23
Bruce Gnade UT Dallas Thin-Film Semiconductor Technology Applied to Large Area Radiation Detectors CIRMS Conference 2012 October 23, 2012

Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Bruce GnadeUT Dallas 

Thin-Film Semiconductor Technology Applied to Large Area Radiation Detectors

CIRMS Conference 2012October 23, 2012

Page 2: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Flexible Electronics Research Group at UTD

• POST‐DOCS/STAFF SCIENTISTS– Dr.  I. Mejia, Dr. Kurtis Cantley, Dr. M. Jia,  Dr. I. Trachtenberg, Dr. A. Carrillo, Dr. N. 

Hernandez, Dr. J. Conde, Dr. Dick Chapman • GRADUATE STUDENTS/PROJECTS

– Ana Salas– PhD. – Alternate Contacts (AFOSR)– Duo Mao – Ph.D. – Organic Memory (ARL)– Mike Perez, Ph.D. – n‐type flexible TFTs (NSF)– John Murphy Ph.D – Large Area Neutron Detectors  (ARL, FUSION)– Martha Rivas – Pulsed Laser Deposition of Chalcogenides– Dewan Lutful Kabir – Reliability and Electrical Characterization– Lindsey Smith – Neutron converter layers (DNDO)– Kevin Larosa – Backplane electronics (DNDO)

• VISITING SCHOLARS– J. Ramos (UACJ), V. Martinez,  (CIMAV), G. Gutierrez (CIMAV), Alfredo Luque (CNyN)

• Collaborators– Dr. David Allee (ASU), Dr. Eric Forsythe (ARL), George Kunnen (ASU)

• FUNDING– U.S. Army Research Labs,Military Tech, DOE, UT Dallas, Texas MicroPower, NSF, Texas 

instruments, FUSION, DNDO, AFOSR, DARPA

Page 3: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Agenda

• Large Area Radiation Detectors– Why thin‐film devices– Large area neutron detector project

• Current state of thin‐film semiconductor devices– Transistors– Memory– CMOS– Circuits

Page 4: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Why large area detectors?

Neutron Source

08 ft 8 ft

2” 3He tube

Large area neutron detector

Probability of neutron hitting 2” tube ~ 1 part in 36000Probability of neutron hitting large area detector ~ 1 part in 3

Page 5: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

# of TFTs per min

Area per min

Yield zero redundancies

Display ~cost/cm2

Si-CMOS($5k/wafer)

Digital X-ray 1-up/subs

Digital x-ray4-up/subs

~108/min 4m2/min 99.99997% $0.05/cm2 $6.86/cm2 $29/cm2 $7/cm2

Displays

Source: Organic and Printed Electronics, Organic Electronics Association (OE‐A) Broucher,

3rd Edition, 2009 

Throughp

ut (m

2 /sec)

Minimum feature Size (m)

10‐4

1

100

1 100 50010

Digital X‐ray imagers

Future Flexible Electronics Throughput vs cost/cm2

Thanks to Dr. Eric Forsythe – Army Research Laboratory

Page 6: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Large Area Sensor Arrays: The Concept with ASU

RESET

AMPLIFIER

READ

ROW

PIXEL

Energy to charge conversion

•Neutron Detection•VIS / IR Imager• Millimeter Wave• MEMs

• Blast• Acoustic

• Electronic Textiles

Page 7: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Very large area, flexible, low power neutron detectors

Three main pieces‐ energy conversion layer‐ sensing diode‐ backplane electronics

Page 8: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Sensing diode

Flexible substrate (~1 mm)

Al (100 nm)

Au (100nm)

6Li 10B nanoparticle composite

Au (100 nm)

Sensing diode

Flexible substrate (~1 mm)

6Li nanoparticles 10B

Al (100 nm)

Isotope ReactionThermal σ(barns)

Charged particles and energies (keV)

3He 3He(n,p)3H 5333 p: 573, 3H: 1916Li 6Li(n,α)3H 940 3H: 2727, α: 205510B 10B(n,α)7Li 3835 α: 1472, 7Li: 480natGd natGd(n,γ) 49700 Conversion e‐: 29‐191157Gd 157Gd(n,γ) 259000 Conversion e‐: 29‐182235U 235U(n,f) 681 Various fission products

Neutron conversion layer strategies

Converter‐on‐diode Converter‐in‐diode

Page 9: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Neutron Detector Modeling in MCNPX and MATLAB

• Front end captures Neutron and emits charged alpha particle,• Alpha detected with PIN diode and active pixel sensor circuit• MCNPX used to model and optimize detector front‐end layers• Detector layers capable of being fabricated with FDC process

With Correlated DoubleSampling applied:

Detector Layers simulated in MCNPX:

Weapons Grade Plutonium

MATLAB model of arrayed pixel sensors with simulated alpha particle exposure (Red Boxes):

Example neutron conversion layeroptimizations result in 2.6um 10B thickness

• Each cell represents an active pixel sensor• Sensors modeled to reflect FDC process variations.• CDS dramatically improves ability for detector to resolve alpha particle strikes

Page 10: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Thin‐film diode optimization ‐MCNPX

TABLE II. Intrinsic gamma efficiencies for selected thicknesses and gammaenergies. (LLD = 300keV and a 2.8 µm 10B conversion layer)

Thickness(μm)

γ energy (keV) Si CdTe GaAs ZnO

3 5111460

00

09×10-14

00

08×10-14

10 5111460

01×10-13

6×10-13

9×10-1202×10-12

1×10-12

8×10-12

30 5111460

6×10-11

1×10-106×10-7

2×10-71×10-7

6×10-83×10-7

2×10-7

100 5111460

3×10-6

2×10-64×10-4

1×10-42×10-4

6×10-52×10-4

9×10-5

300 5111460

3×10-4

2×10-44×10-3

3×10-32×10-3

2×10-32×10-3

2×10-3

Page 11: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Sensing Diode Optimization: Schottky vs. MIS

Detector bias (V) 0V 5V 20V

Particles detected 562  595  651 

Measured source strength 1,938  1,954  2,245 

Efficiency 60% 60% 69%

Integrating over channels for peak

Integrating over channels 100‐450

Detector bias (V)

0V 5V 20V 100V

Particles detected 785  772  752  869 

Measured source strength

2,486  2,445  2,382  2,752 

Efficiency 77% 76% 74% 85%

Page 12: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Radiation measurement setupPreamp

Amp and det bias

Oscilloscope

Sample chamberMCA

Page 13: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

TFT‐based Active Pixel Sensors 

The detection of two alpha particle strikes on a commercial diode and amplified with the two stage low noise thin film transistor amplifier.

Page 14: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

NMOS

VGS (Volts)

-30-20-10010

log(

| ID

S |)

( A

)

10-4

10-3

10-2

10-1

100

101

102

Sqrt

(ID

S) (

A)1/

20

1x10-3

2x10-3

3x10-3

4x10-3

5x10-3

W/L = 400m/7mVDS = -25V

VDS (Volts)

-30-25-20-15-10-50

I DS

(

0

2

4

6

8

10

12W/L = 400m/7m VGS = -20V

VGS = -15V

VGS = -10V

VGS = -5Vcc

Flexible CMOS

Why CMOS– Dramatically reduced  power consumption

– Analog circuitry possible

–Sensor applications

How to do F‐CMOS–Combine Processes

• N‐Type a‐Si:H TFTs• N‐Type inorganic TFTs• P‐Type Organic TFTs

–Standard Cell Approach

PMOS

Page 15: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

a‐Si / pentacene CMOS Devices – with ASU

VIN (V)0 5 10 15 20

V OU

T(V)

0

5

10

15

20

Gai

n

0

4

8

12

16

Vin Vout

pmos

nmos

VDD

GND

Inpu

t (V)

0

5

10

15

20

25

Time (seconds)

-0.02 -0.01 0.00 0.01 0.02

NA

ND

Gat

e O

utpu

t (V)

0

5

10

15

20

25

A

B

Inpu

t (V)

0

5

10

15

20

25

Time (seconds)

-0.02 -0.01 0.00 0.01 0.02N

OR

Gat

e O

utpu

t (V)

0

5

10

15

20

25

A

B

Inverters NAND Gates NOR Gates

Page 16: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Inorganic semiconductors: 100 cm2 V-1 s-1

Amorphous silicon: ~ 0.01 to 1 cm2 V-1 s-1

Organic semiconductors ~ 6x10−2 to 1 cm2V-1 s-1

Technology Comparison

SemiconductorMobility (cm2/V‐s)e‐ h+

CdS 250

CdSe 650

ZnSe 600

SnSe2 27

InS 50

SnS2 18

CuGaS2 20

CuInS2 15

ZnTe 100

PbS 5

Cu2S 10

Chalcogenides

ZnO

CdSCdTe

ZnS

ZnSe

CdSeZn

TeCuInSe2

CuInS2CuInTe2CuAlSe2CuGaS

e2

Elec

tron

or H

ole

Con

cent

ratio

n (c

m-3

)1014

1015

1016

1017

1018

1019

1020

1021

1022

P

PP

P

PP

P

PP

P

P

P

N N

N NN N

N N

N

N N N

N-TYPE P-TYPE

Page 17: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

CBD CdS/ Evaporated Pentacene Inverters

• Optimized pentacene and CBD CdS deposition

• Inverters yield gains of about 80

VI

N

VOUT

0 5 10 15 20

0

5

10

15

20

GAIN

VIN [V ]

VOUT [V

]

 VOUT

0

20

40

60

80

100

 G A IN

Page 18: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Ferroelectric‐based organic Memory (FeRAM)PVDF ‐ TrFe

C

F F

H

C

H

C

F F

H

C

H

P

MFM Capacitor – 1T‐1C memory cell‐ relatively easy to fabricate‐ destructive read‐ complicated read / write circuitry

Au

Ferro‐electric

Gate – Au

Page 19: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Fully integrated TFT used for 1T1C

0 2 4 6 8 10 12 140.0

20.0µ

40.0µ

60.0µ

80.0µ

100.0µ

120.0µ

I D [A

]

VD [V]

VG = 0 V VG = 2.5 V VG = 5 V VG = 7.5 V VG = 10 V VG = 12.5 V VG = 15 V

W = 160 umL = 5 um

-5 0 5 10 15

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

W = 160 umL = 5 um

SQ

RT

I D [A

1/2 ]

VG [V]

SQRT ID

FET = 1.5 cm2/V-sVT = 5.5 V

VD = 15 VSaturation

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

ABS ID

ID [A]

1. CBD CdS as the semiconductor2. ALD HfO2 as the gate dielectric3. Parylene as ILD4. Low temperature process, 

maximum temperature is 100 oC

Page 20: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

2T2C FRAM Characterization 

DWLWEDWL

CL0

GND

WL0

SL

SRGND

PLCL1

CL2CL3

CL4CL5

CL6CL7

WL1WL2

WL3WL4

WL5WL6WL7

BAL

64‐bit FRAM layout

20

Page 21: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

• The output signal from the sensor element is a low voltage pulse with 10’s ns width, with very high impedance due to the capacitive nature of the device.

• Charge amplifiers provide very high input impedance ‐ they integrate weak charge pulses to convert them into voltage pulses with low impedance.

[1] F. J. Ramirez‐Jimenez et al., Nuclear Instruments and Methods in Physics Research A, 497, (2003), 577‐583.[2] Bernd J. Pichler et al., IEEE Transactions on Nuclear Science,  48(6), (2001), 2370‐2374.[3] HAMAMATSU, model H4083.

In‐pixel charge amplifier – Ramirez designPrototype neutron detector

Page 22: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Potential Advantages

• Very large aperture at moderate cost based on AMLCD • In‐pixel electronics provide low capacitance for pixelated array• Potential for high γ‐ray rejection rate due to TFT array electronics• Potential for fission neutron multiplicity measurements • Potential for determination of directionality of the neutron source

Page 23: Thin-Film Semiconductor Technology Applied to Large Area … Morning/cirms2012 Gnade.pdf · MCNPX and MATLAB • Front end captures Neutron and emits charged alpha particle, • Alpha

Thank You!