integrate  the  concept  within   organizations,   stakeholders   need   to   know  what   kind   of   emerging   applications   are  suitable   for   their   situation.   Also   it   is   important   to   know   the   inhibitors   for   IoT,   as   these   prevent  adoption.  This  thesis  contributes  to  tackling  these   issues  by  presenting  a  framework  that  assists  to  the  identification  of  the  value  of  Internet  of  Things.  The  framework  is  structured  using  the  Enterprise  Value  Map  developed  by  Deloitte  and  the  IoT  value  drivers.  This  thesis  has  both  an  academic-­‐  as  well  as   a   practical   contribution,   by   addressing   the   current   gap   in   literature   regarding   IoT   value   points,  practical  applications  and  inhibiting  factors  seen  by  the  industry.  

 

Keywords:  Internet  of  Things,  value,  drivers,  applications,  inhibitors  

 

 

   

Page 4: Thesis the added value of Internet of Things

IV    

Table  of  Contents  1.   Introduction  ...................................................................................................................................  1  

1.1.   Thesis  Motivation  ....................................................................................................................  1  

1.2.   Research  Goal  and  Research  Questions  ..................................................................................  2  

1.3.   Research  Methodology  ...........................................................................................................  2  

1.4.   Scope  .......................................................................................................................................  4  

1.5.   Thesis  Outline  ..........................................................................................................................  4  

2.   Problem  definition  .........................................................................................................................  4  

2.1.   The  Internet  of  Things  .............................................................................................................  4  

2.2.   Adding  Value  with  Internet  of  Things  ......................................................................................  5  

2.3.   Emerging  Types  of  Internet  of  Things  Applications  .................................................................  6  

2.4.   Inhibitors  for  Internet  of  Things  ..............................................................................................  7  

2.5.   Supply  Chain  Management  .....................................................................................................  8  

2.6.   Shareholder  Value  ...................................................................................................................  8  

3.   Research  Method  ...........................................................................................................................  9  

3.1.   Framework  design  ...................................................................................................................  9  

3.1.1.   Input  .................................................................................................................................  9  

3.1.2.   Structure  ...........................................................................................................................  9  

3.1.3.   Purpose  ..........................................................................................................................  10  

3.2.   Case  Study  Selection  .............................................................................................................  11  

3.2.1.   Case  Description  Canon  Europa  N.V.  ..............................................................................  11  

3.2.2.   Case  Description  Havenbedrijf  Amsterdam  N.V.  ............................................................  12  

3.2.3.   Case  Description  Koninklijke  KPN  N.V.  ...........................................................................  12  

3.3.   Case  Study  Execution  ............................................................................................................  12  

3.4.   Analysis  ..................................................................................................................................  14  

3.4.1.   Motivation  ......................................................................................................................  14  

3.4.2.   Analysis  of  case  studies  ..................................................................................................  14  

4.   Plan  of  Action  ...............................................................................................................................  14  

4.1.   Structure  ................................................................................................................................  15  

4.2.   Framework  ............................................................................................................................  15  

4.2.1.   Short  term  framework,  within  0  –  3  years  .....................................................................  15  

4.2.2   Long  term  framework,  within  3  –  10  years  .....................................................................  16  

4.3   State-­‐of-­‐the-­‐Art  ......................................................................................................................  16  

4.4   Emerging  types  of  Internet  of  Things  applications  .................................................................  17  

4.4.2   Short  term  emerging  applications,  within  0  –  3  years  ....................................................  17  

4.4.3   Long  term  emerging  applications,  within  3  –  10  years  ...................................................  18  

Page 5: Thesis the added value of Internet of Things

V      

4.5   Inhibitors  for  Internet  of  Things  adoption  .............................................................................  18  

4.5.1   Short  term  inhibitors  .......................................................................................................  18  

4.5.2   Long  term  inhibitors  ........................................................................................................  19  

4.6   Purpose  ..................................................................................................................................  19  

5.   Validation  .....................................................................................................................................  22  

5.1   Validation  value  framework  ...................................................................................................  22  

5.1.1   Short  term  framework  validation  ....................................................................................  22  

5.1.2   Long  term  framework  validation  .....................................................................................  23  

5.2   Validation  of  inhibitors  ...........................................................................................................  23  

5.2.1   Short  term  inhibitors  .......................................................................................................  23  

5.2.2   Long  term  inhibitors  ........................................................................................................  24  

6.   Discussion  .....................................................................................................................................  24  

6.1   Internet  of  Things  added  value  Framework  ...........................................................................  24  

6.2   State-­‐of-­‐the-­‐art  ......................................................................................................................  25  

6.3   Emerging  types  of  applications  ..............................................................................................  25  

6.4   Inhibitors  for  Internet  of  Things  .............................................................................................  26  

7.   Conclusion  ....................................................................................................................................  27  

7.1   Research  questions  ................................................................................................................  27  

7.2   Research  contributions  ..........................................................................................................  29  

7.3   Limitations  ..............................................................................................................................  29  

7.4   Suggestions  for  further  research  ............................................................................................  30  

References  ...........................................................................................................................................  31  

 

 

Page 6: Thesis the added value of Internet of Things

1    

1. Introduction  This   thesis   describes   the   results   of   a   research   project   on   the   topic   of   added   value   for   Internet   of  Things  (IoT),  conducted  at  Deloitte  Consulting.  Organizations  and  scholars  are  trying  to  identify  the  added  value  of   Internet  of  Things.  Deloitte  Consulting   is   involved   in  advisory  projects  for  clients  to  create  strategic  roadmap  for  the  future  IT  landscape.  Many  organizations  struggle  with  a  roadmap  to  adopt   Internet   of   Things   in  which   the   full   potential   of   IoT   can  be  used.   This   thesis   focusses  on   to  which  processes  Internet  of  Things  adds  the  most  value,  by  presenting  a  framework  to  identify  this  value  using  value  drivers.  Furthermore,  relevant  types  of  emerging  applications  are  covered  and  the  current  inhibiting  factors  of  Internet  of  Things  are  discussed.  In  this  way,  this  research  project  tries  to  fill  the  current  gap  in  identifying  IoT  value.  

The   introduction   section  of   this   thesis  describes   the  motivation   for   this   research  project,   resulting  research   goal   and   research   questions.   Furthermore,   the   research  methodology,   scope,   and   thesis  outline  is  presented.  

1.1. Thesis  Motivation  A  world  is  emerging  in  which  the  boundaries  between  the  digital-­‐  and  physical  world  are  fading.  The  ‘Internet  of  Things’  makes  use  of  sensors,  actuators  and  data  communications  technology  built  into  physical   objects   that   enable   those   objects   to   be   tracked,   coordinated   or   controlled   across   a   data  network   or   the   Internet   (McKinsey   Global   Institute,   2013).   Internet   of   Things   is   a   practical   and  applicable   technology   that   can   generate   a   large   return   on   investment   and   drive   insights   for  businesses  that  know  how  to  harness  its  strengths.  Advancements  in  connectivity,  processing  power,  form  factors,  operating  systems  and  applications  are  key  elements  to  unlock  the  value  of  Internet  of  Things.  Linking  objects  to  IT  systems  is  just  the  first  step.  The  real  added  value  lies  in  the  data  that  is  transferred   from   these   devices   and   the   new   business   insights   this   data   can   facilitate   (Microsoft,  2015).  

The   growth   potential   of   IoT   is   enormous,   with   an   expected   30   billion   devices   connected   with   a  unique   IP  address   in  2020  (Gartner,  2013).  This  means  that  the  concept   is  expected  to  outnumber  humans  with  a  ratio  of  4-­‐to-­‐1  by  in  the  same  year  (Gartner,  2015).  The  prediction  of  Cisco  (2011)  is  even   higher,   with   an   estimated   6.58   connected   devices   per   person   and   a   total   of   50   billion  connected  devices  by  2020.  Such  an   increase   is  expected  to  add  an  economic  value  of  $1.9  trillion  per  year  in  2020  (Gartner,  2013).  Cisco  (2011)  is  backing  their  numbers  with  a  bold  statement,  saying  IoT  will   change  everything,   including  ourselves.  This   is  because   IoT  will  help  humanity   take  a  huge  leap   in   its  ability   to  analyze  and  distribute  data,  which  can  be   turned   into   information,  knowledge  and   ultimately   wisdom.   The   concept   will   blur   the   boundary   between   the   physical   and   the   digital  world   and   create   new   relationships   between   people,   things   and   business.   This   creates   new  opportunities   for   revenue   and   efficiencies   for   all   types   of   enterprises   (Gartner,   2015).   Imagine   ‘a  thing’  making  a  purchasing  decision  instead  of  a  customer,  for  example  automatically  ordering  a  new  part  for  your  car,  when  it  is  damaged  or  parts  due  for  replacement.  

The   impact   for   business   is   evident,   as   Gartner   (2015)   indicates:   the   IoT   concept   can   have   a   large  impact  on  an  organization.  Initiatives  to  make  things  smart  are  already  underway.  Also,  the  example  above  from  a  car  that  orders  a  new  part,  there  are  initiatives  from  LG  that  has  a  Smart  ThinQ  washer  that   can   help   you   to   fix   problems,   communicating   the   problem   with   LG   technicians.   Also   in   the  medical  sector  there  are  initiatives  to  help  people  take  their  pills1,  by  registering  when  the  pill  cap  is  opened   and   how   much   pills   are   left   in   the   pill   bottle   (Gartner,   2015).   Also,   large   consultancy  companies   as   Deloitte   and   Accenture   are   looking   into   the   industrial   side   of   Internet   of   Things.  Accenture   (2014)   sees   the   industrial   Internet  of  Things  as  a  way   to   improve  operational  efficiency  and  a  tool  to  boost  revenue  by  increasing  production,  fuel  innovation  and  transform  the  workforce.  

                                                                                                                         1  AdhereTech’s  Smart  Wireless  Pill  Bottles,  see:  www.adheretech.com    

Page 7: Thesis the added value of Internet of Things

2      

Deloitte  (2014)  agrees  and  designates  that   IoT  “has  the  potential   to  offer  business  value  that  goes  beyond  operational  cost  savings”.  

Concluding,   the   possibilities   and   opportunities   for   Internet   of   Things   are   almost   limitless   and   the  concept   will   create   new   business   opportunities   for   companies   who   know   how   to   harness   its  strengths.   In   addition   to   the   applications   the   industry   suggests,   in   the   literature   there   are   many  suggestions  for  applications  for  the  Internet  of  Things  paradigm,  see:  Atzori,  Iera  &  Morabito  (2010),  Miorandi,   Sicardi   &   De   Pellegrini   (2012),   Gubbi,   Buyya   &   Palaniswami   (2013)   and   most   recently  Atzori,  Iera  &  Morabito  (2014).  Hence,  many  applications  can  be  conceived  when  thinking  about  IoT,  the  challenge   is  set   in  what   IoT  add  the  most  operational  value?  Therefore,  this  thesis  focusses  on  where   Internet  of   Things   can  have   the  most   impact,  what   kind  of   applications  add   that   value  and  what  the  current  inhibitors  are  for  IoT  integration.  

1.2. Research  Goal  and  Research  Questions  This  thesis  is  an  exploratory  research.  To  structure  this  research,  the  following  research  goal  was  defined.  

To  determine  where  the  most  value  can  be  added  using  Internet  of  Things,  using  which  applications  and  what  kind  of  inhibitors  exist.  

This  goal  leads  to  the  following  research  questions:  

1. What  is  the  current  state-­‐of-­‐the-­‐art  of  Internet  of  Things?  2. What  are  the  possible  applications  using  Internet  of  Things?  3. In  which  processes  can  Internet  of  Things  generate  the  most  value?  4. What  are  the  current  inhibiting  factors  for  Internet  of  Things  adoption?  

 

1.3. Research  Methodology  For   this   research  project,  a  Business-­‐Problem  Solving   (BPS)   focus  has  been  chosen,   in  combination  with  a  case  study  focus.  Business  Problem  Solving  projects  are  started  to  improve  the  performance  of   a  business   system,  department  or   a   company  on  one  or  more   criteria   (Van  Aken,  2007).  A  BPS  project  uses   the   logic  of  a  problem-­‐solving  cycle,  here   in   the   form  of   the   regulative  cycle.  For   this  study,  two  research  methodologies  will  be  combined.  Namely,  the  BPS  focus  from  Van  Aken  (2007)  and  the  case  study  research  focus  of  Eisenhardt  (1989).  The  case  study  research  focus  will  be  applied  during   the  analysis   and   diagnosis  phase.   The  BPS   approach   from  Van  Aken   (2007)   consists   of   the  following  phases:  

1. Problem  definition:  the  problem  statement  and  scoping  of  the  project  is  defined.  Also,  the  project  plan  and  approach  to  the  subsequent  analysis,  diagnosis  and  design  is  defined.  

2. Analysis  and  diagnosis:  for  this  phase  methods  of  business  research  are  used,  resulting  in  specific  knowledge  on  the  context  and  nature  of  the  problem.  

3. Plan  of  action:  in  this  phase,  the  solution  for  the  problem  is  designed  and  the  associated  change  plan.  

4. Evaluation:  during  this  phase,  most  of  the  learning  has  been  achieved  and  one  looks  what  still  has  to  be  done  to  unlock  the  full  potential  of  the  new  system  (Van  Aken,  2007).  

As  Van  Aken  (2007)  describes  in  the  original  regulative  cycle,  after  the  plan  of  action  phase  there  is  an   intervention  phase.   In  this  phase,  the  roles  and  work  processes  are  changed  on  the  basis  of  the  solution   design   and   change   plan   (Van   Aken,   2007).   Van   Aken   (2007)   explains   that,   ‘usually   the  student  has  left  the  company  by  then’,  implying  that  in  a  master  thesis  there  is  not  enough  time  to  perform   the   intervention   phase.   Therefore,   this   study   will   not   include   this   phase   in   the   research  methodology.  

Page 8: Thesis the added value of Internet of Things

3      

The   case   study   approach   from   Eisenhardt   (1989)   is   applied   during   the   qualitative   inductive   case  study   research.   The  method   of   Eisenhardt   (1989)   distinguishes   the   following   steps,   which  will   be  elaborated  in  each  corresponding  paragraph.    

1. Selecting  cases  2. Crafting  instruments  and  protocols  3. Entering  the  field  4. Analyzing  within-­‐case  data  5. Enfolding  literature  6. Researching  closure  

The  complete  methodology  approach  can  be  seen  below,  in  figure  1.  The  cycle  that  is  displayed  is  the  regulative  cycle  from  Van  Aken  (2007).  The  resulting  steps,  originating  from  the  analysis  and  diagnosis  phase,  are  adapted  from  the  case  study  approach  (Eisenhardt,  1989).  The  corresponding  chapter  numbers  are  stated  in  the  figure.  

 Figure  1:  Regulative  cycle,  adapted  from  Van  Aken  (2007),  combined  with  the  case  study  approach  (Eisenhardt,  1989)  

The  field  of  adding  value  by  using  Internet  of  Things  is  still  largely  unexplored.  Previously  not  much  work   has   been  done   to   build  upon.   This  means   that   no   grounded  hypotheses   can  be   constructed  using   previous   scholars.   “Qualitative   research  based  on   an   interpretive   paradigm   is   exploratory   in  nature,   thus   enabling   researchers   to   gain   information   about   an   area   in   which   little   is   known”  (Dickson-­‐Swift,   James,   Kippen   and   Liampottong,   2007).   Due   to   the   pluralization   of   life-­‐worlds,  qualitative   research   is   relevant   to   study   social   relations.   Also,   rapid   social   change   create   new  contexts   and   perspectives.   This   change   is   so   rapid,   that   traditional   deductive  methods   are   failing  because   of   the   diversification   of   objects.   Therefore,   inductive   study   research   is   more   and   more  common  (Flick,  2009). Furthermore,  a  case  study  investigates  a  contemporary  phenomenon  within  its  real-­‐life  context  when  the  boundaries  between  phenomenon  and  context  are  not  clearly  evident  (Myers  &  Avison,  1997).  Case  study  research  is  well  suited  for  information  studies  research,  because  the   object   of   our   discipline   is   the   study   of   information   systems   in   organizations   and   interest   has  shifted   towards   organizational   issues   (Benbasat,   Goldstein   &   Mead,   1987).   Consequently,   this  research  uses  a  qualitative  inductive  case  study  approach.  The  definitions  of  the  different  aspects  of  this  project  –‘qualitative  research’,  ‘inductive  research’  and  ‘case  study  research’-­‐  are  given  below.    

-­‐ Qualitative  research:  A  nonmathematical  process  of  interpretation  to  discover  concepts  and  relationships  in  raw  data  and  organizing  these  into  a  theoretical  explanatory  scheme  (Corbin  &  Strauss,  1994).  

-­‐ Inductive  research:  A  process  which  begins  with  an  area  of  study  and  allows  the  theory  to  emerge  from  the  data  (Corbin  &  Strauss,  1994).  

-­‐ Case  study  research:  An  empirical  analysis  that  investigates  a  contemporary  phenomenon  within  its  real  life  context  (Yin,  2013).    

Page 9: Thesis the added value of Internet of Things

4      

1.4. Scope  This  master   thesis  project   is   executed  at  Deloitte  Consulting  B.V.   in  Amsterdam,  The  Netherlands.  Due  to  the  broadness  of  the  subject  in  which  ‘Internet  of  Things’  can  be  applied,  it  was  required  to  scope  this  thesis  because  of  time  constraints.  This  was  done  using  the  following  guidelines;  First  of  all,  only  companies  who  deal  with  supply  chain  management  or  provide  services  for  the  supply  chain  management  sector  where  taken  into  consideration.  This  is  because,  the  supply  chain  management  sector,   together   with   the   agriculture   sector,   is   most   mentioned   in   papers   which   describe   IoT  applications  (Sprenkels,  2014).  A  complete  list  of  the  number  of  IoT  papers  per  sector  can  be  found  in  Appendix  B.5.  The  choice  for  supply  chain  management  was  made  because  Deloitte  has  the  most  clients   in   this   sector.   This   increases   the   chance   of   finding   suitable   cases.   Improvements   in   an  organization’s   supply   chain   are   used   to   specify   added   value.   This   is   because   IoT   often   brings  operational   improvements  and  organizations  are   less  willing  to  provide  their   financial  data,  due  to  confidentiality   issues.  Third,  only  applications  that  fall   in  the  definition  of  Internet  of  Things  will  be  taken   into   perspective.   This   definition   can   be   found   in   chapter   2,   problem   definition.   Applicable  cases  for  the  case  study  must  have  an  annual  revenue  of  over  100  million  euro’s,  to  ensure  a  sizable  organization  that  is  financially  capable  of  implementing  IoT.  Finally,  the  appropriate  cases  must  have  an  office  in  the  Netherlands.  

1.5. Thesis  Outline  The   remaining   part   of   this   thesis   is   structured   according   to   the   research   methodology   explained  above  in  paragraph  1.3.  Chapter  2  explains  the  problem  definition  and  the  different  topics  covered  in  this  thesis.  Chapter  3  explains  the  research  method  that  has  been  performed;  giving  detailed  case  study  descriptions   and   the  way   the   case   study  was  executed  and   the  way   the  data  was   analyzed.  Chapter   4   discusses   the   plan   of   action.   Validating   the   results   is   performed   in   chapter   5.  Consequently,  the  results  are  discussed  in  chapter  6,  after  which  a  conclusion  is  given  in  chapter  7.    

2. Problem  definition  To  ensure  the  understanding  of  the  central  concept  of  this  research  project,  this  chapter  describes  the   definition   of   the   concept   Internet   of   Things,   adding   value  with   Internet   of   Things,   Internet   of  Things   applications,   -­‐inhibitors   and   supply   chain   management.   At   the   end   of   this   chapter,   the  Enterprise  Value  map  of  Deloitte  will  be  introduced  and  explained.  The  keywords  used  to  search  for  the  used  articles  and  scholars  can  be  found  in  Appendix  B.1.  

2.1. The  Internet  of  Things  Presently,  multiple  definitions   for   the   concept   Internet  of   Things  exist.   The   reason   for   the   various  definitions   is  the  consequence  of  the  name:  “Internet  of  Things”  (Atzori,   Iera  and  Morabito,  2010).  LeHong   &   Velosa   (2014)   on   behalf   or   Gartner,   state   IoT   is   “the   network   of   physical   objects   that  contains   embedded   technology   to   communicate   and   sense   or   interact   with   the   objects'   internal  state  or   the  external  environment”.  McKinsey  Global   Institute   (2013)  defines   Internet  of  Things  as  “sensors,   actuators,   and   data   communications   technology   built   into   physical   objects   that   enable  those  objects  to  be  tracked,  coordinated,  or  controlled  across  a  data  network  or  the  Internet”.  Atzori  et   al.   (2010)   describe   that   the   definition   of   Internet   of   Things   is   actually   a   trait   d’union   between  three  IoT  visions,  see  figure  2.   In  the  first  part   ‘Internet’  pushes  towards  a  network  oriented  vision  while   the   second  part   ‘things’   pushes   towards   an  objects   oriented   vision.  Atzori   et   al.   (2010)   also  state  a  semantic  vision  of   IoT,  when  combining  both  visions,  defined  as:  “a  world-­‐wide  network  of  interconnected  objects  uniquely  addressable,  based  on  standard  communications  protocols”   (Bassi  &  Horn,   2008).   Finally,   Atzori   et   al.   (2010)   define   IoT   as:   “a  world  where   things   can   automatically  communicate   to   computers   and   each  other   providing   services   to   the  benefit   of   the  human   kind”.  Because   the   interdisciplinary   nature   of   the   concept,   this   demarcation   of   the   concept   is   required.  Nevertheless,   the  usefulness  of   IoT  can  only  be  put  to  full  use   in  an  application  domain  where  the  three  paradigms  overlap   (Gubbi,  Buyya,  Marusic  &  Palaniswami,  2013).  The   IoT  concept  augments  

Page 10: Thesis the added value of Internet of Things

5      

connectivity   from   ‘any-­‐time,   any-­‐place’   for   ‘any-­‐one’,   into   ‘any-­‐time,   any-­‐place’   for   ‘any-­‐thing’.  An  enormous  amount  of  devices  will  be  connected  to  the  Internet,  each  providing  data,  information  or  even  services  (Coetzee  &  Eksteen,  2011).  Concluding:   Internet  of  Things  characterizes  technologies  to   connect  physical   objects   to   the   Internet.  And   in   this  way,   connecting   the  physical  world   to   the  digital  world.  

 Figure  2:  IoT  paradigm  as  a  result  of  different  visions  (Atzuri  et  al.,  2010)  

The   first   example  of   the  notion  of   the   term  “Internet  of   Things”  was   in   Forbes  magazine   in  2002.  Here,  the  co-­‐founder  and  head  of  the  Auto-­‐ID  Center  at  the  Massachusetts  Institute  of  Technology  (MIT)   was   quoted   saying:   “We   need   an   internet   for   things,   a   standardized  way   for   computers   to  understand  the  real  world”,  this  article  was  titled:  “Internet  of  Things”  (Schoenberger,  2002).  A  few  years  later  in  2008,  the  first  scientific  conference  was  organized  about  the  new  concept  (Mattern  &  Floerkemeier,  2010).  Eventually,  an  action  plan  from  the  European  Commission  marked  the  Internet  of   Things   as   an   evolution   from   the   Internet,   as   they   stated:   “from   a   network   of   interconnected  computers   to   a   network   of   interconnected   objects”   (Mattern   &   Floerkemeier,   2010).   That   the  concept   is  becoming  increasingly  more  important  can  be  derived  from  the  US  National   Intelligence  Council,  which  has  listed  IoT  as  one  of  the  six  “Disruptive  Civil  Technologies”  with  potential  impacts  on   the   US   national   power   (National   Intelligence   Council,   2008).   The   council   highlights   the   future  opportunities  that  will  arise  from  the  adoption  from  IoT  and  that  this  could  contribute  greatly  to  the  economic  development.  Research  suggests  that  the  number  of  interconnected  devices  will  reach  24  billion  devices  by  2020,  creating  1.3  trillion  dollar  in  revenue  opportunities  (Gubbi,  2013).    

2.2. Adding  Value  with  Internet  of  Things  Within   the   IoT   vision,   “smart”   objects   play   a   key   role.   These   smart   objects   have   the   potential   to  transform  the  utility  of  these  objects.  Using  sensors,  the  objects  are  able  to  communicate  with  each  other   and  with   people,   by   using   networking   capabilities.   If   these   objects   are   upgraded   by   adding  sensors  to  be  “smart”  in  order  to  enhance  their  physical  purpose,  this  could  generate  a  substantial  added   value   for   the   users   of   these   ‘things’   (Mattern   &   Floerkemeier,   2010).   Also   the   resulting  expected  increase  in  the  performance  of  the  IoT  systems  will  help  in  the  deployment  of  value-­‐added  services   (Atzori   et   al.   2014).   This   digitally   added   value   can   both   differentiate   companies   from  competitors,   lock-­‐in   customers   into   additional   services   using   similar   products   and   protect   against  counterfeit   products   (Mattern  &   Floerkemeier,   2010).   Especially   the   integration  of   the   Internet   of  Things  with  the  cloud  is  a  key  aspect  in  adding  value.  In  this  way,  the  appropriate  web-­‐based  services  and  applications,  which  are   able   to   leverage  data   are  made  available  by   the   smart  objects   to   add  value  (Miorandi  et  al.,  2012).    

According  to  Fleisch  (2010),  IoT  is  applicable  to  every  step  in  every  value  chain.  This  is  due  to  the  fact  that  trying  to  structure  IoT  applications  is  as  impossible  as  modeling  the  whole  world.  Due  to  every  industry   on   the   globe,   being   embedded   in   the   physical   world.   To   structure   this   in   another,   and  

Page 11: Thesis the added value of Internet of Things

6      

possible   way,   Fleisch   (2010)   formulated   seven   value   drivers,   which   every   possible   application   for  Internet  of  Things  retains.  These  drivers  plus  a  short  explanation  are  stated  below.    

1. Simplified  manual  proximity  trigger:  communicates  a  unique  ID  when  manually  moved  into  the  roaming  space  of  a  proximity  sensor.  For  example  self-­‐check-­‐out  in  libraries.  

2. Automatic  proximity  trigger:  triggers  a  transaction  automatically  when  the  physical  distance  of  two  things  drops  below  a  threshold.  For  example  car  keys.  

3. Automatic  sensors  trigger:  expands  value  driver  one  and  two  by  manually  and  automatically  sensing  and  communicating  the  name  of  a  thing.  For  example  smoke  detectors.  

4. Automatic  product  security:  the  thing  to  be  secured  holds  a  minicomputer  that  is  equipped  with  some  security  technology.  For  example  anti-­‐counterfeiting.  

5. Simple  direct  user  feedback:  smart  things  feature  simple  mechanisms  to  give  feedback  to  the  humans  who  interact  with  them  at  the  point  and  time  of  action.  For  example  perishable  good  that  shows  quality  status.  

6. Extensive  user  feedback:  extends  the  output  from  simple  direct  user  feedback  to  rich  services.  For  example  a  mobile  operation  and  repair  manual.  

7. Mind  changing  feedback:  this  value  driver  is  not  based  on  technical  features  of  the  IoT,  but  says  that  the  combination  of  the  real-­‐  and  virtual  world  computing  might  generate  a  new  level  of  manipulating  people.  For  example  save  energy  via  smart  meter  applications.  

A  detailed  description  of  the  model  of  Fleisch  (2010)  including  the  value  root,  business  value,  consumer  value  and  more  example  applications  can  be  found  in  Appendix  B.4.  

2.3. Emerging  Types  of  Internet  of  Things  Applications  The   Internet   of   Things   has   the   potential   to   impact   to   significantly   influence   all   facets   of   society  (Coetzee  &  Eksteen,  2011).   In  2005,   the   International  Telecommunications  Union   (2005)  described  four   dimensions   for   IoT.   Item   identification,   sensors   and   wireless   sensor   networks,   embedded  systems   and   nano-­‐technology.   Later,   Chui,   Löffler   and   Roberts   (2010),   expanded   these   four  dimensions  into  six  types  of  IoT  applications.  These  six  distinctive  types  of  IoT  applications,  fall  into  two  categories,  namely   ‘information  and  analysis’  and  ‘automation  and  control’   (Chui  et  al.,  2010).  The   first   category   consists  of   three   types,  which  are   ‘Tracking  behavior’   (1),   the  monitoring  of   the  behavior  of  persons,   things  or  data   through  space  and   time.   ‘Enhanced  situational  awareness’   (2),  achieving   real-­‐time   awareness   of   physical   environment.   And   ‘Sensor-­‐driven   decision   analytics’   (3),  assisting   human   decision  making   through   deep   analysis   and   data   visualization.   Chui   et   al.   (2010)  indicate   the   remaining   three   applications   in   the   automation   and   control   category   as   ‘Process  optimization’   (4),   automated   control   of   closed   (self-­‐contained)   systems.   ‘Optimized   resource  consumption’   (5),   the   control   of   consumption   to   optimize   resource   use   across   the   network.   And  finally,   ‘Complex   autonomous   systems’   (6),   automated   control   in   open   environments   with   great  uncertainty.  An  overview  of   the  emerging   IoT  applications  defined  by  Chui   (2010)   can  be   found   in  figure  3.    

Page 12: Thesis the added value of Internet of Things

7      

 Figure  3:  emerging  Internet  of  Things  applications,  adopted  from  Chui  et  al.  (2010)  

The   present   extensiveness   of   IoT   potential,   provides   possibilities   to   develop   a   huge   number   of  applications.  However,  only  a   small  part  of   these  applications  are  currently  available   (Atzori  et  al.,  2010).   Also   Gubbi   et   al.   (2013)   identify   numerous   applications   for   IoT   and   the   many   application  domains.  All  these  applications  can  be  classified  based  on  the  type  of  network,  availability,  coverage,  scale,   heterogeneity,   repeatability,   user   involvement   and   impact   (Gluhak,   Krco,   Nati,   Pfisterer,  Mitton  &  Razafindralambo,  2011).  Also,  there  is  an  enormous  crossover  in  the  applications  and  use  of   data   between   the   domains   (Gubbi   et   al.,   2013).   The   application   domains   that   are   identified   in  scholars  by  Atzori  et  al.  (2014),  Gubbi  et  al.  (2013),  Miorandi  et  al.  (2012),  Gluhak  et  al.  (2011)  and  Atzori   et   al.   (2010)   generally   involve   applications   in   the   domains   transportation   and   logistics,  healthcare,  smart  environment,  personal,  social  and  futuristic.  Present  day,  the  IoT  applications  are  just   starting   to   be   visible   in   the   industry,   as   can   be   seen   in   the   roadmap   of   key   technological  developments   in   the   context   of   IoT   application   domains,   see   Appendix   B.3   (Gubbi   et   al.,   2013).  Gubbi  et  al.  (2013)  expect  the  full  enfoldment  of  the  Internet  of  Things  to  exceed  the  year  2025.  This  has   to   do  with   the   fact   that   the   current   state-­‐of-­‐the-­‐art   is   unlikely   to   be   sufficient   to   enable   the  realization  of  the  full  IoT  vision  (Miorandi  et  al.,  2012).    

2.4. Inhibitors  for  Internet  of  Things  Currently,   there  are   several  projects  on  different   aspects  of   Internet  of   Things.  However,   an  open  and   accessible   infrastructure   is   missing,   inhibiting   further   adoption   (Uckelmann,   Harrison   &  Michahelles,   2011).  One  of   the  main   challenges   for   IoT   is   to   transform   connected   things   into   real  actors   of   the   Internet   by   developing   appropriate   design   methodologies   (Sundmaeker,   Guillemin,  Friess,  Woelfflé,  2010).  Hence,  this  will  provide  connected  devices  with  a  higher  degree  of  smartness  enabling   their   autonomous   behavior   (Atzuri   et   al.,   2010).   This   involves   considerable   societal   and  ethical   challenges   on   both   European   and   global   level   (Sundmaeker   et   al.,   2010).   Next   to   this  technological  challenges,  Bandyopadhyay  &  Sen  (2011)   identify  three  key  challenges  for   IoT.  These  challenges  involve  the  foundation  of  the  network,  as  also  identified  by  Sundmaeker  et  al.  (2010).  The  issues  considering  security,  privacy  and  thrust  is  the  second  challenge  as  also  confirmed  by  Atzuri  et  al.   (2010)  and  Weber   (2010).  There  are   the  challenges   for   the  security  of   the  network  against  e.g.  DDOS  attacks  and  malicious  software.  Second,  the  user  privacy  must  be  assured  so  the  user  remains  in  control  of  personal  information.  The  thrust  domain  consist  of  the  natural  exchange  of  critical  data  as   ‘things’   will   communicate   on   behalf   of   users   (Bandyopadhyay   &   Sen,   2011).   The   third   major  challenge  is  managing  the  heterogeneity  of  the  network  as  indicated  by,  among  other  Miorandi  et  al.  (2012)  Bandyopadhyay  &  Sen  (2011),  Atzuri  et  al.  (2010).  This  challenge  connects  to  managing  large  amounts   of   data,   designing   an   efficient   architecture   for   networking   of   the   nodes   and   designing  

Page 13: Thesis the added value of Internet of Things

8      

sensor   data   communication   protocols   (Bandyopadhyay   &   Sen,   2011).   Summarizing,   the   key  challenges   for   IoT   to   succeed   are   network   foundation,   security,   privacy   and   trust,   and   managing  heterogeneity.  

2.5. Supply  Chain  Management  For  this  master  thesis,  added  value  of  IoT  will  be  studied  using  supply  chain  management  (SCM)  as  a  guideline.  Hence,  supply  chain  management  will  be  defined  in  this  paragraph.  The  term  Supply  Chain  Management  can  be  split  up   in   ‘supply  chain’  on  one  side,  and   ‘supply  chain  management’  on  the  other.  First,  supply  chain  will  be  defined  after  which  supply  chain  management  will  be  demarcated.  Mentzer,  DeWitt,  Keebler,  Min,  Nix,  Smith  &  Zacharia  (2001)  define  a  supply  chain  as:  “a  set  of  three  or  more   entities   (organizations   or   individuals)   directly   involved   in   the   upstream   and   downstream  flows  of  products,  services,  finances  and/or  information  from  a  source  to  a  customer”.  A  definition  of   supply   chain   management   is   less   general,   as   Mentzer   et   al.   (2001)   discuss   with   six   possible  definitions,  ranging  from  scholars  from  1985  until  1998.  This  implies  that  the  term  SCM  has  changed  during  the  years.  When  combining  the  different  definitions,  Mentzer  et  al.  (2001)  finally  define  SCM  as:  “the  systemic,  strategic  coordination  of  the  traditional  business  functions  and  the  tactics  across  these  business  functions  within  a  particular  company  and  across  businesses  within  the  supply  chain,  for  purposes  of   improving   the   long-­‐term  performance  of   the   individual   companies   and   the   supply  chain  as  a  whole”.  This  definition  of  SCM  will  be  used  for  this  thesis.  

2.6. Shareholder  Value  In  this  thesis,  defining  shareholder  value  is  achieved  by  using  the  Enterprise  Value  Map2  (EVM)  from  Deloitte.  This  value  map  was  created  in  2003  and  is  designated  from  the  client’s  point  of  view.  This  framework   shows   the   relationship   between   shareholder   value   and   business   operations.   It   maps  where  maximum   value   can   be   delivered   at   an   organization.  When   printed,   the   simplified   version  EVM  covers  a  full  A3  page  to  be  readable.  The  full  version  consists  of  847  possible  actions  to  improve  shareholder   value   at   organizations   and   is   generally   used   at   Deloitte   to   identify   points   to   increase  shareholder   value   at   clients.   The   EVM   helps   organizations   to   organize,   discuss   and   prioritize  improvement   opportunities   that   deliver   maximum   value   in   terms   of   revenue   growth,   operating  margin,  asset  efficiency  and  market  expectations  of  future  growth.  This  research  will  use  a  simplified  version  of  the  EVM  due  to  time  constraints  and  because  the  simplified  version  offers  enough  depth  to  identify  where  the  Internet  of  Things  can  add  value.  A  representation  of  the  EVM  can  be  seen  in  figure  4.  

 Figure  4:  Revised  Deloitte  Enterprise  Value  Map.  

                                                                                                                         2  Deloitte’s  Enterprise  Value  Map,  see:  http://www2.deloitte.com/us/en/pages/operations/articles/enterprise-­‐value-­‐map.html  

Page 14: Thesis the added value of Internet of Things

9      

3. Research  Method  In  this  chapter,  the  used  research  method  is  discussed.  First,  the  design  of  the  framework  is  elaborated  in  3.1.  Second,  the  case  study  selection  is  elaborated  in  3.2  and  the  case  study  execution  in  paragraph  3.3.  At  the  end  of  this  chapter,  the  analysis  is  performed  in  paragraph  3.4.  

3.1. Framework  design  This  paragraph  explains  how   the  presented   framework  has  been   created,   consisting  of   the   theory  input,   structure,   discussion   and   purpose   of   the   framework.   Thereafter,   the   plan   of   action   is  explained.   This  will   be  done  by   following   the   structure  of   van  Aken   (2007)   and  Eisenhardt   (1989).    Also,   the  existing  value  drivers,  what   IoT  applications  apply  and  what   inhibitors  occur   is  explained.  The  design  of  the  framework  is  derived  from  the  research  questions  of  this  thesis.  

3.1.1. Input  The   input   for  the  design  of  this   framework   is  based  on  the  analysis  of   the  qualitative  case  studies.  Also,  the  value  drivers  that  Deloitte  mapped  are  used.  Furthermore,  the  inputs  where  derived  from  the  research  questions  of  this  thesis,  which  makes  the  framework  more  clear  and  enables  structured  answering  of  the  research  questions.  Summarizing,  the  input  consists  of  the  following  contributions,  the  text  between  brackets  represents  the  research  questions  addressed.  

1. Where  IoT  adds  the  most  value  in  an  organization,  using  Deloitte’s  Enterprise  Value  Map  (research  question  3).  

2. How  is  this  value  added,  using  the  IoT  value  drivers  of  Fleisch  (2010)  (research  question  3).  3. What  kind  of  applications  are  required,  using  the  distinct  types  of  IoT  applications  by  Chui  et  

al.  (2010)  (research  question  2).  4. Why  IoT  is  not  yet  implemented  in  the  cases,  so  what  are  the  challenges  or  inhibitors  for  IoT  

adoption  (research  question  4)  

The  framework  gives  insight  in  where  an  organization  could  implement  IoT  first,  to  have  the  most  impact  for  the  organization.  The  different  inputs  are  explained  in  the  next  paragraph.  

3.1.2. Structure  As  described  in  the  previous  paragraph,  the  input  for  the  framework  consists  of  four  types  of  input.  These   inputs  will   be   discussed   in   this   paragraph,   after  which   the   design   of   the   framework  will   be  presented.  The  structure  of  the  framework  is  designed  so  it  has  a  matrix-­‐style  layout.  

The  framework  has  a  Y-­‐axle  that  indicates  practical  paths  to  increase  shareholder  value.  This  axle  is  adapted   from   the   Enterprise   Value   Map™   of   Deloitte.   This   map   is   designed   to   “accelerate   the  connection  between  actions  you  can  take  and  shareholder  value”.  An  adapted  representation  of  the  Enterprise  Value  Map  can  be  seen  below.  The  EVM,  as  shown  in  figure  4,  has  been  adapted  due  to  the   size  of   the   complete  EVM,  because   complete  EVM   requires   to  be  printed  on  A3   format   to  be  properly  readable.  A  condensed  version  of  the  EVM  can  be  found  in  Appendix  B.6.  

The  x-­‐axle  consists  of  the  IoT  value  drivers  as  presented  by  Fleisch  (2010).  These  value  drivers  look  at  the  value  that  applications  can  add  for  both  businesses  and  customers.  Fleisch  (2010)  analyzed  a  list  of  about  hundred  existing  and  emerging  applications  and  concluded  that  every  single  one  of  these  applications   corresponded   with   one   of   the   seven   main   value   drivers   he   identified.   The   resulting  preliminary  framework,  with  corresponding  axles  can  be  seen  in  figure  5.  

Page 15: Thesis the added value of Internet of Things

10    

 Figure  5:  Preliminary  framework  

On   each   relevant   enterprise   value   map   section,   the   type   of   IoT   application   is   identified,   which  interviewees  said  to  be  applicable  to  this  situation.  The  possible  choices  of  applications  are  defined  by   Chui   et   al.   (2010)   and   consist   of   six   possible   types   of   emerging   applications.   Also,   the   general  inhibitors   for   IoT  are   identified  during  each   interview.  These   inhibitors  help   identify  why   IoT   is  not  yet  implemented  and  what  needs  to  happen  to  enable  the  adoption  of  the  concept.  

On   the   cross-­‐sections,   the   interviewees   marked   where   they   thought   IoT   could   add   value.   If  respondents  saw  value  on  a  cross-­‐section,  respondents  were  asked  to  mark  it  with  a  score  from  one  to  ten.  The  number  one,  indicating  the  least  amount  value.  The  number  ten,  indicating  the  maximum  amount  of   value   that   they   thought   could  be  added  by  adopting   IoT.  By  using   this   concept,   a  heat  map  can  be  constructed  on  where  the  respondents  saw  the  most  value  and  how  many  respondents  scored  a  particular  cross-­‐section  on  the  framework.  

Finally,  the  framework  is  created  twice.  Once  for  short  term,  from  now  until  three  years  from  now  and  once  for  long  term,  from  three  to  ten  years  from  now.  The  length  of  these  two  timeframes  have  been  selected  by  consulting  several  Deloitte  consultants  about  the  average  implementation  time  of  IT   projects.   The   consultants   indicated   that   a   period   of   three   years   is   about   the   time   an   IT  implementation  lasts,  taking  in  perspective  the  start  initial  idea  for  an  IT  project,  all  the  way  through  the  completed   implementation  of  a  project.  That   is  why  respondents  are  most   likely   to  be  able   to  identify   processes   in   which   IoT   can   provide   value   in   those   two   timeframes.   By   segmenting   the  interviews   into   two   timeframes,   the   difference   can   be   observed   between   short   term   factors   and  long  term  factors  influenced  by  IoT.  

3.1.3. Purpose  The  purpose  of  the  framework  is  to  help  identify  where  implementation  of  IoT  has  the  most  added  value  for  an  organization  and  helps  to  give   insight   in  the  value  drivers,   type  of   IoT  application  and  factors  that  have  inhibited  the  use  of  IoT  until  now.  

The  framework  will  help  organizations  gain  insight  in  where  IoT  will  have  the  highest  impact  in  their  organization.  This  complements  the  data  that  organizations  need  for  strategic  decisions  about  how  to  apply  the  IoT  concept  and  what  value  drivers  will  create  this  added  value.  

Furthermore,  the  framework  will  help  organizations  to  gain  insight  in  the  kind  of  IoT  application  that  would  suit  their  business  best.  This  can  help  to  create  the  perception  of  employees  in  twofold.  First,  organizations  have  a  complete  image  of  possible  IoT  applications  and  secondly,  it  gives  an  indication  of  the  applications  that  could  have  the  largest  impact  for  their  organization.  

1 2 3 4 5 6 7Simplified  Manual  Proximity  Trigger

Automatic  Proximity  Trigger

Automatic  Sensors  Trigger

Automatic  Product  Security

Simple  Direct  User  Feedback

Extensive  User  Feedback

Mind  Changing  Feedback

Volume 1 Acquire  new  customersPrice  Realization

2Retain  and  Grow  Current  Customers

3Leverage  Income-­‐Generating  Assets

4 Strengthen  PricingSelling,  General  &  Administrative

5Improve  Customer  Interaction  Efficiency

6Improve  Corporate/  Shared  Service  Efficiency

Cost  of  Goods  Sold7

Improve  Development  &  Production  Efficiency

8Improve  Logistics  &  Service  Provision  Efficiency

9Improve  income  tax  efficiency

Property,  Plant  &  Equipment

10Improve  Property,  Plant  &  Equipment  Efficiency

Inventory11 Improve  Inventory  Efficiency

Receivables  &  Payables

12Improve  Receivables  &  Payables  Efficiency

Company  Strenghts

13Improve  Managerial  &  Governance  Effectiveness

14Improve  Execution  Capabilities

External  Factors 15 External  Factors

Internet  of  Things  Value  Drivers

Shareh

olde

r  Value

Page 16: Thesis the added value of Internet of Things

11    

Finally,  the  framework  gives  an  indication  on  how  many  respondents  found  a  particular  part  of  their  company  suitable  to  adopt  IoT,  and  how  much  value  they  thought  could  be  added  by  using  the  score  map  from  one  to  ten.  

3.2. Case  Study  Selection  In  order  to  create  a  robust  case  study  for  this  master  thesis,  the  concept  of   ‘population’   is  crucial.  Since  selection  of  an  appropriate  population  controls  extraneous  variation  and  helps   to  define  the  limits   for   generalizing   the   findings   (Eisenhardt,   1989).   Cases   can   be   chosen   to   fill   theoretical  categories   and   while   cases   can   be   chosen   arbitrarily,   random   selection   is   neither   necessary   nor  preferable   (Eisenhardt,   1989).   This   is   why,   before   starting   to   find   usable   case   studies,   some  guidelines  where  created  to  ensure  a  replicable  case  study.  Recapitulating  from  paragraph  1.4,  these  guidelines   are   that   the   organization  must   have   an   annual   revenue   of   over   100  million   euro’s,   to  ensure   a   sizable   company.   Also,   the   organization   must   have   an   office   in   the   Netherlands.  Furthermore,   the  organization  must  have  affinity   supply   chain  management.   Finally,   for   the   scope  and  due  to  the  limited  time  frame  of  this  thesis  the  decision  was  made  to  do  a  case  study  consisting  of  three  organizations.  

In   order   to   find   suitable   cases,   28   employees   of   Deloitte   Consulting   -­‐ranging   from   consultant   to  partner-­‐  where   contacted.   All   these   employees   have   knowhow   of   IoT   and/or  worked   on   projects  which   included   IoT.  From  these  contacts,  13  meetings  where  organized   in  which   the   research  was  discussed  in  depth  and  the  several  possible  cases  where  discussed.  Next,  several  organizations  that  fitted  the  set  requirements  where  approached.    

From  the  approached  organizations  a   total   three  organizations  where  selected  that  best   fitted  the  scope.  The  choice  for  three  organizations  was  made  because  of  the  limited  time  available  to  conduct  this   research.   Two   organizations   can   contradict   each   other,   but   three   organizations   will   always  ensure   that   a   conclusive   decision   can   be  made   by   reaching   a   two   vs.   one  majority.   For   the   same  reason,   three   respondents   per   company   where   selected.   Again,   to   be   able   to   prevent   a   possible  stalemate  in  which  no  conclusion  can  be  reached.  

The  selected  organizations  are:  

-­‐ Canon  Europa  N.V.  (Canon)  -­‐ Havenbedrijf  Amsterdam  N.V.  (Port  of  Amsterdam)  -­‐ Koninklijke  KPN  N.V.  (KPN)  

A  short  explanation  of  each  organization  is  given  in  the  next  three  paragraphs.  

3.2.1. Case  Description  Canon  Europa  N.V.  Canon   is   a   Japanese  multinational   corporation,  which   specializes   in   the  manufacturing   of   imaging  and   optical   products.   The   company   was   founded   in   1937,   has   its   headquarters   in   Tokyo,   Japan.  Canon   started   to   produce   a   35mm   camera   and   since   then,   started   to   sell   products   like   (office)  printers,   scanners,   digital   cameras,   video   recorders,   binoculars   and   the   software   to   support   these  products.  This   results   in  an  annual   revenue  of  26,5  billion  euro’s,   a  profit  of  2,4  billion  euro’s  and  more   than   198.000   employees   worldwide.   The   company   has   two   offices   in   the   Netherlands,   in  Amstelveen   and   Den   Bosch.   In   2011,   Canon   acquired   the   Dutch   printing   and   copying   hardware  manufacturer  Océ  to  become  the  world’s  largest  hardware  supplier  of  printing  equipment.  

For   some   time,   Canon   is   offering   its   eMaintenance   system3   to   let   customers  manage   their   Canon  devices   more   efficiently.   This   system   automatically   gathers   diagnostic   data   from   multifunction  devices   of   Canon’s   clients.   The   data   is   transferred   to   Canon’s   servers   and   can   be   analyzed.   This  eMaintenance   system   has   several   advantages   for   the   client.   Examples   are   that   the   toner   is                                                                                                                            3  Canon’s  eMaintenance  system,  see:  http://www.canon-­‐europe.com/for_work/solutions/solutions/office_software/emaintenance/  

Page 17: Thesis the added value of Internet of Things

12    

automatically  replenished,  when  running  low.  So  the  client  never  has  to  run  out  of  toner.  Also,  data  concerning   the  mechanical   status  of   the  device   is   collected  by  Canon.   This  means   that  preventive  maintenance   can   take   place   before   the   machine   fails,   ensuring   minimal   (unexpected)   downtime.  Finally,  firmware  updates  can  be  pushed  to  the  multifunction  devices,  ensuring  up-­‐to-­‐date  software.  In  essence,  this  is  an  example  of  IoT,  since  sensors  are  placed  on  a  thing,  e.g.  a  printer.  Not  only  does  the   eMaintenance   system   has   significant   advantages   for   the   customers,   also   the   advantages   for  Canon  and  their  supply  chain  and  maintenance  department  are  numerous.    

3.2.2. Case  Description  Havenbedrijf  Amsterdam  N.V.  The  first  port  activities  in  Amsterdam  date  back  to  the  13th  century.  The  Port  of  Amsterdam  was  one  of  the  main  ports  of  the  Dutch  East  India  Company  (VOC),  during  the  Dutch  Golden  Age.  Present  day,  the   port   is   the   fourth   largest   port   in  Western   Europe,  measured   by   transshipment.   From  April   1st  2013,   the   Port   of   Amsterdam   is   privatized   by   the   municipality   of   Amsterdam.   Havenbedrijf  Amsterdam  N.V.   is   designated   for   the  management,   operation   and   development   of   the   port.   The  port  is  located  on  the  banks  of  the  North  Sea  Canal  and  the  IJ  and  is  connected  to  the  North  Sea  and  the   Markermeer.   The   Port   of   Amsterdam   has   over   5000   vessel   arrivals   per   year   and   an   annual  revenue  of  133  million  euro.  Around  361  employees  work  at  the  Port  of  Amsterdam,  but  the  number  of  jobs  directly  and  indirectly  created  by  the  companies  in  the  port  region  is  around  55.000.  Next  to  being  a  port  for  bulk  goods  and  containers,  the  port  also  functions  as  an  important  harbor  for  cruise  ships.  The  Port  of  Amsterdam  is  the  biggest  petrol  harbor  in  the  world.  

The   new   business   department   of   the   Port   of   Amsterdam   is   testing   a   new   system   which   can   be  described  as  a  ‘smart’  quay  wall.  This  quay  wall  has  sensors  build  inside,  that  check  if  there  is  a  ship  docked   at   the  quay.   This   is   the   first   example  of   an   IoT   application   at   the  Port   of  Amsterdam,  but  there  are  many  possibilities  for  new  and  interesting  IoT  applications  at  the  port.  This  smart  quay  wall  is   piloted   at   a   small   part   of   the   harbor,   at   the   Houthaven.   A   separate   project   that   the   Port   of  Amsterdam  is  running,  relates  to  sniffers.  This  is  a  type  of  sensor  that  monitors  the  surrounding  air  quality.  In  this  way,  the  Port  of  Amsterdam  can  check  if  ships  are  expelling  hazardous  materials  and  can   notice   if   there   is   a   gas   leak,   for   example.   Step   by   step,   the   Port   of   Amsterdam   is   gradually  expending   the   capability   of   their   IoT   network   and   applications.   Also,   the   organization   is   planning  more  pilot  projects  in  the  area  of  IoT  in  the  future.    

3.2.3. Case  Description  Koninklijke  KPN  N.V.  KPN  is  a  supplier  of  telecommunication  and  ICT  services  for  the  consumer  and  business  market.  The  company  provides  fixed  and  mobile  telephony,  internet  and  television  for  the  consumer  market.  For  the   business   market,   the   company   provides   complete   telecommunications   and   IT   solutions.   KPN  originates   from   Staatsbedrijf   der   Posterijen,   Telegrafie   en   Telefonie   (PTT),   which   was   founded   in  1928  and  was  a  publicly  owned  company.  KPN  was  had   its   Initial  Public  Offering  (IPO)   in  1994  and  the   privatization   of   the   company   was   completed   in   1996.   Currently,   the   company   has   an   annual  revenue  of  almost  8.5  billion  euro’s.  

KPN   is  working  with   different   solution-­‐   and  business   partners   to   offer   IoT   solutions   to   customers.  The  company   is  offering   services   in   ranges  of  RFID,   LoRa,   security  and  Machine  2  Machine   (M2M)  connectivity.  The  company  is  identified  by  Gartner  as  visionary  in  the  area  of  M2M.  KPN  is  currently  unfolding  several  initiatives  in  regard  to  smart  cities,  which  is  essentially  an  IoT  within  a  city  to  offer  services  ranging  from  public  transport  connectivity  to  smart  lighting  on  the  streets.  Initiatives  include  for  example  the  Amsterdam  Smart  City  project4.  

3.3. Case  Study  Execution  In  addition   to   talking   to   the  appropriate  organizations,   talking  with   the   right  people   is  essential   to  extract  the  right  data  from  the  interviews.  Respondents  should  have  sufficient  know-­‐how  about  IoT,  

                                                                                                                         4  Amsterdam  Smart  City,  see:  http://amsterdamsmartcity.com  

Page 18: Thesis the added value of Internet of Things

13    

before   they   qualify   as   a   proper   interviewee.   In   the   phone   call   before   every   interview,   the  respondent  was  asked  about  their  know-­‐how  about  the  subject,  to  be  sure  that  the  interview  got  the  right   results.   Only   respondents   were   considered   who   have   a   function   in   IT   strategy,   Enterprise  Architecture  and/or  are  dealing  with  CTO/CIO  subjects.  A  list  of  functions  of  all  respondents  can  be  found  in  Confidential  Appendix  E.2.  

The   interviews  are  based  on  the  theories  Deloitte’s  Enterprise  Value  Map  -­‐which  describes  how  to  add   shareholder   value-­‐,   the   IoT   value   drivers   by   Fleisch   (2010),   and   the   distinct   types   of   IoT  applications  by  Chui  et  al.  (2010).  This  results  in  a  structured  interview,  covering  all  three  theoretic  models,  described   in  the  problem  definition  chapter.  This  can  be  seen  below  at  the  numbers   four,  five  and  six.  A  semi-­‐structured  interview  approach  was  chosen  to  allow  deviations  in  the  interviews,  in   order   to   allow   the   interviewee   to   elaborate  more   on   certain   topics.   In   addition,   this   gives   the  opportunity  for  the  interviewer  to  ask  more  specifically  about  certain  topics.  While,  a  specific  set  of  topics  was  addressed  in  every  interview.  Every  interview  was  structured  as  specified  below:    

1. Introduction  of  both  the  interviewee  and  interviewer  2. Introduction  of  the  research  and  purpose  of  the  interview  3. General  questions  about  Internet  of  Things  4. Questions  about  the  Internet  of  Things  value  framework  5. Closing  /  final  remarks  

 To  prepare  the  respondents  for  each  interview,  a  15  minute  phone  call  was  scheduled  prior  to  every  interview.  During  this  phone  call,  both  the   interviewer  and  the   interviewee   introduced  themselves  first.  After  an   introduction,   the   interviewer  explained  the  research,   research  goal,  used  framework  and  interview  procedure  to  the  interviewee.  By  preparing  the  interviewees  for  the  interview,  it  was  made  sure  that  interviewees  understood  the  research  goal  and  interview  procedure  that  was  going  to  take  place.  This  prior  introductory  phone  call  ensures  that  the  available  interview  time  is  used  as  efficiently   as   possible.   After   the   phone   call,   an   additional   e-­‐mail   was   sent   to   the   respondents,   in  which   a   document   was   attached,   explaining   the   framework   used   during   the   interview.   For   each  interview,   the   framework   and   list   to   mark   type   of   applications   and   inhibitors   was   printed   on   A3  format   and   given   to   the   interviewee.   In   this   way,   the   interviewee   could   fill   in   the   framework   to  ensure   a   correct   translation   of   their   IoT   value   perceptions.   To   facilitate   the   interviewee,   the  interviewer   filled-­‐in   the   list   of   application   types   and   inhibitors   during   the   interview,   whilst   the  interviewee  filled-­‐in  the  framework.      To   make   sure   that   each   interview   was   processed   the   same,   the   processing   procedure   of   Reijers  (2006)  was  used  for  each  interview.  This  method  consists  of  the  following  steps:  

1. If  permission  is  given,  the  interview  is  recorded.  Else,  only  notes  will  be  taken.  2. The  interview  is  transcribed.  3. The  interview  notes  are  presented  to  the  interviewee  for  review.  4. Remarks  are  processed  into  final  interview  results.  5. Recordings  are  erased  once  the  case  studies  have  been  completed.  

The  full   list  of   interview  questions  can  be  found  in  Appendix  E.  On  average,  the  interview  report   is  about   9   pages   in   length   and   the   interview   time   averaged   50   minutes.   The   transcription   of   the  interview  was  usually  completed  on  the  same  day  or  the  day  after,  which  was  finalized  as  soon  as  possible   in   order   to   facilitate   the   validation   of   the   report   with   the   interviewee.   All   transcriptions  where  e-­‐mailed  to  the  interviewees  as  soon  as  possible  to  assess  for  the  correctness  of  the  report.  This   resulted   in   a   high   response   rate   (10/11),   which   resulted   in   some   minor   corrections   to   the  interview  report.  

Page 19: Thesis the added value of Internet of Things

14    

3.4. Analysis  After  the  fieldwork  had  been  completed,  the  analysis  of  the  data  is  the  next  step  according  to  the  model  of  Eisenhardt  (1998).  In  section  3.4.1  the  motivation  behind  the  analysis  is  explained.  In  3.4.2  the  case  study  analysis  is  discussed.  

3.4.1. Motivation  The   analysis   of   the   gathered   data  was   conducted   in   two   steps.   First,   this   involves   a   detailed   case  study,  with  case  descriptions   for  every   individual  case,   so  called:   ‘within-­‐case  analysis’.  These  case  descriptions  are  central  in  the  generation  of  insight  (Eisenhardt,  1989).  There  is  no  standard  format  for  within-­‐case  analysis.  However,  the  general  idea  is  to  become  familiar  with  each  case  as  a  stand-­‐alone  entity.   This  allows   for  unique  patterns  of  each  case   to  emerge,  before  generalizing  patterns  across   cases   (Eisenhardt,   1989).   Secondly,   ‘across   case   analysis’   was   performed   to   check   for  emerging  patterns  to  see  if  similar  results  were  found  at  the  other  organizations.  

3.4.2. Analysis  of  case  studies  After  a  conducted   interview,  the  voice  recorder  data   file  was  back  upped.  Next,   the   interview  was  typed-­‐out   and   set   in   a   common   format,   to   be   able   to   transcribe   the   data.   No   special   software  program  was  used  to  transcribe  the  interviews.  Instead,  two  columns,  one  for  the  interview  text  and  one  for  the  identified  codes,  where  generated.  The  results  can  be  found  in  Confidential  Appendix  F.  Secondly,   the   interviews  where   transcribed,  coded  and  analysis  was  performed   in   two  steps.  First,  ‘within-­‐case  analysis’  was  performed  to  understand  case  specific  issues,  characteristics  and  business  cases  (Eisenhardt,  1989).  For  example,  Canon  has  a  totally  different  business  case  than  the  Port  of  Amsterdam.   So   in   order   to   understand   the   complexity   of   every   case,   the   within-­‐case   analysis   is  necessary.   After   the   within-­‐case   analysis,   the   across-­‐case   analysis   was   performed   to   research  patterns  across  cases  and  plot  the  resulting  framework  (Eisenhardt,  1989).  

The   coding   was   done   using   a   set   of   pre-­‐determined   codes,   which   were   altered   and   updated  continuously   in   the   process   of   analyzing   all   case   studies.   This   created   a   consistent   set   of   codes  throughout   all   different   interview   analyses.   Codes   where   created   for   identifying   points   in   the  Enterprise  Value  Map  (EVM)  where  IoT  can  add  value,  to  identify  IoT  value  drivers  that  add  value,  to  identify   applications   and   to   identify   inhibitors.  Other   contextual   data  was  noticed,   but   not   coded.  This  was  done  to  apply  focus  to  the  results  and  to  prevent  getting  lost  in  a  tangle  of  codes  and  data.  

Because  the  interviewees  where  given  a  printed  A3  copy  of  the  framework,  it  was  ensured  that  the  correct   interpretation  of   the   interviewee’s   response  was  noted.  The  documentation   is   available   in  Confidential  Appendix  D.  After  the  coding  and  transcription,  the  filled-­‐in  A3  frameworks,  application  and   inhibitor   lists  where   combined   to   a   frequency   table   and   anonymized.   This   confidentiality  was  needed,   since   some   of   the   respondents   required   anonymity   for   the   data   obtained   from   their  participation.  The  data  collection  took  place  in  a  timeframe  of  1  month.  

After  the  data  collection  and  analysis  of  the  cases  had  been  completed,  two  more  interviews  were  been  conducted  with  IoT  experts  at  Deloitte.  The  purpose  of  these  two  interviews  is  to  verify  if  the  case   study   results   are  a  good   representation  of   their   experiences  with   IoT  projects.   The   results  of  these   interviews  are  presented   in  the  validation  chapter.  A  description  of  the  background  of  these  IoT  experts  can  be  found  in  chapter  6.    

4. Plan  of  Action  The  point  has  come  in  which  the  gathered  data  and  framework  design  are  being  put  into  an  actual  plan   of   action.   This   plan   of   action   is   presented   in   the   form   of   an   IoT   value   framework,   which   is  presented  at   the  end  of   this  paragraph.   Section  4.1  describes   the   structure  of   the   framework,  4.2  presents   the   framework   and   section   4.3   the   state-­‐of-­‐the-­‐art   of   IoT.   In   section   4.4   and   4.5,   the  

Page 20: Thesis the added value of Internet of Things

15    

emerging   types   of   IoT   applications   and   inhibitors   for   IoT   are   discussed.   Finally,   the   purpose   and  framework  are  presented  in  section  4.6.  

4.1. Structure  The   structure   of   the   framework   used   in   this   study   is   generally   the   same   as   the   preliminary  framework,   discussed   earlier.   Respondents   see   no   added   value   for   ‘Income   taxes’.   Therefore,   this  part  of  the  EVM  is  left  out  of  the  framework.  Furthermore,  only  points  that  where  identified  by  two  or   more   respondents   are   displayed   in   the   final   framework.   This   is   to   increase   validity   of   the  framework,  by  preventing  the  solo  opinion  of  a  respondent  to  be  included  in  the  framework.  Before  the   framework  was  constructed,   the  grades  that   respondents  allocated  to   the  value  drivers  where  normalized.  This  was  done  in  order  to  assign  the  proper  colors,  to  indicate  value  and  size,  to  indicate  the  number  of  respondents.  These  two  variables  are  displayed  using  circles  varying  in  size  and  color.    

4.2. Framework  The  resulting  graphical  representation  from  the  preliminary  framework  is  presented  in  this  section.  This  framework  incorporates  the  results  of  all  case  study  interviews.  First,  the  results  derived  from  the  framework  are  discussed,  next  the  framework  is  presented  for  the  short  term  value  (0-­‐3  years)  and  long  term  value  (3-­‐10  years).  

4.2.1. Short  term  framework,  within  0  –  3  years  The  results  of  the  case  study  are  given  as  five  key  points,  these  points  are  specified  below.  These  key  points  are  that  IoT  has  value  for  revenue  growth,  operating  margin,  ‘property,  plant  &  equipment  efficiency’  and  ‘inventory  efficiency’.  Also  the  value  driver  ‘automated  sensors  trigger’  is  seen  as  valuable  and  respondents  see  no  value  for  ‘improve  income  tax  efficiency’.  

1. First,  IoT  value  drivers  across  the  range  have  high  values  and  a  high  response  rate  for  ‘acquiring  new  customers’  and  ‘retaining  and  growing  current  customers’.  This   implies  that  between  now  and  three  years,  companies  want  to  use  IoT  to  grow  their  customer  base.  When  the  number  of  customers  increases  at  an  organization,  so  does  the  turnover.  Organizations  want  to  attract  new  customers  by   adding   innovative   and   value   added   services   to   their   portfolio.   The  question   is   if  organizations   can   actually   create   the   applications   to   successfully   add   these   new   services.  Customers   want   high   quality,   attractive   applications   that   work,   as   quoted   by   one   of   the  respondents:  “(applications)  should  reflect  the  needs  of  customers,  (…)  they  want  the  best  and  they  want  it  now”.  

2. Second,  a  clear  presence  of  IoT  value  drivers  can  be  seen  at  the  Operating  Margin  of  the  EVM.  IoT   value   drivers   can   be   used   to   add   value   to   ‘customer   interaction   efficiency’,   ‘improve  corporate/shared   service   efficiency’,   ‘improve   development   &   production   efficiency’   and  ‘improve   logistics  &  service  provision  efficiency’.   In   turn,   this  adds  value   to   ‘Selling,  General  &  Administrative’  and  ‘Cost  of  Goods  Sold’  and  thus  increases  the  ‘Operating  Margin’.  The  highest  response  is  given  to  the  ‘Automatic  Sensors  Trigger’  value  driver,  this  IoT  value  driver  increases  the   value   proposition,   by   smart   things   that   monitor   its   local   surroundings   and   self-­‐triggers  actions  if  required  (Fleisch,  2010).  

3. Third,   organizations   see   potential   for   IoT   to   increase   ‘property,   plant  &   equipment   efficiency’  and   ‘inventory   efficiency’.   Foremost,   organizations   hope   to   increase   efficiency   by   sticking  sensors   on   their   products   and   inventory   in   order   to  monitor   them.   However   all   value   drivers  where  marked  by  respondents,  the  most  distinctive  is  the  ‘automatic  sensors  trigger’,  which  self-­‐triggers  action  of  a  thing  when  required  (Fleisch,  2010).  So,  for  example,  when  a  product  leaves  a  warehouse  or  enters  a  subassembly  line  and  automatically  signals  this  to  a  software  program  or  application.   Such   an   application   can   make   supply   chains   more   lean   and   enable   improved  operational  excellence,  as  named  by  respondents.  

4. Fourth,  the  value  driver  ‘automatic  sensors  trigger’  is  identified  in  the  framework  at  each  point  on  Deloitte’s   Enterprise  Value  Map   (EVM).  This   indicates   that   this   IoT   value  proposition   is   the  

Page 21: Thesis the added value of Internet of Things

16    

most  important  in  short  term,  also,  the  average  value  that  is  given  to  this  value  driver  is  higher  than  any  other  value  driver.  This  gives  an   indication  that  organizations  that  want  to  adopt   IoT,  should  focus  on  implementing  this  value  driver  for  the  next  couple  of  years.  

5. In   addition,   respondents   see   no   potential   for   value   at   ‘improve   income   tax   efficiency’.  Potentially,   this   is   because   this   EVM   part   is   primarily   focused   on   reduce   spending   on   taxes.  However  this  does  not  mean  that  there  is  no  added  value  to  be  gained  by  using  IoT  to  improve  tax  efficiency.  The  short  term  framework  can  be  found  at  the  end  of  this  paragraph.  

Concluding,   in  short  term,  IoT  adds  value  for  revenue  growth,   increasing  the  operating  margin  and  increasing  value  for  parts  of  the  asset  efficiency.  

4.2.2 Long  term  framework,  within  3  –  10  years  Looking  at  the  long  term  value  framework,  three  distinctive  points  can  be  distinguished,  which  are  in  the  ‘revenue  growth’,  ‘operating  margin’  and  for  the  value  driver  ‘automatic  sensors  trigger’.  These  are  summarized  below.  

1. For  the  long  term  vision,  so  from  3  to  10  years  from  now,  this  case  study  identified  a  lot  of  added  value  at  the  ‘Acquiring  New  Customers’  and  ‘Retain  and  Grow  Current  Customers’  points  of  the  EVM.  Implying  that  organizations  see  IoT  as  a  tool  to  grow  their  customer  base  in  the  long  term.  This  trend  is  also  shown  at  short  term  vision  of  the  framework.  So  in  the  short  term  as  well  as  in  the  long  term,  using  IoT  to  acquire  and  retain  customers  is  seen  as  important.    

2. Secondly,  the  number  of  respondents  that  see  value  for  these  two  EVM  categories  increase  for  the  three  value  drivers  that  act  as  a  trigger,  with  the  highest  response  at  the  ‘automatic  sensors  trigger’.   This   increase   in   interest  and  expected  high  value   can  be   seen  at   the   feedback   side  of  Fleisch’s   (2010)  model.   As   sensors   have  more   functions  when   looking   at   the   right   side   of   the  model,  this  suggests  that  more  advanced  sensors  will  become  more  relevant  within  three  to  ten  years  from  now.  

3. Finally,   the   added   value   that   could   be   seen   for   increasing   the   operating  margin   shifts  mainly  towards  improving  the  customer  interaction  efficiency.  For  the  short  term  version  of  the  model,  the  added  value   for   IoT  was   identified   for   the  whole  operating  margin  part  of   the  EVM.  Many  respondents   indicated   value   at   this   part   of   the   EVM.  Also   the   expected   value   increases  when  looking  at   the   feedback   side  of   the  model  by  Fleisch   (2010).   The   long   term   framework  can  be  found  at  the  end  of  this  paragraph.  

Concluding,  IoT  adds  long  term  value  for  growing  revenue,  increasing  the  operating  margin  and  for  the  ‘automatic  sensors  trigger’  value  driver.  

4.3 State-­‐of-­‐the-­‐Art    The  current  state-­‐of-­‐the-­‐art  of  IoT  at  the  three  different  case  studies  is  discussed  in  this  paragraph.  In  order   to   improve  the  quality  of   the  answer,   the  respondents  were  asked  which   IoT  applications  exist   at   their  organization,   instead  of   asking   respondents   the   current   state-­‐of-­‐the-­‐art,  which   could  have  led  to  biased  answers.  All  cases  have  some  sort  of  IoT  application  running  at  their  company  or  have  created  an  application   for  a  client.  The  detailed  analysis  of   the   identified  applications  can  be  seen  in  Confidential  Appendix  C.5.  A  summary  of  the  results  is  displayed  in  table  1.  In  this  table,  the  identified  applications  of   each   case   is  projected.  Also,   the   identified  applications  are   translated   to  the  emerging  type  of  IoT  applications  by  Chui  et  al.  (2010).    

Looking  at  a  category   level,  all  cases  have   identified  applications   from  the   ‘Information  &  analysis’  section  model  by  Chui  et  al.  (2010).  Zooming  in  at  this  category,  KPN  realized  an  application  related  to   tracking  behavior,  with   sensors   in   cars   for   the  purpose  of   fleet  management  analysis.  Also,   the  company  recently  was  involved  a  project  with  connected  fridges.  The  Port  of  Amsterdam  has  started  a  pilot  in  which  they  have  placed  sensors  at  the  quays.  These  proximity  sensors  are  able  to  detect  if  a  ship  has  docked  at  the  quay.  In  the  future,  this  enables  ships  that  visit  the  harbor,  to  check  for  a  free  

Page 22: Thesis the added value of Internet of Things

17    

quay  to  dock.  Canon  has  integrated  multiple  sensors  in  their  copy  machines  to  be  able  to  track  the  status  of  the  machines.  This  enables  the  company  to  stream  their  supply  chain  and  offer  more  and  extended  services  to  their  customers.  

Case   Identified  IoT  applications   IoT  application  (Chui  et  al.,  2010)  Canon   Built-­‐in  sensor  technology  in  printers   Sensor-­‐driven  decision  analytics  KPN   Involved  in  projects  for  customers  in  

terms  tracking  behavior  Tracking  behavior  

Port  of  Amsterdam   Quays  that  monitor  if  a  ship  is  docked   Enhanced  situational  awareness    Table  1:  IoT  state-­‐of-­‐the-­‐art  of  the  case  studies  

All  current  applications  of  this  case  study  can  be  mapped  to  the  ‘Automation  and  Control’  section  of  the  framework  of  Chui  et  al.  (2010).  Gathering  information  and  performing  analysis  has  to  take  place  first,  before  automation  and  control  can  be  performed.  This  seems  logical,  as  IoT  is  a  relatively  new  concept.   This   gives   an   indication   that   the   sensors   required   to   facilitate   IoT   are   available,   but   that  actually   automating   and   controlling   ‘things’   with   software   is   the   next   step   for   companies.   Also,  respondents  indicated  that  the  applications  and  software  for  IoT,  still  have  to  be  written.  This  gives  an   indication   that   the   state-­‐of-­‐the-­‐art   can   be   found   in   using   IoT   to   gain   information   and   perform  analyses  on  this  information.  

4.4 Emerging  types  of  Internet  of  Things  applications    After   discussing   the   value   drivers   and   current   state-­‐of-­‐the-­‐art,   this   paragraph   formulates   the  emerging  types  of  IoT  applications  as  identified  during  the  case  study  interviews.  To  recall  the  types  of  applications;  Chui  et  al.  (2010)  identified  six  types  of  emerging  IoT  applications,  which  are  divided  in  two  subcategories,  namely  ‘information  and  analysis’  and  ‘automation  and  control’.  The  emerging  applications   are   described   in   two   timeframes:   short   term   and   long   term.   A   detailed   description,  including  tables  and  graphs  can  be  found  in  Appendix  C.6.    

4.4.2 Short  term  emerging  applications,  within  0  –  3  years  Within   a   period   from   now   to   three   years,   the   respondents   identified   a   total   of   52   emerging  applications.   83%   of   these   applications   where   identified   in   the   sub-­‐category   information   and  analysis,  representing  a  vast  majority  of  the  emerging  applications.    

The   most   identified   types   of   emerging   applications   are   ‘enhanced   situational   awareness’   and  ‘sensor-­‐driven   decision   analytics’.   These   two   types   of   applications   represent   over   60%   of   the  identified   emerging   applications.   Enhanced   situational   awareness   helps   to   achieve   real-­‐time  awareness  of  physical  environment  (Chui  et  al.,  2010).  Respondents  saw  applications  in  monitoring  the  outside  environment  with  sensors  like  cameras,  sniffers  and  proximity  sensors.  For  sensor-­‐driven  decision   analytics,   respondents   named   dashboards   to   help   customers   make   decisions   and   gain  understanding  about  things  and/or  the  environment,  as  desired  applications.  

A   notable   trend   can   be   seen   at   emerging   applications   at   the   EVM   category:   revenue   growth.   The  number  of  identified  applications  for  that  part  of  the  EVM  is  24,  so  this  represents  almost  half  of  the  applications.   Foremost,   these   applications   are  mapped   for   acquiring   new   customers   and   retaining  and  growing  the  current  customer  base.  This  implies  that  respondents  see  the  value  of  applying  IoT  for   use   of   information   and   analysis,   to   acquire   new   customers   and   expand   the   current   customer  base.  

The   ‘complex  autonomous  systems’  application  type  was  named  only  one  time  by  respondents  for  short   term   applications.   This   might   be   because   it   represents   automated   control   in   open  environments  with  great  uncertainty,  for  example  autonomous  drones  making  their  own  decisions.  This   technology   is   cutting-­‐edge   at   the   moment   and   only   used   for   test   purposes,   for   example   in  autonomous  cars.    

Page 23: Thesis the added value of Internet of Things

18    

4.4.3 Long  term  emerging  applications,  within  3  –  10  years  For  the  long  term  -­‐a  period  within  3  –  10  years  from  now-­‐,  significantly  less  applications  than  in  the  short   term  where   identified   by   respondents,   namely   18   emerging   applications   in   total.   The   lower  number  of   identified  applications  has  to  do  with  respondents  being  unable  to  grasp  what  the   long  term   applications   for   IoT   can   be,   all   but   one   application   were   identified   in   the   sub-­‐category  ‘Information  and  analysis’  

Similar  as   for  the   long  term  emerging  types  of  applications,   the  EVM  category   ‘Revenue  growth’   is  best  represented.  The  exception  is  ‘Leverage  income-­‐generating  assets’,  of  which  no  emerging  types  of   applications  where  mapped   by   respondents.   So   respondents  want   applications   that   help   them  acquire  new  customers,  retain  current  customers  and  help  them  strengthen  pricing.  

Half   of   the   emerging   types  of   applications   can  be   found  at   ‘Sensor-­‐driven  decision   analytics’.   This  emerging   type  of   application   involves   assisting  human  decision  making   through  deep  analysis   and  data  visualization   (Chui  et   al.,   2010).   This  has   to  do  with   creating  dashboards  and  applications   for  people  to  visualize  the  feedback  from  sensors.    

It  seems  that  companies  that  want  to   integrate  IoT   in  their  supply  chain,  need  to  start  with  a  pilot  and   on   a   small   scale,   in   order   to   properly   test   the   concept.  When   placing   sensors,   these   sensors  need  to  be  as  advanced  as  possible,  in  order  to  enable  the  use  of  future  IT  developments.  However,  companies  need  to  pilot  a  limited  set  of  functions  and  gradually  expand  the  functions  of  the  sensors.  

4.5 Inhibitors  for  Internet  of  Things  adoption  In   this   paragraph,   the   most   important   inhibitors   that   where   identified   during   the   different   case  studies   are   discussed.   First,   the   short   term   inhibitors   are   given   and   next   the   long   term.   The  comprehensive   ranking   of   all   short-­‐   and   long   term   inhibiting   factors,   including   the   number   of  respondents  that  identified  a  factor,  can  be  found  in  Appendix  C.7  &  C.8.    

4.5.1 Short  term  inhibitors  In   total,   seventeen   short   term   inhibitors   for   IoT  where   identified   by   respondents.   The   short   term  inhibitors  that  where  characterized  the  most  are  displayed  below.  These  inhibitors  where  identified  by  four  out  of  the  nine  respondents.  The  inhibitors  are:  ‘cost  of  technology  /  investments’,  ‘privacy’,  ‘lack  of  technology’    and  ‘capacity’.  

1. ‘Cost  of  technology  /   investments’,  the  cost  of  the  technology  or   investments  required  to  kick-­‐start   IoT  adoption   is  conceived  as  high  by  many  respondents.  Not  only  the  present-­‐day  cost  of  IoT  devices,  but  also  the  spin  offs  that  IoT  creates,  such  as  the  cost  of  creating  applications  and  software  is  perceived  as  high.  This  has  to  do  with  software  that  has  to  be  written  or  adapted  to  be   able   to   analyze   the   mountain   of   data   that   IoT   devices   can   generate.   After   this   analysis,  something  has  to  be  done  with  the  data,  so  some  sort  of  Artificial  Intelligence  has  to  be  built  into  the  software  to  empower  the  ‘things’  to  control  themselves  and  make  decisions  for  themselves.    

2. ‘Privacy’   is   the  second  key   inhibitor.  Privacy  concerns  are  well   represented  for  the  adoption  of  IoT.  Employees,  organizations  and  customers  have  to  be  willing  to  give  up  some  privacy  in  order  for   the   concept   to   gain  maximum   potential,   but   are   they  willing   to?   Also,   personal   privacy   is  argued  as  an  inhibitor  because  when  things  are  able  to  follow  peoples’  every  move,  it  could  have  major  consequences  for  their  lives.  ‘  

3. Lack  of  technology’  is  the  third  major  inhibitor.  Respondents  believe  that  the  technology  that  is  able   to   energize   IoT,   will   not   be   present   between   now   and   three   years.   Technology   like   a  sufficient  network  connectivity  and  data  transfer  capabilities,  software  and  capable  hardware.    

4. The   last   key   inhibitor   is   ‘capacity’.   This   inhibitor   refers   to   the   capacity   of   companies   to  implement   the   concept   into   their   companies   and   products.   This   is   due   to   other,   large  improvement  IT  projects  within  the  studied  cases  and  as  a  result  of  the  merger  of  IT  systems.  It  raises  the  question  if  the  analyzed  cases  are  able  to  have  the  manpower  to  make  full  use  of  IoT.  

Page 24: Thesis the added value of Internet of Things

19    

4.5.2 Long  term  inhibitors  The  list  of  identified  long  term  inhibitors  is  significantly  shorter  than  the  list  of  short  term  inhibitors.  The  respondents  identified  a  number  of  nine  long  term  inhibitors  for  IoT  adoption.  One  respondent  was  not  able  to  identify  any  long  term  inhibitors.    

1. ‘Privacy’   was   named   by   five   of   the   nine   respondents   as   an   inhibiting   factor.   Respondents  identified   privacy   on   a   corporate   level   as   being   highly   important   for   organizations   in   order   to  protect  their  company  secrets.   IoT  offers  a  tremendous  opportunity  to  track  things  and  gather  data,  this  data  must  be  protected.  Personal  privacy  is  regarded  as  important  as  well.  Due  to  the  many   sensor’s   that   will   deployed   in   the   long   term,   computers   will   be   able   to   track   almost  everything   a   person  does   during   the   day.     ´Investments’   and   ‘Technology’  where   both   named  twice   as   inhibitor.   This   is   because   a   proper   deployment   of   IoT   devices   requires   a   large  investment  from  companies  who  want  to  harness  the  real  power  of  the  concept.    

2. Secondly,  technology  must  be  developed  to  be  able  to  make  use  of  the  outputs  of  the  billions  of  sensors.  The  hard-­‐  and  software  required  to  make  full  use  of  IoT  is  not  present  yet,  also  in  the  connectivity  are  some  technology  gap.  This  refers  to  the  possibility  to  transfer  huge  amount  of  data  from  billions  of  these  devices.  

4.6 Purpose  The  purpose  of   these  frameworks   is   to  present   important  parts  of  companies,  where  value  can  be  added  using  IoT.  Also,  the  framework  indicates  which  value  drivers  might  be  best  suitable  to  achieve  the  desired  value  at  these  points.  Furthermore,  the  framework  identifies  the  current  state-­‐of-­‐the-­‐art  and   which   type   of   emerging   IoT   applications   are   suitable   to   generate   the   desired   value   at  organizations.  This  framework  helps  IT  strategists  and  CIOs  to  determine  where  to  apply  IoT  first  at  their  company,  so  that  most  value  can  be  added.  

Page 25: Thesis the added value of Internet of Things

20    

 

Page 26: Thesis the added value of Internet of Things

21    

   

Page 27: Thesis the added value of Internet of Things

22    

5. Validation  Next   to   the   conducted   interviews,   two   employees   of   Deloitte   where   interviewed   to   validate   the  results.   The  experts  are  a   senior-­‐consultant  and  director   from  Deloitte  Digital.   The  Deloitte  Digital  service   line   focusses   to   support   organizations   device   their   digital   strategy,   mobile,   social/web,  content  management   and  managed   services.   The   department   has   already   completed  multiple   IoT  project’s   for   customers.   Both   experts   have   completed   multiple   strategic   projects   for   clients   that  wanted  an  advice  from  Deloitte  in  how  to  proceed  with  IoT  as  an  emerging  concept.  These  projects  where  mostly   conducted   for   clients   in   the     ‘Telecom,  Multimedia   and  Telecommunication’   branch  from   Deloitte.   This   branch   deals   with   the   connectivity   and   data   transfer   part   of   IoT,   which   is  essentially   the  backbone  of   IoT.  Only   if   the   connectivity  of   IoT  devices   is   facilitated,   IoT   is   able   to  function.  That  is  why,  for  some  years,  this  branch  is  working  on  giving  strategic  advice  to  clients  who  want   to   provide   this   connectivity   to   facilitate   IoT.   Because   of   their   experience   with   strategic   IoT  projects,  the  experts  where  selected  to  validate  the  results  of  the  case  study.    

Because  the  novelty  of  the  concept,  a  comparison  was  made  between  the  results  of  the  case  study  and   the   opinion   of   the   experts.   In   this  way,   an   assessment   can   be  made   if   the   case   study   results  reflect   the   results   of   experts   in   the   field   of   IoT.   In   order   to   facilitate   further   research,   no   factors,  inhibitors  or  applications  will  be  deleted.  So  the  full  overview  is  presented.  

5.1 Validation  value  framework  To   validate   the   results,   the   same   interviews   were   conducted   as   were   done   at   the   different   case  studies.   The   only   deviation   was   that   no   questions   were   asked   about   the   specific   type   of   IoT  applications,  this  is  because  of  the  broad  applicability  of  the  IoT  concept.  So  the  experts  could  come  up   with   a   countless   list   of   applications.   The   results   of   this   validation   are   shown   below   and   the  corresponding  model  can  be  found  in  Appendix  C.2  &  C.4.    

5.1.1 Short  term  framework  validation  For   validation   of   the   short   term   vision   of   the   value   of   IoT,   the   Deloitte   consultants   identified  essentially  the  same  points  of  value  as  the  case  study  did.  However  the  amount  of  value  differs,  the  areas  on  the  framework  where  value  can  be  added  are  in  line  with  the  results  of  the  case  study.  For  improve  income  tax  efficiency,  no  value  was  identified.  Therefore,  this  section  of  the  EVM  was  left  out  of  the  framework.  The  differences  and  similarities  are  discussed  below.  

1. During   the   case   study,   the   respondents   identified   four   key   points   of   value.   For   the   EVM,  these  are  at   ‘acquiring  new  customers’  and  ‘retaining  current  customers’,  at  creating  more  value  at  the  ‘operating  margin’  of  the  EVM  and  at  ‘asset  efficiency’.  For  the  value  drivers,  the  ‘automatic  sensors  trigger’  stands  out  as  a  value  driver  with  value  at  every  part  of  the  EVM.  Now,  looking  at  the  results  of  the  Deloitte  consultants,  the  first  value  quadrants  for  the  first  three  points  can  be  seen  as  well.  

2. In  general   for   the   ‘revenue  growth’  part  of   the  EVM,  value  was   identified  at  almost  all   IoT  value  drivers.  Though,  a  notable  difference   is   the  high  value   identified  at   ‘leverage   income  assets’,  for  ‘automatic  product  security’  during  the  validation  sessions.    

3. Subsequent,   the  value  on  short   term   for   the   ‘operating  margin’  part  of   the  EVM,  was  also  seen   during   the   validations,   except   for   the   improve   ‘income   tax   efficiency’   section.   This  shows  that  the  constructed  framework  is  valid  for  this  section.  

4. At   the   ‘Asset   efficiency’   section   of   the   EVM,   the   value   for   ‘improve   property,   plant   &  equipment  efficiency’  and  ‘improve  inventory  efficiency’  where  also  identified.  Representing  the  same  value  as  was  identified  at  the  IoT  value  framework.  

Concluding,   the   identified   added   value   for   IoT   for   the   validation   in   the   short   term   framework   are  largely   the   same   as   the   case   study   respondents   identified.   This   suggests   that   the   constructed  framework  on  short  term  is  valid.  

Page 28: Thesis the added value of Internet of Things

23    

5.1.2 Long  term  framework  validation  During   the   expert   sessions,   the   ‘mind   changing   feedback’   and   ‘automatic   product   security’   value  drivers  were  identified  for  the  long  term  vision,  these  are  elaborated  below.  

1. Looking  at  the  long  term  framework  validation,  the  thing  that  stands  out  is  the  value  that  is  seen  at  the  ‘mind  changing  feedback’  value  driver.  This  IoT  value  driver,  which  influences  the  behavior  of  users  (Fleisch,  2010),  is  seen  as  highly  valuable  by  the  experts.  This  is  because  the  value  driver  is   the   most   advanced   of   all   value   drivers   and   provides   active   feedback   to   users.   During   the  validation   sessions,   this   value   driver  was   identified   as   being   valuable   for   all   parts   of   the   EVM  except   ‘income   taxes’.   Also   during   the   case   study,   this   value   driver   was   identified   by   many  respondents  as  being  able  to  add  the  most  value  for  IoT.  However,  the  most  value  is  identified  by   the   experts   for   ‘acquiring   new   customers’,   ‘retaining   current   costumers’,   ‘improving  interaction  efficiency’  and  ‘managerial  &  governance  effectiveness’.  Indicating  that  IoT  will  be  a  concept  that  will  remain  to  attract  new  customers  in  long  term,  providing  revenue  growth.  

2. The  consultants  see  added  value  for  the  ‘automatic  product  security’  value  driver.   In  regard  to  privacy  and  security,   this  value  driver   is  marked  as  more   important  by   the  consultants   than   in  the  case  study.  Security  is  seen  as  an  important  value  driver  to  prevent  counterfeit  products  and  protect  products  and  assets.  

Concluding,   the   expert   sessions   identified   the   most   value   for   the   most   advanced   value   driver,  namely:   ‘mind   changing   feedback’.   Also,   the   ‘revenue   growth’   part   of   the   EVM   is   identified   as  valuable.  Finally,  automatic  product  security  is  valuable  in  regard  to  security  and  privacy.  

5.2 Validation  of  inhibitors  In   this   section,   the   inhibitors   that   were   identified   by   the   two   consultants   of   Deloitte   will   be  discussed.  First,  the  inhibitors  for  the  upcoming  three  years  will  be  discussed,  after  which  the  longer  term  inhibitors  for  three  to  ten  years  are  debated.  

The  framework  can  be  seen  in  Confidential  Appendix  C.7  &  C.8.  

5.2.1 Short  term  inhibitors  As  short   term   inhibitors,   the   inhibitors   ‘interoperability’,   ‘user  acceptation’,   ‘security’  and   ‘privacy’  were  named  during  both  expert  interviews  and  are  discussed  below.  Also  their  relationship  in  regard  to  the  identified  inhibitors  during  the  case  study  is  debated.  All,  in  total  nine,  identified  inhibitors  for  IoT  adoption  can  be  found  in  Confidential  Appendix  C.7.  

1. The  interoperability  between  IoT  systems,  IoT  suppliers  and  technology  will  become  an  inhibitor  on  short  term.  Also  because  there  is  no  standard  yet,  that  provides  guidelines  in  how  IoT  devices  should  operate  and  communicate  with  each  other.  

2. A  lack  of  a  standard  is  the  next  inhibitor,  identified  during  the  validation  sessions.  Because  IoT  is  still  in  its  infancy,  there  is  no  clear  standard  that  helps  the  sensors  to  communicate  with  each  other.  The  lack  of  a  standard  and  bad  interoperability  is  also  named  as  inhibitor  during  the  case  study,  but  was  marked  with  a  more  general  term  as  lack  of  technology.  So  these  two  inhibitors  are  validated.  

3. User   acceptation:   IoT   users   will   have   to   accept   that   their   daily   lives   is   being   monitored   by  sensors.   This   is   an   inhibitor  because  not  all   users  want   to   sacrifice   their  privacy.   This   inhibitor  was   not   identified   as   one   of   the   most   important   inhibitors   during   the   case   study,   but   was  mentioned  a  few  times.    

4. Finally,   privacy  was   identified   as   inhibitor.   As   explained   in   the   previous   inhibitor,   users   of   IoT  have  to  be  willing  to  give  up  some  of  their  privacy  in  order  for  the  concept  to  fully  function.  This  inhibitor  was  also  identified  during  the  case  study  and  thus  validated  as  important.  

Page 29: Thesis the added value of Internet of Things

24    

Summarizing,   all   short   term   inhibitors   identified   during   the   expert   sessions   can   be   linked   to   the  inhibitors   identified   in  the  case  study.  Because  of  the  relative  novelty  of  the  concept,  no   inhibiting  factors  will  be  deleted.  In  this  way,  a  complete  overview  is  given  to  facilitate  future  research.  

5.2.2 Long  term  inhibitors  For  the  long  term  inhibitors,  from  three  to  ten  years,  the  expert  sessions  provided  the  following  four  inhibitors.   The   long   term   inhibitors   ‘security’   and   ‘social   aspect’   were   named   in   both   interviews.  Also,  ‘privacy’  and  the  ‘vulnerability  of  the  internet’  where  identified.  The  inhibitors  are  compared  to  the  full  list  of  inhibiting  factors  for  long  term,  which  can  be  found  in  Appendix  C.8.  

1. Security:  because  cybercrime  is  increasing  and  the  IoT  sensors  provide  countless  access  points  to  the   network,   a   good  way   of   securing   IoT   has   to   be   devised,   this   creates   an   inhibiting   factor.  Security  can  also  be  found  in  the  full  list  of  inhibitors  and  is  thus  validated.  

2. Social  aspect:  right  now,  IoT  is  thought  of  as  a  gadget.  When  people  realize  that  everything  they  do  is  tracked  by  sensors,  people  can  realize  that  the  big  brother  effect  is  taking  place.  Inhibiting  IoT   adoption.   This   inhibitor   is   not   explicitly   named   in   the   case   study   and   therefore   is   not  validated.  

3. Privacy:  also  on  long  term,  privacy  remains  an  inhibitor.  According  to  the  experts,  this  is  because  everything   is   going   to  be  digitalized   and   therefore  will   be   visible.   People’s  movements   can  be  tracked  by   the  minute,   creating  privacy   issues.   The  privacy   issue   is   also  noted  during   the   case  study  and  validated.  

4. Vulnerability  of   the   Internet:   if   there   is  a  power-­‐cut,  all  connected  things  and  thus  the   IoT  will  stop  working,  or  work  partially.  This  exposure   is  an   inhibitor   for   IoT  adoption  according   to   the  experts.  This  factor  is  not  identified  at  the  case  study  and  therefore  not  validated.  However,  the  factor  could  be  interesting  to  integrate  in  further  research.  

 Summarizing,  the  long  term  inhibiting  factors  that  the  experts  identified  can  be  grouped  two  groups,  the  first  group  is  the  ‘security’  part,  including  the  factors:  security  and  vulnerability  of  the  internet.  The  second  group  relates  to  ‘privacy’,  including  the  social  aspect  and  privacy  issues  that  IoT  creates.  

6. Discussion  An  essential  part  of  theory  building  is  a  comparison  of  the  emergent  concepts,  theory  or  hypotheses  with   existent   literature.   Also,   conflicting   literature   represents   an   opportunity,   because   it   forces  researchers   to  a  more  creative  way  of   thinking   (Eisenhardt,  1989).   Literature   that  presents   similar  findings  is  relevant  as  well,  because  it  connects  underlying  resemblances  in  singularities  which  would  normally   not   be   associated.   Linking   the   case   study   results   to   the   literature   is   vital,   because   the  findings  often  originate  from  a  limited  number  of  cases  (Eisenhardt,  1989).  Van  Aken  (2007)  calls  this  step  ‘literature  enfoldment’.  

Due   to   the  approach  of   this   research,  a   comparison  with   literature  can  only  be  performed   for   the  state-­‐of-­‐the-­‐art-­‐  and  the  inhibiting  IoT  factors.  While  the  presented  framework  for  added  value  and  emerging  applications  are  attained  from  scholars.  These  scholars  do  not  provide  an  outlook  in  where  value  can  be  added  best  and  what  kind  of  applications  are  emerging.  Consequently,  an  approach  has  been   chosen   in   which   the   case   study   results   are   discussed   with   a   focus   on   future   research  suggestions.  If  literature  is  existent  about  a  topic,  it  is  mentioned  in  the  discussion.  

6.1 Internet  of  Things  added  value  Framework  In  this  paragraph,  the  most  important  outcomes  of  the  IoT  framework  will  be  discussed.  

For   both   timeframes   of   the   IoT   value   framework,   the   EVM   sections   ‘Acquire   new   customers’   and  ‘Retain  and  grow  current  customers’  stand  out  as  providing  opportunities  to  generate  value.  Every  IoT   value   driver   is   identified   as   valuable   for   these   two   sections.   In   the   long   term,   the   number   of  responses  and  perceived  importance  shift  right,  towards  the  value  drivers  that  provide  feedback  to  

Page 30: Thesis the added value of Internet of Things

25    

users.  This  shift  towards  the  right  of  the  framework  provides  a  richer  experience  for  customers,  as  things   are   able   to   give   feedback   to   users   about   their   status.   This   added   value   for   acquiring-­‐   and  retaining  current  customers  seems  reasonable  because   IoT   is  expected  to  grow  tremendously,   this  creates  opportunities  to  acquire  new  customers.  

Observing  the  ‘improve  customer  interaction  efficiency’  part  of  the  EVM,  the  difference  of  the  ‘Mind  changing  feedback’  IoT  value  driver  stands  out.  The  value  driver  is  slightly  present  at  short  term,  but  emerges  for  the  long  term  vision  with  many  respondents  and  a  higher  value.  This  trend  corresponds  with   the   fact   that   organizations  want   to   provide   rich   information   that   influences   the   behavior   of  users  in  a  positive  way.    

Another  interesting  trend  is  the  change  in  value  at  the  ‘asset  efficiency’  branch  of  the  EVM.  For  the  short   term,   the   case   study   revealed   value   for   all   IoT   value   drivers   at   ‘improve   property,   plant   &  equipment   efficiency’   as   well   as   ‘improve   inventory   efficiency’.   When   looking   at   the   long   term  predictions,   the   value   almost   disappears,   with   only   the   ‘automatic   sensors   trigger’,   ‘automatic  sensors   trigger’   and   ‘automatic   feedback’   providing   a   significant   score.   For   this   part   of   the   EVM,  added  IoT  value   in  factories  or  production  facilities  seem  evident.  Placing  sensors  on  products  and  inventory   seems   like   something   that   can  add  value   in   supply  chain  management.  But   respondents  mostly  observe  this  value  in  the  short  term,  this  is  probably  caused  by  the  fact  that  this  case  study  has   not   interviewed   persons   who   work   in   a   production   facility.   KPN   and   the   Port   of   Amsterdam  produce  no  products  themselves  and  Canon  Europe  only  distributes  and  markets  the  products.  The  development  and  production  is  done  overseas  in  Japan  and  the  USA.  Future  research  might  be  able  to   verify   if   IoT   really   does   not   add   value   in   de   long   term   for   asset   efficiency.   Also,   the   value   for  managerial   &   governance   effectiveness,   as   well   as   execution   capabilities   is   greatly   reduced   in  comparison  with  the  short  term  vision.    

Finally,  ‘improve  income  tax  efficiency’  is  not  identified  by  any  respondent  as  being  able  to  add  value  by   using   IoT.   However,   a   way   that   IoT   can   add   value   for   this   part   of   the   EVM  might   be   hard   to  conceive,  this  does  not  necessarily  mean  that  there  is  no  value  to  be  added  using  IoT.  Because  of  the  small  scope  and  limited  time  for  this  research,  it  is  possible  that  IoT  is  able  to  add  value  to  this  part  of  the  EVM.  However,  this  study  does  not  identify  this  value,  future  research  may  conclude  that  IoT  can  add  value  for  improving  the  income  tax  efficiency.    

6.2  State-­‐of-­‐the-­‐art  As  identified  earlier,  the  IoT  state-­‐the-­‐art  that  develops  from  this  case  study  is  related  to  acquiring  information  and  analyzing  this  information.  The  emergent  applications  all  relate  to  the  Information  and  analysis  section  of  Chiu  et  al.   (2010).  As  described  earlier,  automation  and  control   is  easier   to  perform  then  the  other  section  of  Chui  et  al.   (2010),  which   is  automation  and  control.  Broadening  our   view   by   reviewing   literature   about   IoT   applications   reveals   that   automation   and   control  applications  do  exist  (Atzuri  et  al.,  2014).  But  the  applications  that  actually  perform  automation  and  control   tasks  are   limited.   In   the   research  of  Atzuri   et  al.   (2014),  only  one  of   the   seven   researched  applications  has  the  capability  to  perform  an  autonomous  establishment  of  social  relationships,  and  therefore  is  capable  of  automation  and  control.  Thus,  possibly  because  of  the  narrow  scope  of  this  research,  only  information  and  analysis  applications  where  identified.  

6.3 Emerging  types  of  applications  The  category  ‘information  and  analysis’  of  the  types  of  emerging  applications  by  Chui  et  al.  (2010),  represent  83%  of  the  applications  found  in  this  case  study  (1).  Also,  the  section  revenue  growth  and  in  particular  acquire  new  customers   and   retain   current   customers  are  named  often   in  both   short-­‐  and  long  term,  in  the  short  term  in  particular,  where  the  two  EVM  sections  represent  almost  half  of  the   identified   applications   (2).   Looking   at   the   transition   from   short   term   to   long   term   vision,   the  automation   and   control   section   almost   completely   disappears   when   looking   at   the   identified  

Page 31: Thesis the added value of Internet of Things

26    

applications   (3),   but   why?   Finally,   for   income   taxes,   no   applications   are   identified   (4).   In   this  paragraph,  these  points  are  discussed.    

1. Over  80%  of  the  applications  are  identified  in  the  ‘information  and  analysis’  section.  This  section  includes   applications   that   generate   better   information   and   analysis,   and   significantly   enhance  decision  making  (Chui  et  al.,  2010.  Reviewing  the  case  study,  all  selected  cases  have  applications  that  are  also  in  the  information  and  analysis  section.  Therefore,  the  results  of  the  cases  could  be  biased   because   of   the   view   the   respondents   have   when   looking   at   IoT   applications   at   their  company.   Chances   are,   when   studying   a   manufacturing   organization,   that   the   response   for  applications  in  the  ‘automation  and  control’  domain  will  be  significantly  higher.  

2. The  two  parts  of  the  EVM  that  stand  out  in  the  short-­‐  and  long  term  prognosis  are  ‘acquire  new  customers’  and   ‘retain  and  grow  current   customers’.  Almost  half  of   the   identified  applications  correspond  to  this  two  sections.  This  corresponds  with  the  results  of  the  constructed  IoT  value  framework.  This  case  study  identified  IoT  as  a  way  to  attract  new  customers  to  an  organization  and  by  doing  so,  pushing  the  revenue  growth.  Because  IoT  is  still  in  its  infancy,  this  assumption  could  be  right.  Also,  literature  and  advisory  firms  are  suggesting  that  the  number  of  IoT  devices  will  grow  enormously  to  50  billion  by  the  year  2020  (Cisco,  2011),  adding  an  economic  value  of  $1.9  trillion  per  year  (Gartner,  2013),  creating  a  valid  result  of  the  case  study.  

3. Respondents   see   much   less   applications   in   the   long   term   than   on   short   term.   Respondents  indicated  that  they  find  it  hard  to  picture  a  clear  image  of  the  future  of  IoT.  They  see  a  big  future  for   IoT,  but  especially  how  this  future   is  going  to   look   like   is  uncertain.  This  has  to  do  with  the  current   inhibitors   for   IoT,   such   as   the   absense   of   a   standard.   For   example,   Google   only   just  revealed  the  first  IoT  Operating  System,  named:  Brillo5.  This  paves  the  way  for  a  future  standard,  in  which  sensors  can  talk  with  each  other  and  data  is  exchanged.  

4. Finally,   at   short   term   and   long   term   visions,   applications   the   EVM   part   ‘Improve   income   tax  efficiency’   is  not   identified.  This   is   in   line  with  the  proposed  framework  for   IoT  added  value.   It  could  be  that  there  are  no  conceivable  applications  for  this  section,  more  likely  is  that  there  are  examples  but  they  are  not  identified  due  to  the  scope  of  this  thesis.  

A  full  list  emerging  types  of  applications  can  be  found  in  Appendix  C.6.  

6.4 Inhibitors  for  Internet  of  Things  Recapitulating   from   the   problem   definition   section,   the   four   key   inhibitors   for   IoT   adoption   are  ‘network   foundation’,   ‘security’,   ‘privacy   and   trust’   and   ‘managing   heterogeneity’.   Looking   at   the  case   study,   the   major   emerging   inhibitors   are   ‘investments’,   ‘privacy’,   ‘lack   of   technology’   and  ‘capacity’.  Also   the   ‘choice  of  a   standard’,   ‘security’  and   ‘awareness’  where  named  often   for   short  term.  Looking  at  long  term,  privacy  was  named  the  most.  See  Appendix  C.7  &  C.8.  

Comparing  the  literature  with  the  case  study  results,  all  issues  identified  by  scholars  are  reflected  in  the  case   study.  Vice  versa,  new   inhibiting   factors   that  arise   from  this   case   study  are   ‘investments’  and  ‘capacity’.  These  two  new  inhibitors  are  elaborated  in  the  next  section.  

The  investments  that  are  required  for  IoT  to  function  is  seen  as  an  inhibitor  by  this  case  study.  High  investments   come   in   twofold.   First,   respondents   indicate   that   the   cost   to   connect   a   thing   to   the  internet  are  high,  as  the  sensors  and  equipment  for  IoT  to  function  are  still  relatively  expensive.  The  sensors  have   to  be   integrated   in   things.   If   this   are  newly  manufactured  products,   the   sensors   can  simply   be   integrated   into   the   new   product.   But   if   the   things   are   already   present,   such   as   ships,  manufacturing  equipment  etc.,  the  sensors  have  to  be  connected  to  the  device.  The  cost  of  labor  to  perform  this  operation  is  perceived  as  high,  as  the  breakeven  point  will  take  a  long  time.  Secondly,  additional  software  and  hardware  is  required  to  connect  the  ‘things’.  This  extra  soft-­‐  and  hardware,  increases  the  investments  of  IoT,  according  to  this  case  study.  IoT  requires  software  to  analyze  and  

                                                                                                                         5  Google  Brillo,  see:  https://developers.google.com/brillo  

Page 32: Thesis the added value of Internet of Things

27    

make  use  of   the  data   from  sensors,  and  additional  hardware   is   required  to  perform  the  necessary  calculations  to  analyze  data  and  provide  connectivity.  Few  scholars  write  about  IoT  investments,   in  particular  Gubbi  et  al.  (2013)  and  Mattern  &  Floerkemeier  (2010)  write  about  the  topic.  But  it  seems  that  very  few  papers  write  about  the  investments  that  IoT  requires  in  order  to  function.  

Secondly,  capacity   is  a  new  inhibiting  factor.  This  case  study  reveals  that  companies  expect  to   lack  the  capacity  that  is  needed  to  integrate  IoT  in  the  future.  IoT  integration  requires  companies  to  draw  employees  from  other,  important,  projects  at  the  analyzed  cases.  Thus,  the  companies  expect  to  lack  the   necessary  manpower   in   order   to   successfully   integrate   IoT.   In   the   existing   literature,   the   lack  capacity   or  manpower   is   discussed   in   terms   of   reducing   the   required   capacity   or  manpower   at   a  company.  No  papers  have  been  found  that  describe  the  lack  of  capacity  at  a  company   to  integrate  IoT.   But   nevertheless,   this   could   be   an   inhibitor,   particularly   in   short   term.   Further   research   is  needed  to  verify  this  emergent  inhibitor.  

The   insight   from   these   two   new   inhibiting   factors   is   that   financial   motivation   plays   a   big   role   in  inhibiting  the  adoption  of  IoT,  as  it  relates  to  both  factors.  Because  of  the  novelty  of  the  subject,  the  investments  are  high  and  employees  have  to  be  moved  from  other  IT  projects  in  order  to  have  the  capacity  needed  to  implement  the  concept.  

7. Conclusion  This   chapter   concludes   this   thesis.   First,   the   proposed   research   questions   are   answered,   then   the  research  contributions,  limitations  and  suggestions  for  further  research  are  presented.  

7.1  Research  questions  1. What  is  the  current  state-­‐of-­‐the-­‐art  of  Internet  of  Things?  

The  current  state-­‐of-­‐the-­‐art  according  to  this  case  study  are  applications  that  gather  information  and  analyze  this  information.  Applications  identified  during  this  case  study  are  related  to  tracking  the  behavior  of  objects,  scanning  the  environment  to  achieve  real-­‐time  awareness  and  to  assist  human  decision  making  through  analysis.  Organizations  are  able  to  analyze  the  gathered  data  and  make  adjustments  to  their  supply  chain  using  this  data.    

 2. What  are  the  possible  applications  using  Internet  of  Things?  

1. The   applications   that   are   suitable   for   Internet   of   Things   are   divided   in   two   categories.   These  application  categories  are  ‘information  and  analysis’  and  ‘automation  and  control’.  Especially  the  ‘information  and  analysis’  category  seems  well  suited  for  IoT  within  now  and  three  years.  Over  80%  of  the  IoT  applications  identified  during  this  case  study  fall  into  this  category.  This  gives  an  indication   that   organizations   desire   IoT   applications   that   are   able   to   gather   information   and  analyze  the  data.  

2. A  closer  look  at  the  ‘information  and  analysis’  category  of  IoT  applications,  reveals  that  over  75%  of   these   applications   relate   to   ‘Enhanced   situational   awareness’   and   ‘Sensor-­‐driven   decision  analytics’.   These   application   types   relate   to   achieving   a   real-­‐time   awareness   of   the   physical  environment  and  to  assist  decision  making  through  analysis  and  data  visualization.    

3. Next  to  this,  at  the  short  term  vision  of  the  Internet  of  Things  value  framework  applications  for  automation   and   controlling   processes   are   identified.   The   ‘Automation   and   control’   section  almost   completely  disappears   from   the   long   term  vision,  which   is   surprising.     Regrettably,   the  time  available  for  this  thesis  is  too  short  to  study  a  possible  cause  for  this  trend,  but  should  be  studied  in  future  research.  

4. Finally,   companies  need   to   start  with   a  pilot   to   test   IoT   applications.  But   immediately   start   to  integrate  sensors  that  are  state-­‐of-­‐the-­‐art,  in  order  to  include  IT  developments  later  on.  During  the  pilot,  organizations  can  gradually  expand  the  capabilities  of  the  sensors  and  steadily  unlock  

Page 33: Thesis the added value of Internet of Things

28    

their   full   potential.   This   enables   a   step-­‐by-­‐step   integration   of   the   concept   and   enables  organizations  to  properly  test  the  IoT  possibilities.  

 3. In  which  processes  can  IoT  generate  the  most  value?  

Processes  where  Internet  of  Things  can  add  the  most  value  are  identified  using  Deloitte’s  Enterprise  Value  Map  (EVM).  Three  distinct  points  of  value  can  be  distinguished  for  Internet  of  Things  adoption.  The  framework  created  to  show  the  added  value  of  Internet  of  Things  can  be  seen  in  chapter  5.  

1. First,   the   most   important   value   addition   can   be   seen   in   the   processes   of   ‘acquiring   new  customers’,   as  well   as   ‘retaining   and   growing   current   customers’.   Internet   of   Things   is   a   new  concept,  thus  a  lot  of  value  can  be  added  to  an  organization  by  acquiring  new  customers  using  Internet   of   Things.   In   the   meantime,   retaining   and   growing   the   current   customer   base   with  innovative   and   good   quality   Internet   of   Things   applications   also   adds   value.   Especially   for   the  revenue   growth   of   an   organization,   because   these   two   processes   influence   the   volume   of  products  sold.  

2. Second,  Internet  of  Things  can  be  used  to  add  value  to  the  operating  margin  of  a  company.  This  can   be   done   by   using   Internet   of   Things   to   enhance   customer   interaction   efficiency   and  improving   corporate   service   efficiency.     In   addition,   Internet   of   Things   adds   value   for  ‘development   &   production’   and   ‘logistics   &   service   provisioning’   sections   of   the   operating  margin.  The  added  value  is  the  most  on  short  term  and  becomes  lower  in  long  term.  

3. A  shift  of  value  when  moving  from  the  short-­‐  to  long  term  vision  is  the  lower  value  for  the  asset  efficiency  part  of   the  EVM.  This   involves  property,  plant  &  equipment  efficiency  and   inventory  efficiency.  Internet  of  Things  sensors  and  capabilities  to  track  assets  and  inventory  will  improve  in   the   future.   So,   value  decline  of   these  processes  was  not  expected  as   you  would  expect   the  value  Internet  of  Things  brings  to  improve  asset  efficiency  to  grow  in  the  future.  

4. A  general   trend  can  be  noticed   for  all   processes  of   the  EVM.  The  value  drivers   for   Internet  of  Things  move  from  the  more  simple  trigger-­‐  and  feedback  sections,  towards  ‘Automated  sensors  trigger’  and  ‘Mind  changing  feedback’  for  the  long  term  vision.  These  two  value  drivers  are  the  most   advanced   form   of   their   respected   categories,   when   taking   the   trigger   section   and   the  feedback  section   into  account.  So  the  shift   towards  these  two  value  drivers  seems   justified,  as  they  offer  the  most  possibilities.  

4. What  are  the  current  inhibiting  factors  for  IoT  adoption  in  these  processes?  To  enable  the  actual  integration  of  Internet  of  Things,  some  factors  have  to  be  overcome  that  inhibit  adoption.  During  this  research,  four  main  factors  came  to  light  that  are  going  to  inhibit  the  adoption  of  Internet  of  Things,  which  are:  ‘privacy’,  ‘technology’,  ‘investments’  and  ‘capacity’.  These  inhibitors  are  inhibiting  for  the  short  term  and  long  term  vision  of  the  concept.  A  full   list  of   inhibiting  factors  can  be  found  in  Appendix  C.7  &  C.8.    

1. Privacy  is  the  foremost  and  biggest  inhibitor  for  Internet  of  Things.  The  logic  behind  this,  is  that  Internet  of  Things   is  going  to  make  use  of  countless  sensors  that  are  attached  to  things.  These  sensors   are   able   to   track   almost   every   part   of   human’s   daily   behavior.   Because   the   human  behavior   is   so   accurately   tracked,   privacy   is   easily   compromised  when   the   data   falls   into   the  wrong  hands.  One  of  the  many  examples  is  if  an  insurance  company  is  going  to  charge  you  more  for   your   health   insurance,   because   the   company  has   acquired   your   shopping   data   that   shows  you  are  buying  unhealthy  food.  This  is  an  advantage  for  the  insurance  company,  because  it  can  adapt  pricing.  But  for  the  affected  user,  this  is  a  bad  development.  

2. The  second  inhibitor  that  emerged  from  this  case  study  is  technology.  This  involves  technology  that   is  able   to  handle   the  data,   like  connectivity,  data   transfer.  But  also  hardware   like   sensors  and  computing  power.  Finally,  technology  as  an  inhibitor  also  involves  the  software  that  is  able  to  handle  and  analyze  the  data.  If  the  technology  is  not  on  par  for  IoT,  then  the  concept  is  not  able  to  unlock  its  full  potential.  

Page 34: Thesis the added value of Internet of Things

29    

Until   now,   the   identified   inhibitors   all   have   been   identified   by   previous   scholars.   The   next   two  inhibitors   where   not   found   in   the   literature,   these   are:   ‘investments’     and   ‘capacity’.   These   two  newly  identified  inhibitors  are  discussed  in  the  next  two  sections.  

3. The   third   inhibitor   is   investments.   This   study   shows   that   organizations   see   the   high   costs   of  hardware   and   software   and   labor   as   an   inhibitor   for   Internet   of   Things   adoption.   Internet   of  Things  sensors  are  becoming  cheaper,  but  the  costs  to  install  sensors  on  ‘things’  is  perceived  as  high.   Creating   a   low   return   on   investment.   Next   to   the   cost   of   hardware   and   installing   the  sensors,   the   software   to   handle   the   vast   amounts   of   data   needs   to   be   created.   Analytics  software  is  currently  available,  in  order  to  handle  the  data  in  real-­‐time,  organizations  expect  to  acquire  software  that  is  capable  to  run  on  their  own  IT  systems.  

4. The   final   inhibitor  only  applies   to   the   short   term  vision   for   Internet  of   Things.   This   inhibitor   is  capacity.  This  study  indicates  that  companies  fear  they  lack  the  capacity  to  integrate  IoT  in  short  term.  Organizations  often  deal  large  scale  IT  projects.  These  projects  apply  to  the  improvement  of  legacy  systems  or  as  a  result  of  a  merger  with  another  company.  IT  projects  have  a  big  impact  for   an   organization   and   often   need   a   lot   of   manpower   in   order   to   succeed.   Therefore,   the  capacity  or  manpower  required  to   implement   Internet  of  Things  within  now  and  three  years   is  not  fully  available.  This  could  result  in  a  slower  adoption  of  the  concept.  

7.2 Research  contributions  The  contributions  that  this  research  delivers  for  research  can  be  split  up  into  practical  contributions  and  academic  contributions.  

In  the  field  of  practical  contributions,  this  research  has  mapped  the  value  of  IoT  in  a  structured  and  organized  manner  in  a  framework.  Using  this  framework,  IT  strategists  and  C-­‐level  management  are  able   to   identify   in   which   processes   IoT   can   add   the   most   value   for   their   organization.   Also,   the  associated  IoT  value  drivers  can  be  identified  to  help  them  identify  the  value  of  IoT.  Strategists  are  given  a  tool  and  trend  of  emerging  IoT  applications  and  are  given  a  complete  overview  of  all  possible  IoT  applications.  This  ensures  a  comprehensive  understanding  of  the  concept  and  enables  them  to  make  decisions  based  on  complete  information.  Finally,  due  to  the  identification  of  IoT  inhibitors,  C-­‐level  managers  and  IT  strategists  can  view  factors  that  need  extra  attention.  In  this  way,  the  chance  of  a  successful  IoT  integration  increases.  Also,  the  inhibitors  that  are  identified  in  this  study  can  be  tackled  right  from  the  start  of  an  IoT  integration  project,  instead  of  emerging  during  the  project.  This  can  prevent  complications  during  the  integration  process.  

For   academics,   the   results   of   this   case   study   help   to   fill   the   current   gap   regarding   specifically   in  which  processes  Internet  of  Things  can  add  the  most  value.  Academics  are  also  given  an  indication  as  to  what  kind  of  value  drivers  are  applicable  to  these  processes.  Outcomes  of  this  framework  can  be  used   in   order   to   initiate   further   research   in   determining   why   certain   trends   emerge   from   the  framework,  e.g.  the  change  of  short  term  to  long  term  value  perceptions  of  several  processes.  The  research   also   identifies   which   types   of   emerging   applications   are   the  most   applicable   to   real   life  cases   and   could   be   subject   to   another   research   for   their   applicability   in   other   sectors.   Also,   the  outcome   of   this   study   in   regard   to   the   inhibiting   factors   of   IoT   can   help   academics   to   study  why  initiatives  to  integrate  IoT  are  succeeding  or  failing.    

7.3 Limitations  The  most  important  limitations  for  this  study  are  as  follows:  

1. Due  to  time  constraints,  the  number  of  cases  for  this  case  study  is  relatively  low.  Because  of  this,  the   results  of   this   thesis  might  not   represent   the  general  opinion  of   companies  about   IoT  and  where  value  can  be  added.  Replication  of  this  thesis  should  be  performed  to  verify  the  results.  

2. All  cases  had  some  affinity  with  supply  chain  management,  as  was  pre-­‐defined  in  the  scope.  This  choice  can  affect  the  results  of  this  thesis,  because  it  might  be  that  supply  chain  management  is  further   ahead   in   the   field   of   Internet   of   Things.   And   as   a   result,  much   is   published   about   the  

Page 35: Thesis the added value of Internet of Things

30    

sector.   Also,   companies   related   to   supply   chain   management   might   have   a   different   opinion  about  IoT,  because  the  concept  seems  to  be  most  applicable  to  them.  This  factors  could  bias  the  results  of  this  thesis.  

3. When   validating   the   results,   two   consultants   of   Deloitte   where   asked   for   their   vision   of   IoT.  Although,   the   consultants   are   experienced   in   the   field   of   Internet   of   Things   and   have   a   track  record   in   assignments   for   clients,   this   provides   a   narrow   sample,   which   could   result   in   an  incomplete  result.  

7.4 Suggestions  for  further  research  The   field  of   IoT   is   relatively  unexplored.   This   is  why  quite   some   research   is   still   left   to  be  done   to  unravel  the  Internet  of  Things.  In  fact,  this  study  raised  many  more  questions  about  IoT  and  related  topics.   In   the   discussion   part   of   this   thesis,   some   recommendations   have   been   given   for   future  research.  The  key  suggestions  for  further  research,  which  can  contribute  to  the  results  in  this  thesis  are:  

1. This   thesis   was   done   in   an   explorative   and   qualitative   way   because   the   concept   of   IoT   is  relatively  new.  Due  to  the  scope,  no  quantitative  research  has  been  performed  in  order  to  verify  the   results   of   this   study.   Future   quantitative   research   should   be   performed,   to   verify   if   the  identified  processes,  value  drivers,  emerging  applications  and  inhibiting  factors  are  correct.  

2. Only   organizations   that   have   affinity   with   supply   chain   management   have   been   taken   into  account  for  this  thesis.  Further  research  that  identifies  more  sectors  could  strengthen  and  add  to  the  results  of  this  thesis.  

3. Many   of   the   inhibiting   factors   for   short-­‐   and   long   term   are   still   unexplored   by   literature.   For  example   the   privacy   issues   that   were   identified   and   how   to   cope   with   them?   And   how   to  properly   secure   this   network   of   sensors?   Also,   the   rights   of   people’s   privacy   and   the   law   in  regard  to  Internet  of  Things  need  to  be  studied.  Internet  of  Things  is  a  multidisciplinary  concept,  which   still   needs   to   be   studied   in   many   ways.   A   needless   fear   in   the   general   public   about  Internet  of  Things  could  prevent  adoption.  Hence,  this  subject  needs  to  be  further  examined.  

4. When  observing  the  value  framework  and  specifically   looking  at  the  difference  between  short-­‐  and   long   term   visions,   two   distinct   trends   can   be   seen   in   value   reduction.   First,   at   the   asset  efficiency  side  of  the  framework,  the  value  for  development  &  production  efficiency  and  logistics  &   service   provision   efficiency   is   greatly   reduced   with   significantly   less   respondents   and  perceived  value.  Second,  at  the  expectations  section  the  managerial  &  governance  effectiveness  and   also   the   execution   capabilities   reduce   in   value   and   respondents   as   well.   The   cause   why  these  parts  of  the  EVM  reduce  in  value  is  out  of  scope  for  this  thesis,  so  further  research  could  untangle  the  reason  for  this  value  drop.  

5. The  emerging  type  of  applications  are  oriented  towards  the  Information  and  Analysis  section  of  the   types   of   emerging   applications   identified   by   Chui   et   al.   (2010).   This   is   the   case   for   both  timeframes.   According   to   this   study,   information   and   analysis   seems   like   the  most   important  section  of  Chui’s  (2010)  model.  However,  the  low  number  of  responses  for  the  other  section  is  remarkable.  One  would  expect   that  Automation  and  control  must  have  countless  applications,  because   IoT   is   such   a   broad   topic.   Further   research   is   needed   to   study   if   this   tendency   for  information  and  analysis,  is  correct.    

Page 36: Thesis the added value of Internet of Things

31    

References  Accenture.  (2014).  Driving  unconventional  growth  through  the  industrial  Internet  of  Things.  Retrieved  April  22,  2015,  from  Accenture:  http://www.accenture.com/us-­‐en/technology/technology-­‐labs/Pages/insight-­‐industrial-­‐internet-­‐of-­‐things.aspx  

Akyildiz,  I.  F.,  Brunetti,  F.,  &  Blázquez,  C.  (2008).  Nanonetworks:  A  new  communication  paradigm.  Computer  Networks,  52(12),  2260-­‐2279.  

Atzori,  L.,  Iera,  A.,  &  Morabito,  G.  (2010).  The  internet  of  things:  A  survey.  Computer  networks,  54(15),  2787-­‐2805.  

Atzori,  L.,  Iera,  A.,  &  Morabito,  G.  (2014).  From"  smart  objects"  to"  social  objects":  The  next  evolutionary  step  of  the  internet  of  things.  Communications  Magazine,  IEEE,  52(1),  97-­‐105.  

Bandyopadhyay,  D.,  &  Sen,  J.  (2011).  Internet  of  things:  Applications  and  challenges  in  technology  and  standardization.  Wireless  Personal  Communications,  58(1),  49-­‐69.  

Bassi,  A.,  &  Horn,  G.  (2008).  Internet  of  Things  in  2020:  A  Roadmap  for  the  Future.  European  Commission:  Information  Society  and  Media.  

Benbasat,  I.,  Goldstein,  D.  K.,  &  Mead,  M.  (1987).  The  case  research  strategy  in  studies  of  information  systems.  MIS  quarterly,  369-­‐386.    

Chui,  M.,  Löffler,  M.,  &  Roberts,  R.  (2010).  The  internet  of  things.  McKinsey  Quarterly,  2(2010),  1-­‐9.  

Cisco.  (2011).  The  Internet  of  Things:  How  the  Next  Evolution  of  the  Internet  Is  Changing  Everything.  Retrieved  April  21,  2015,  from  http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf  

Coetzee,  L.,  &  Eksteen,  J.  (2011).  The  Internet  of  Things-­‐promise  for  the  future?  An  introduction.  In  IST-­‐Africa  Conference  Proceedings,  2011  (pp.  1-­‐9).  IEEE.  

Corbin,  J.,  &  Strauss,  A.  (1994).  Grounded  theory  methodology.  Handbook  of  qualitative  research,  273-­‐285.  

Deloitte.  (2014).  The  Internet  of  Things  Ecosystem:  Unlocking  the  Business  Value  of  Connected  Devices.  Retrieved  April  22,  2015,  from  Deloitte:  http://www2.deloitte.com/us/en/pages/technology-­‐media-­‐and-­‐telecommunications/articles/internet-­‐of-­‐things-­‐iot-­‐enterprise-­‐value-­‐report.html  

Dickson-­‐Swift,  V.,  James,  E.  L.,  Kippen,  S.,  &  Liamputtong,  P.  (2007).  Doing  sensitive  research:  what  challenges  do  qualitative  researchers  face?.  Qualitative  Research,  7(3),  327-­‐353.  

Eisenhardt,  K.  M.  (1989).  Building  theories  from  case  study  research.  Academy  of  management  review,  14(4),  532-­‐550.  

Flick,  U.  (2009).  An  introduction  to  qualitative  research.  Sage.  

Fleisch,  E.  (2010).  What  is  the  internet  of  things?  An  economic  perspective.  Economics,  Management,  and  Financial  Markets,  (2),  125-­‐157.  

Gartner.  (2013).  Gartner  Says  It's  the  Beginning  of  a  New  Era:  The  Digital  Industrial  Economy.  Retrieved  April  3,  2015,  from  Gartner:  http://www.gartner.com/newsroom/id/2602817  

Gartner.  (2015).  Internet  of  Things  Scenario:  When  Things  Become  Customers.  Retrieved  April  3,  2015,  from  Gartner:  http://blogs.gartner.com/don-­‐scheibenreif/2015/04/03/what-­‐happens-­‐when-­‐things-­‐become-­‐customers/    

Page 37: Thesis the added value of Internet of Things

32    

Gluhak,  A.,  Krco,  S.,  Nati,  M.,  Pfisterer,  D.,  Mitton,  N.,  &  Razafindralambo,  T.  (2011).  A  survey  on  facilities  for  experimental  internet  of  things  research.  Communications  Magazine,  IEEE,  49(11),  58-­‐67.  

Gubbi,  J.,  Buyya,  R.,  Marusic,  S.,  &  Palaniswami,  M.  (2013).  Internet  of  Things  (IoT):  A  vision,  architectural  elements,  and  future  directions.  Future  Generation  Computer  Systems,  29(7),  1645-­‐1660.  

LeHong,  H.,  &  Velosa,  A.  (2014).  Hype  Cycle  for  the  Internet  of  Things,  2014.  Gartner.  

Mattern,  F.,  &  Floerkemeier,  C.  (2010).  From  the  Internet  of  Computers  to  the  Internet  of  Things.  In  From  active  data  management  to  event-­‐based  systems  and  more  (pp.  242-­‐259).  Springer  Berlin  Heidelberg.  

McKinsey  Global  Institute.  (2013).  Disruptive  technologies:  Advances  that  will  transform  life,  business,  and  global  economy.  Retrieved  April  21,  2015,  from  McKinsey  &  Company:  http://www.mckinsey.com/insights/business_technology/disruptive_technologies  

Mentzer,  J.  T.,  DeWitt,  W.,  Keebler,  J.  S.,  Min,  S.,  Nix,  N.  W.,  Smith,  C.  D.,  &  Zacharia,  Z.  G.  (2001).  Defining  supply  chain  management.  Journal  of  Business  logistics,  22(2),  1-­‐25.  

Microsoft.  (2015).  Creating  the  Internet  of  Your  Things.  Retrieved  April  21,  2015,  from  Microsoft:  http://www.microsoft.com/en-­‐us/server-­‐cloud/internet-­‐of-­‐things.aspx    

Miorandi,  D.,  Sicari,  S.,  De  Pellegrini,  F.,  &  Chlamtac,  I.  (2012).  Internet  of  things:  Vision,  applications  and  research  challenges.  Ad  Hoc  Networks,  10(7),  1497-­‐1516.  

Myers,  M.  D.,  &  Avison,  D.  (1997).  Qualitative  research  in  information  systems.  Management  Information  Systems  Quarterly,  21,  241-­‐242.  

National  Intelligence  Council.  (2008).  Disruptive  Civil  Technologies:  six  technologies  with  potential  impacts  on  US  interests  out  to  2025.  National  Intelligence  Council.  

Reijers,  H.  A.  (2006).  Implementing  BPM  systems:  the  role  of  process  orientation.  Business  Process  Management  Journal,  12(4),  389-­‐409.  

Schoenberger,  C.  R.  (2002).  The  internet  of  things.  Forbes  Magazine,  6.  

Sprenkels,  B.  (2014).  Internet  of  Things  Business  Models  and  Applications.  Eindhoven:  Eindhoven  University  of  Technology.  

Sundmaeker,  H.,  Guillemin,  P.,  Friess,  P.,  &  Woelfflé,  S.  (2010).  Vision  and  challenges  for  realising  the  Internet  of  Things.  

Uckelmann,  D.,  Harrison,  M.,  &  Michahelles,  F.  (2011).  An  architectural  approach  towards  the  future  internet  of  things.  In  Architecting  the  internet  of  things  (pp.  1-­‐24).  Springer  Berlin  Heidelberg.  

Van  Aken,  J.,  Berends,  H.,  &  Van  der  Bij,  H.  (2012).  Problem  solving  in  organizations:  A  methodological  handbook  for  business  and  management  students.  Cambridge  University  Press.  

Weber,  R.  H.  (2010).  Internet  of  Things–New  security  and  privacy  challenges.  Computer  Law  &  Security  Review,  26(1),  23-­‐30.  

Yin,  R.  K.  (2013).  Case  study  research:  Design  and  methods.  Sage  publications.