52
The Structure of Biological Membranes

TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

The  Structure  of  Biological  Membranes  

 

Page 2: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’
Page 3: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Func7ons  of  Cellular  Membranes  1.   Plasma  membrane  acts  as  a  selec7vely  permeable  barrier  to  the  

environment  

•  Uptake  of  nutrients  

•  Waste  disposal  •  Maintains  intracellular  ionic  milieau  

2.   Plasma  membrane  facilitates  communica7on  •  With  the  environment  

•  With  other  cells  •  Protein  secre8on  

3.   Intracellular  membranes  allow  compartmentaliza7on  and  separa7on  of  different  chemical  reac7on  pathways  

•  Increased  efficiency  through  proximity  

•  Prevent  fu8le  cycling  through  separa8on  

Page 4: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Composi7on  of  Animal  Cell  Membranes  

•  Hydrated,  proteinaceous  lipid  bilayers  •  By  weight:  20%  water,  80%  solids  •  Solids:          Lipid          Protein          Carbohydrate  (~10%)  •  Phospholipids  responsible  for  basic  membrane  bilayer  structure  and  physical  proper8es  

•  Membranes  are  2-­‐dimensional  fluids  into  which  proteins  are  dissolved  or  embedded  

~90%  

Page 5: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

The  Most  Common  Class  of  Phospholipid  is  Formed  from  a  Gycerol-­‐3-­‐P  Backbone  

Page 6: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Saturated  FaJy  Acid  

• Palmitate  and  stearate  most  common  • 14-­‐26  carbons  • Even  #  of  carbons  

Page 7: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’
Page 8: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Unsaturated  FaJy  Acid  

Page 9: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-2 Molecular Biology of the Cell (© Garland Science 2008)

Structure  of  Phosphoglycerides  

All  Membrane  Lipids  are  Amphipathic  

Page 10: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Phosphoglycerides  are  Classified  by  their  Head  Groups  

Phospha8dylethanolamine  

Phospha8dylcholine  

Phospha8dylserine  

Phospha8dylinositol  Ether  Bond  at  C1  

PS  and  PI  bear  a  net  nega8ve  charge  at  neutral  pH  

Page 11: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Sphingolipids  are  the  Second  Major  Class  of  Phospholipid  in  Animal  Cells  

Sphingosine  

Ceramides  contain  sugar  moi8es  in  ether  linkage  to  sphingosine  

Page 12: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-18 Molecular Biology of the Cell (© Garland Science 2008)

Glycolipids  are  Abundant  in  Brain  Cells  

Page 13: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Membranes  are  formed  by  the  tail  to  tail  associa7on  of  two  lipid  leaflets  

Cytoplasmic  Leaflet  

Exoplasmic  Leaflet  

Page 14: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-11a Molecular Biology of the Cell (© Garland Science 2008)

(Hydrophobic)  

(Hydrophilic)  

Bilayers  are  Thermodynamically  Stable  

Structures  Formed  from  Amphathic  Lipids    

Page 15: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Lipid  Bilayer  Forma7on  is  Driven  by  the  Hydrophobic  Effect  

•  HE  causes  hydrophobic  surfaces  such  as  faVy  acyl  chains  to  aggregate  in  water  

•  Water  molecules  squeeze  hydrophobic  molecules  into  as  compact  a  surface  area  as  possible  in  order  to  the  minimize  the  free  energy  (ΔG)  of  the  system  by  maximizing  the  entropy  (ΔS)  or  degree  of  disorder  of  the  water  molecules  

•  ΔG  =  ΔΗ ‒ ΤΔS  

Page 16: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’
Page 17: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 1-12 Molecular Biology of the Cell, Fifth Edition (© Garland Science 2008)

Lipid  Bilayer  Forma7on  is  a  Spontaneous  Process  

Gently  mix  PL  and  water  

Vigorous  mixing  

Page 18: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-8 Molecular Biology of the Cell (© Garland Science 2008)

The  Forma7on  of  Cell-­‐Like  Spherical  Water-­‐Filled  Bilayers  is  Energe7cally  Favorable  

Page 19: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-7 Molecular Biology of the Cell (© Garland Science 2008)

Phospholipids  are  Mesomorphic  

Page 20: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-11b Molecular Biology of the Cell (© Garland Science 2008)

PhosphoLipid  Movements  within  Bilayers  (µM/sec)  

(1012-­‐1013/sec)   (108-­‐109/sec)  

Page 21: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Pure  Phospholipid  Bilayers  Undergo  Phase  Transi7on  

Below  Lipid  Phase  Transi7on  Temp     Above  Lipid  Phase  Transi7on  Temp    

Gauche  Isomer  Forma7on  

All-­‐Trans  

Page 22: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 12-57 Molecular Biology of the Cell (© Garland Science 2008)

Phosphoglyceride  Biosynthesis  Occurs  at  the  Cytoplasmic  Face  of  the  ER  

Page 23: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 12-58 Molecular Biology of the Cell (© Garland Science 2008)

A  “Scramblase”  Enzyme  Catalyzes  Symmetric  

Growth  of  Both  Leaflets  in  the  ER  

Page 24: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-16 Molecular Biology of the Cell (© Garland Science 2008)

The  Two  Plasma  Membrane  Leaflets  Possess  Different  Lipid  Composi7ons  

Enriched  in  PC,  SM,  Glycolipids  

Enriched  in  PE,  PS,  PI  

Page 25: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 12-58 Molecular Biology of the Cell (© Garland Science 2008)

A  “Flippase”  Enzyme  promotes  Lipid  

Asymmetry  in  the  Plasma  Membrane  

Page 26: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Membrane  Proteins  May  Selec7vely  Interact  with  Specific  Lipids  (Lipid  Annulus  or  Halo)  

Lipid  Asymmetry  Also  Exists  in  the  Plane  of  the  Bilayer  

Page 27: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-17a Molecular Biology of the Cell (© Garland Science 2008)

Phospholipids  are  Involved  in  Signal  Transduc7on  

PI-­‐4,5P   PI-­‐3,4,5P  

1.    Ac7va7on  of  Lipid  Kinases  

Page 28: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

2.  Phospholipases  Produce  Signaling  Molecules  via  the  Degrada7on  of  

Phospholipids  

Page 29: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-17b Molecular Biology of the Cell (© Garland Science 2008)

Phospholipase  C  Ac7va7on  Produces  Two  Intracellular  Signaling  Molecules  

PI-­‐3,4,5P  

I-­‐3,4,5P  

Diacylglycerol  

Page 30: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Hydrophilic    End  

Flexible  Hydrocarbon  Tail  

Amphipathic  Lipids  Containing  Rigid  Planar  Rings  Are  Important  Components  of  Biological  Membranes  

Page 31: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-5 Molecular Biology of the Cell (© Garland Science 2008)

C12  

How  Cholesterol  Integrates  into  a  Phospholipid  Bilayer  

Page 32: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Cholesterol  Biosynthesis  Occurs  in  the  Cytosol  and  at  the  ER  Membrane  Through  Isoprenoid  Intermediates  

(Rate-­‐Limi8ng  Step  in  ER)  

Page 33: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-14b Molecular Biology of the Cell (© Garland Science 2008)

Lipid  Rads  are  Microdomains  Enriched  in  Cholesterol  and  SM  that  may  be  Involved  in  Cell  

Signaling  Processes  

Insoluble  in  Triton  X-­‐100  

Page 34: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-14a Molecular Biology of the Cell (© Garland Science 2008)

Electron  Force  Microscopic  Visualiza7on  of    Lipid  Rads  in  Ar7fical  Bilayers  

Yellow  spikes  are  GPI-­‐anchored  protein  

Page 35: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

3  Ways  in  which  Lipids  May  be  Transferred  Between  Different  Intracellular  Compartments  

Vesicle  Fusion  Direct  Protein-­‐Mediated  

 Transfer  Soluble  Lipid    

Binding  Proteins  

Page 36: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’
Page 37: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-19 Molecular Biology of the Cell (© Garland Science 2008)

The  3  Basic  Categories  of  Membrane  Protein  

Integral   Lipid-­‐Anchored  

Peripheral  (can  also  interact  via  PL  headgroups)  

Single-­‐Pass   Mul7-­‐pass  

FaJy  acyl  anchor  

GPI  Anchor  

Transmembrane  Helix  

Linker  Domain  

β-­‐Strands  

Page 38: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-20 Molecular Biology of the Cell (© Garland Science 2008)

3  Types  of  Lipid  Anchors  

Page 39: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 3-5 Molecular Biology of the Cell (© Garland Science 2008)

Membrane  Domains  are  “Inside-­‐Out”  

Right-­‐Side  Out  Soluble  Protein  

Page 40: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-31 Molecular Biology of the Cell (© Garland Science 2008)

Func7onal  Characteriza7on  of  Integral  Membrane  Proteins  Requires  Solubiliza7on  and  Subsequent  Recons7tu7on  into  a  Lipid  Bilayer  

Page 41: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

(Used  to  denature  proteins)  

(Used  to  purify  Integral  Membrane  Proteins)  

Detergents  are  Cri7cal  for  the  Study  of    Integral  Membrane  Proteins  

Page 42: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-29b Molecular Biology of the Cell (© Garland Science 2008)

Detergents  Exist  in  Two  Different  States  in  Solu7on  

(Cri8cal  Micelle  Concentra8on)  

Page 43: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Detergent  Solubiliza7on  of  Membrane  Proteins  

Desirable  for  Purifica8on  of  Integral  Membrane  Proteins  

Page 44: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Beta  Sheet  Secondary  Structure  

An7-­‐parallel  Strands  

Side  chains  alternately  extend  into  opposite  sides  of  the  sheet  

H-­‐Bond  

Polypep7de  backbone  is  maximally  extended  (rise  of  3.3  Å/residue)  

Page 45: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

β-­‐Barrel  Structure  of  the  OmpX  Porin  Protein  in  the  Outer  Membrane  of  E.  coli  

Aroma7c  Side  Chain  anchors  

Alterna7ng  Alipha7c  Side  Chains  

Page 46: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Transmembrane  α-­‐Helices  1.  Right-­‐handed  2.  Stability  in  bilayer  results  from  

maximum  hydrogen  bonding  of  pep8de  backbone  

3.  Usually  >  20  residues  in  length  (rise  of  1.5  Å/residue)  

4.  Exhibit  various  degrees  of  8lt  with  respect  to  the  membrane  and  can  bend  due  to  helix  breaking  residues  

5.  Mostly  hydrophobic  side-­‐chains  in  single-­‐pass  proteins  

6.  Mul8-­‐pass  proteins  can  possess  hydrophobic,  polar,  or  amphipathic  transmembrane  helices  

H-­‐Bond  

Page 47: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-22b Molecular Biology of the Cell (© Garland Science 2008)

Transmembrane  Domains  Can  Oden  be  Accurately  Iden7fied  by  Hydrophobicity  Analysis  

Page 48: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-32 Molecular Biology of the Cell (© Garland Science 2008)

Bacteriorhodopsin  of  Halobacterium  

Page 49: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-33 Molecular Biology of the Cell (© Garland Science 2008)

Structure  of  Bacteriorhodopsin  

Page 50: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Structure  of  the  Glycophorin  A  Homodimer  

Arg  and  Lys  Side  Chain  Anchors  

23  residue  transmembrane  helices  

Coiled-­‐Coil  Domains  in  Van  Der  Waals  Contact  

Page 51: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-34 Molecular Biology of the Cell (© Garland Science 2008)

Structure  of  the  Photosynthe7c  Reac7on  Center  of  Rhodopseudomonas  Viridis  

Page 52: TheStructure of$ Biological$Membranes$mcb5068.wustl.edu/MCB/Lecturers/.../LectureSlides/1_MembraneStr… · Transmembrane $αHelices 1. RightOhanded’ 2. Stability’in’bilayer’results’from’

Figure 10-39 Molecular Biology of the Cell (© Garland Science 2008)

4  Ways  that  Protein  Mobility  is  Restricted  in  Biological  Membranes  

Intramembrane  Protein-­‐Protein  Interac8ons  

Interac8on  with  the  cytoskeleton  

Interac8on  with  the  extracellular  maxtrix  

Intercellular  Protein-­‐Protein  Interac8ons