64
Thin layering and liquefaction MEISINA C.* , STACUL S.**, BONI’ R.*, D.C. LO PRESTI** [email protected] *Department of Earth and Environmental Sciences, University of Pavia **Department of Civil & Industrial Engineering, University of Pisa

Thin layering and liquefaction - unipi.it

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thin layering and liquefaction - unipi.it

Thin layering and liquefactionMEISINA C.* , STACUL S.**, BONI’ R.*, D.C. LO PRESTI**

[email protected]

*Department of Earth and Environmental Sciences, University of Pavia

**Department of Civil & Industrial Engineering, University of Pisa

Page 2: Thin layering and liquefaction - unipi.it

OUTLOOK• 1. BACKGROUND

• 2. CHALLENGING ISSUES OF CPTU INTERPRETATION

• 3. POSSIBLE SOLUTIONS

• 3.1 Thin layer correction

• 3.2 The minipiezocone

• 4. AIMS OF THE RESEARCH

• 5. METHODS

• 6. THE STUDY AREAS

• 6.1 TEST SITE A

• 6.2 TEST SITE B

• 7. RESULTS

• 7.1.Comparison Qc, fs, Ic standard CPTu and mini CPTu

• 7.2.Comparison mini CPTu and corrected standard CPTu

• 7.3. LPI

• 8. CONCLUSION

• 9.Future work

2/63Workshop Recenti sviluppi nelle indagini in sito

Page 3: Thin layering and liquefaction - unipi.it

CPT/CPTu complementary tools for stratigraphic investigations

Lithotype identification (in terms of Soil Behavior Type SBT)

Identification of stratigraphic boundaries

Reconstruction of the stratigraphic profile

Stratigraphic correlations

CPT/CPTu measurements provided a high-resolution data set suitable for 3D modeling.

Continuous measurements of soil parameters (qc, fs, u)

Measurement repeatibility

Possibility of investigating a soil volume greater than that of laboratory samples

Large existing databases

1. BACKGROUND

3/63Workshop Recenti sviluppi nelle indagini in sito

CPT/CPTu as site characterization techniques

Page 4: Thin layering and liquefaction - unipi.it

• International standards such as ASTM D5578 (1995), ASTM5778-12, 2012, ASTM D3441-16, 2016 and EN ISO 22476-1 (2012) define testing procedures, cone geometry and accuracy/repeatability requirements for testing with electric cone or piezocone.

• Well established cone penetration technologies

• Usually a cone with an apex angle of 60°and a tip cross-section of 10 or 15 cm2

is recommended.

4/63Workshop Recenti sviluppi nelle indagini in sito

1. BACKGROUND

Significant efforts into procedure and equipment standardization

Page 5: Thin layering and liquefaction - unipi.it

❑Intermediate soil deposits (complexityin data interpretation due to partialdrainage)→ Soil mixtures

❑Alternation of soil mixtures

❑Transition zones

❑Thin layers identification (Van der Linden,2017, Boulanger and De Jong, 2018; De Lange,2018)

5/63Workshop Recenti sviluppi nelle indagini in sito

2. CHALLENGING ISSUES OF CPTU INTERPRETATION

Multiple thin layers

Page 6: Thin layering and liquefaction - unipi.it

• the spatial resolution of cone tip resistance (qt) and sleeve friction (fs)measurements is still limited by the physical volume of soil around a cone tip thatinfluences those measurements

• qt is most influenced

• The cone resistance depends on the sequence and properties of all soils withinthe zone of influence.

• The cone resistance is influenced by the material ahead and behind thepenetrating cone. Hence the cone will start to sense a change in material typebefore it reaches the new material and will continue to sense a material evenwhen it has entered a new material. Therefore, the CPT/CPTu will not alwaysidentify the correct transition in thinly interbedded materials.

• The dimensions of this zone of influence depend on:• the cone size

• the strength and stiffness characteristics of the soil.

6/63Workshop Recenti sviluppi nelle indagini in sito

2. CHALLENGING ISSUES OF CPTU INTERPRETATION

Page 7: Thin layering and liquefaction - unipi.it

Sensing and development distance (after Tehrani et al.

2017)

Around a soil layer interface there is a zone

where the measured resistance will be

influenced by both the under- and overlying

layer (the transition zone).

At a certain distance from the interface the

underlying layer will be felt (sensing

distance) and

a certain penetration in the underlying layer

is needed to get rid of the effect of the

overlying layer (development distance)

A thin layer is defined as a layer which has not sufficient height to develop the “true” resistance.

Transition zone: intervals when the peak of measured qt<<true resistance

7/63Workshop Recenti sviluppi nelle indagini in sito

2. CHALLENGING ISSUES OF CPTU INTERPRETATION

Page 8: Thin layering and liquefaction - unipi.it

• The distance over which the cone senses an interface increases withmaterial stiffness.

• soft materials → diameter of the sphere of influence → <2-3 conediameters → Soft layers thinner than 100 mm can be fully detected bythe cone resistance

• stiff materials → diameter of sphere of influence → up to l0 or 20 conediameters → stiff layers may need to be as thick as 750 mm or more forthe cone resistance to reach its full value.

8/63Workshop Recenti sviluppi nelle indagini in sito

2. CHALLENGING ISSUES OF CPTU INTERPRETATION

Page 9: Thin layering and liquefaction - unipi.it

1. the minimum layer thickness that can be detected by penetration

resistance

• The detected thickness depends on the relative stiffness of two contiguous layers

• the penetration resistance of a soft layer (clay) below a rigid layer (dense sand) is fully mobilized even for thicknesses of 1-2 diameters,

• a thickness of 10-20 diameters is needed to fully mobilize the resistance of a rigid layer underneath a soft one.

(Vreugdenhil et al. (1994), Ahmadi and Robertson (2005))

landfill

silty clay

clayey silt

sandy silt

sandy clay

water table

0

0,5

1

1,5

2

2,5

3

0 1 2 3 4 5 6 7 8 9 10 11 12

SBT

Robertson et al., 1986

0

0,5

1

1,5

2

2,5

3

0 1 2 3 4 5 6 7 8 9

SBT

Robertson, 1990

Workshop Recenti sviluppi nelle indagini in sito 9/63

2. CHALLENGING ISSUES OF CPTU INTERPRETATION

Page 10: Thin layering and liquefaction - unipi.it

❑thin layer effects can be important for liquefaction methodologies,depending on the analysis procedures, soil conditions, and seismic loading(Boulanger et al. 2016).

❑The use of simplified one-dimensional (1D) liquefaction vulnerabilityindices (LVIs) can overestimate the potential for liquefaction induceddeformations if the predicted intervals of liquefaction triggering areprimarily associated with numerous thin layers or transition zones.

❑In other cases, the results of 1D-LVI’s may be insensitive to thin layer andtransition zones if those zones are a small portion of the predicted intervalsof liquefaction triggering (Boulanger and De Jong, 2018).

10/63Workshop Recenti sviluppi nelle indagini in sito

2. CHALLENGING ISSUES OF CPTU INTERPRETATION

Page 11: Thin layering and liquefaction - unipi.it

• THIN LAYERS

• Difficult to identify in CPT (but also in borehole)

11/63Workshop “Recenti sviluppi nelle indagini in sito”

Gel push sample

0 – 17 cm sand with silt

17 – 48 cm sandy clay

silt;

48 – 85 cm sand with silt

2. CHALLENGING ISSUES OF CPTU INTERPRETATION

Page 12: Thin layering and liquefaction - unipi.it

3. POSSIBLE SOLUTIONS

• Thin layer correction(Boulanger and De Jong , 2018)

• Mini piezocone

12/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 13: Thin layering and liquefaction - unipi.it

13/63Workshop “Recenti sviluppi nelle indagini in sito”

The inverse filtering procedure has three primary components:

• (1) a model for how the cone penetrometer acts as a low-pass spatial filter in sampling the true distribution of soil properties versus depth,

• (2) a solution procedure for iteratively determining an estimate of the true cone penetration resistance profile from the measured profile and cone penetration filter model,

• (3) a procedure for identifying sharp transition interfaces and correcting the data at those interfaces.

3.1 Thin layer correction (Boulanger and De Jong, 2018)

Page 14: Thin layering and liquefaction - unipi.it

3.1 Thin layer correction (Boulanger and De Jong, 2018)

14/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 15: Thin layering and liquefaction - unipi.it

AUTHORS TYPE OF MATERIAL APPLICATION AIM NOTES

Tumay et al. (1998, 2001) Transportation Geotechnics

mini cone with an apex angle of 60°, projected cone area of 2 cm2 and a friction sleeve area of 40 cm2

1 g conditions

Power & Geise (1995) and Tufenkjian & Thompson (2005)

seafloor exploration

1 g conditions

Lo Presti et al. (2018) compacted, fine grained, partially saturated samples

Calibration Chambers

tests on fine – grained soils were used for predicting the degree of compaction

mini cone with a projected cone area of 0.5 cm2

1 g conditions

Canou (1989) fine silica sand samples (Hostunsand)

Calibration Chambers

mini cone with a projected cone area of 1 cm2.1 g conditions

Kurup et al. (1994) and Abu-Farsakh et al. (1998)

fully saturated cohesive soils

Calibration Chambers

pore pressure generation and dissipation

1 g conditions

Bolton et al. 1999 centrifuge testing

1 g conditions

De Lange (2018) Laminated soildeposits

interpretation of CPT in thin layers

Mini cone with a diameter of 25 mm (5 cm2)

15/63Workshop “Recenti sviluppi nelle indagini in sito”

3.2 The minipiezocone

Page 16: Thin layering and liquefaction - unipi.it

• the tip resistance from mini cone is higher (11%) than that of standard cone in the case of penetration tests on Tiller quick clay (Norway) (Tumayet al. 1998)

• Tufenkjian and Thompson (2005) found the opposite in the case of testing a laboratory reconstituted sand bed.

• Monfared and Sadrekarimi (2015) and Lo Presti et al. (2018) did not found any clear difference between standard and mini – cone tip resistances.

• These different results may depend on scale – effects i.e. different ratio between cone diameter dc and the mean grain size d50.

• Nikudel et al. (2012) tried to correlate the tip resistance measured in the first two meters with stiffness and strength parameters as inferred from laboratory tests in case of sandy soils.

16/63Workshop “Recenti sviluppi nelle indagini in sito”

Comparaison between the results inferred from mini cones with those obtained with a standard cones in different soils

3.2 The minipiezocone

Page 17: Thin layering and liquefaction - unipi.it

4. AIMS OF THE RESEARCH

• to compare couples of standard and mini-piezocone tests carried out in natural soil deposits consisting of silty-sandy mixtures;

• To compare the thin layer correction (method of Boulanger and De Jong, 2018) results with mini CPTu;

• To investigate the capabilities and limitations of the mini-piezocone for a better identification of thin soil layers and improvement of liquefaction analysis in layered and multi-layered soil deposits.

17/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 18: Thin layering and liquefaction - unipi.it

5. METHODS

18/63Workshop “Recenti sviluppi nelle indagini in sito”

QcCPTu VS Qcmini-CPTu VS qcCorrected CPTu

PAIRS OF STANDARD CPTU AND MINI-CPTU

BOREHOLES

Grain size analysis

FsCPTu VS Fsmini-CPTu VS FsCorrected CPTu

IcCPTu VS Icmini-CPTu VS ICCorrected CPTu

Thin layer correction(Boulanger and De Jong, 2018)

LPI (Liquefaction Potential Index)Boulanger and Idriss, 2016

SITE TEST SELECTION

A. Silty clay(unsaturatedconditions)

B. Silty sand(saturatedconsitions)

Stratigraphy

Atterberg limits

Standard SBT and Ic profile

Corrected SBT and Ic profile

Mini SBT and Ic profile

Page 19: Thin layering and liquefaction - unipi.it

• mini-cone tip area (base area) was 2 cm2, (16 mm in

diameter)

• the friction sleeve area was 50 cm2

• the cone apex angle was 60 degrees.

• The net area ratio of the miniature cone was 0,8.

Table 1 Full scale output of sensors

19/63Workshop “Recenti sviluppi nelle indagini in sito”

5. METHODS

Measurement

channel

Full scale output Precision

Tip resistance (qc): 30 Mpa 0.005 MPa

Sleeve friction (fs) 0.5 MPa 0.04 kpa

Pore Pressure (U2) 2.5 MPa 0.04 kPa

Tilt Not available

Page 20: Thin layering and liquefaction - unipi.it

• The mini-cone is pushed into the soil at a relatively constant rate of 2 cm/sec.

• Lower force is required to push the mini-penetrometer into the soil (Tumay et al., 1998) and a smaller and lighter vehicle is necessary compared to the standard CPT test. This fact provides a greater mobility and site accessibility (Tufenkjian and Thompson, 2005).

• The maximum axial load experienced during the mini-cone tests was approximately equal to 0,9 kN.

• The mini-cone tip resistance and sleeve friction were recorded at depth intervals of 1 cm.

20/63Workshop “Recenti sviluppi nelle indagini in sito”

5. METHODS

Page 21: Thin layering and liquefaction - unipi.it

6. THE STUDY AREAS

• TEST SITE A.

Calendasco:

✓ silty clay soils

✓ thin layers: sand (thickness 13-35 cm) in silty clay

✓ Unsaturated conditions

✓ No liquefaction

• TEST SITE B.

Cavezzo:

✓ silty - sandy soils

✓ thin layers (silty layers in sandy soils and

sandy layers in silty soils)

✓ Saturated conditions

✓ liquefaction

A

B

21/63Workshop “Recenti sviluppi nelle indagini in sito”

CAVEZZO

Page 22: Thin layering and liquefaction - unipi.it

ASSESSMENT AND MITIGATION OF LIQUEFACTION POTENTIAL ACROSS EUROPEA holistic approach to protect structures / infrastructures for improved resilience to earthquake-induced liquefaction disasters

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement GA700748

http://www.liquefact.eu/

22/63

Page 23: Thin layering and liquefaction - unipi.it

6.1 TEST SITE A

Olocenic deposits of the

River Po in Calendasco

(Piacenza, Northern Italy).

23/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 24: Thin layering and liquefaction - unipi.it

u (kPa)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-50 150 350

CPTu1(grease)

CPTu 2(siliconoil)

qc (Mpa)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10

de

pth

(m

)

CPTu1 (grease)

CPTu 2 (siliconoil)

Rf (%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20

CPTu1(grease)

CPTu 2(siliconoil)

grain size (%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80

clay silt sand gravel

Atterberg limits (%)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40

IP Wp Wl Wn

clayey silt

sandy silt

clayey silt

sandy silt

clayey silt

sandy silt

silty sand

water table (9.5 m)

Olocenic deposits of the River Po in Calendasco (Piacenza, Northern Italy).

Clayey silts and sandy silts (CL) with sandy intercalations down to a variable depth of

between 8.6 and 6.6 m. At greater depths there is a gravelly layer. The water table is

9.5 meters below ground surface.

6.1 TEST SITE A

24/63Workshop “Recenti sviluppi nelle indagini in sito”

INV

ESTI

GAT

ED D

EPTH

Page 25: Thin layering and liquefaction - unipi.it

1- Sensitive fine-grained soil 1- Sensitive fine-grained soil

2- Organic soil 2-Organic soils and peat

3- Clay 3-Clays (clay to silty clay)

4- Silty clay to clay 4-Silt mixtures (silty clay to clayey silt)

5- Clayey silt to silty clay 5-Sand mixtures (sandy silt to sil.sand)

6- Sandy silt to clayey silt 6-Sand (silty sand to clean sand)

7- Silty sand to sandy silt 7-Sand to gravelly sand

8- Sand to silty sand 8-Sand - Clayey sand to very stiff sand

9- Sand 9-Very stiff, fine-grained, overconsolidated or

10- Sand to gravelly sand cemented soil

11- Very stiff fine-grained soil

12- Overconsolidated or cemented sand to clayey

sand

Clayey silt

sandy silt

clayey silt

sandy silt

clayey silt

sandy silt

sand

0,0

1,0

2,0

3,0

4,0

0 1 2 3 4 5 6 7 8 9 10 11 12

De

pth

(m

)

SBT

Robertson et al., 1986

0,0

1,0

2,0

3,0

4,0

0 1 2 3 4 5 6 7 8 9

SBTn

Robertson, 1990

The clayey silts between 0.6 m and 1 m

are distributed in numerous fields.

The superficial silty clay layer is

identified as sandy silt/silty sand by

Robertson et al. (1986) and as sand by

Robertson (1990).

The variability in the interpretation of the

layer from 0 cm to 2.10 m and the

overestimation of soil grain size can be

explained by the presence of a partially

saturated layer, which leads to an

increase of the resistances, particularly

evident in the classification obtained with

the Robertson method (1990).

Calendasco. Comparison between

stratigraphical profile of the borehole

and those obtained through CPTu

tests. SBT: soil behavior (in black:

CPTU1, in red: CPTU2)

6.1 TEST SITE A

25/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 26: Thin layering and liquefaction - unipi.it

6.1 TEST SITE A

26/63Workshop “Recenti sviluppi nelle indagini in sito”

The CPTu and mini-CPTu tests wereperformed by Pagani GeotechnicalEquipment

Max depth = 2,5 m

Mini – CPTu

Standard CPTu

Shelby tube sampling

Tests executed in August 2018

Page 27: Thin layering and liquefaction - unipi.it

6.2 TEST SITE B

27/63Workshop “Recenti sviluppi nelle indagini in sito”

Water table depthfrom 1 m (S) to 4-5 m (N)

Study area

Page 28: Thin layering and liquefaction - unipi.it

UNIT A: heterogeneousdeposits, lithological classesclayey silt and clayey sandysilt (La, Las), withinterbedded thin silty sand(Sl) layers (Recent alluvialplain)

UNIT C: clay (A) and clay withpeat (At), (lacustrinedepositional environment).

UNIT D: clay (A),(Ancient alluvial plain).

UNIT B: lithological classes sand(S), silty sand (Sl) and sandy silt(Ls) (Fluvial channel).

UNIT E: dense sands (Ancient fluvial channel) .

6.2 TEST SITE B

Studiedsoils

28/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 29: Thin layering and liquefaction - unipi.it

29/63Workshop “Recenti sviluppi nelle indagini in sito”

Liquifiable layers

Layer (m) USCS FC (%) Wl (%) IP

La (0,8-3,2) CL 90-98 38-41 19-23

Sl (3,2-4,6) CL 35 25 8

Sl (4,6-6,0) SM 20-38 - -

S (6-9,9) S 10-20 - -

A (>9,9) CH 94-99 58-66 41-45

6.2 TEST SITE B

0

10

20

30

40

50

60

70

80

90

100

0,001 0,01 0,1 1 10 100 1000

% p

assin

g

grain size mm

16-138-S1 (1.30-1.40) 16-138-S1 (2.15-2.20) 16-138-S1 (3.00-3.45)

z1.2 (4.2) Z1.3 (5-5.45) Z1.4 (7-7.45)

Z1.5 (8) Z1.6 (8.5-8.95) Z1.7 (9.9)

Page 30: Thin layering and liquefaction - unipi.it

Phenomenawere triggered by the May 29th (M=5.8) earthquake.

Liquefaction phenomena

6.2 TEST SITE B

30/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 31: Thin layering and liquefaction - unipi.it

Grain size analyses of sand from boreholes and sand blows.Sands are well selected medium to fine-grained.Sand blows are slightly more selected that the sand from the source layers as a result of the ejection mechanism

San

d b

low

sB

ore

ho

le

6.2 TEST SITE B

31/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 32: Thin layering and liquefaction - unipi.it

Modal analyses of sand from two boreholes (1, 2) and sand blows

The composition of sand blows overlap the composition of shallow sand layers from both boreholes down to the depth of 4.5 m.

32/63Workshop “Recenti sviluppi nelle indagini in sito”

6.2 TEST SITE BComposition of liquefied sands

Collaboration with University of Modena Dipartimento di Scienze Chimiche e Geologiche

Page 33: Thin layering and liquefaction - unipi.it

6.2 TEST SITE B

Test design

24/63Workshop “Recenti sviluppi nelle indagini in sito”

The CPTu 1, 2, 3 and mini-CPTutests 1, 2, 3 were performed by Pagani Geotechnical EquipmentDepth mini-CPTu1: 10 mDepth mini CPTu2: 10 mDepth mini CPTu3: 5 m

The CPTu U998_COM: database RER

the boreholes SP919_LIQ1, SL999_COM were performed in the frame of the project Horizon 2020 LIQUEFACT

A

A’

B

B’

Page 34: Thin layering and liquefaction - unipi.it

6.2 TEST SITE B

The CPTu and mini-CPTu tests location

Vertically and horizontally heterogeneous deposits

34/63Workshop “Recenti sviluppi nelle indagini in sito”

Cross-section obtained from CPTu

N S

100 m

Page 35: Thin layering and liquefaction - unipi.it

B’BIC

CPTu2

35/63Workshop “Recenti sviluppi nelle indagini in sito”

Cross-section obtained from CPTuCPTu1 CPTu3

Ic>=2,6

sand

Sand mixtures

ENE WSW

Sand with fines

14.6 m 27.6 m

Distance CPTu and miniCPTu = 0,5-0,8 m

Page 36: Thin layering and liquefaction - unipi.it

36/63Workshop “Recenti sviluppi nelle indagini in sito”

7. RESULTS - Comparison Qc standard CPTuand mini CPTu – SITE A

2,37-2,5 m = 13 cm

Thin layerSilty sand

0

0,5

1

1,5

2

2,5

3

0 3 6 9 12 15

z [m

]

qc [MPa]

CPTu1

Mini CPTu1

0

0,5

1

1,5

2

2,5

3

0 3 6 9 12 15

z [m

]

qc [MPa]

CPTu2

Mini CPTu2

0

0,5

1

1,5

2

2,5

3

0 3 6 9 12 15

z [m

]

qc [MPa]

CPTu 3

Mini CPTu3

0

0,5

1

1,5

2

2,5

0 50 100

Dep

th (

m)

%

A

gravel % sand %

silt % clay %

0,5 m 1,5 m 2,5 m

in some cases differences

are negligible (but they can

also reach 1-2 MPa)

Page 37: Thin layering and liquefaction - unipi.it

37/63Workshop “Recenti sviluppi nelle indagini in sito”

7. RESULTS - Comparison Qc standard CPTuand mini CPTu – SITE A

0

0,5

1

1,5

2

2,5

3

0 3 6 9 12 15

z [m

]

qc [MPa]

CPTu 4

Mini CPTu 4

0

0,5

1

1,5

2

2,5

3

0 3 6 9 12 15

z [m

]

qc [MPa]

CPTu 5

Mini CPTu5

0

0,5

1

1,5

2

2,5

3

0 3 6 9 12 15

z [m

]

qc [MPa]

CPTu 6

Mini CPTu6

0

0,5

1

1,5

2

2,5

0 20 40 60 80

Dep

th (

m)

%

B

gravel % sand % silt % clay %

0,5 m 0,5 m 1,5 m0 m

differences are not

related to

differences

in grain size

Page 38: Thin layering and liquefaction - unipi.it

0

0,5

1

1,5

2

2,5

3

0 3 6 9 12 15

z [m

]

qc [MPa]

CPTu 7

Mini CPTu7

0

0,5

1

1,5

2

2,5

3

0 3 6 9 12 15

z [m

]

qc [MPa]

CPTu 8

Mini CPTu8

0

0,5

1

1,5

2

2,5

0 20 40 60 80 100

Dep

th (

m)

%

C

gravel % sand %

silt % clay %

differences are not systematic, generally qc standard < qc mini

1,65 – 2m = 35 cm2,17-2,35 m = 18 cm

Silty sand

38/63Workshop “Recenti sviluppi nelle indagini in sito”

7. RESULTS - Comparison Qc standard CPTuand mini CPTu – SITE A

2

2,05

2,1

2,15

2,2

2,25

2,3

2,35

2,4

2,45

2,5

0 50 100

Dep

th (

m)

%

C

Ghiaia % Sabbia %

Limo % Argilla %

0 m 1,5 m1 m

Dep

th (

m)

%

C

gravel % sand %

silt % clay %

Page 39: Thin layering and liquefaction - unipi.it

differences are not systematic

7. RESULTS - Comparison fs standard CPTu and mini CPTu – SITE A

39/63Workshop “Recenti sviluppi nelle indagini in sito”

2

2,05

2,1

2,15

2,2

2,25

2,3

2,35

2,4

2,45

2,5

0 50 100

Dep

th (

m)

%

C

Ghiaia % Sabbia %

Limo % Argilla %

0

0,5

1

1,5

2

2,5

3

0 50 100 150 200 250 300

z [m

]

fs [kPa]

CPTu 6

Mini CPTu6

0

0,5

1

1,5

2

2,5

3

0 50 100 150 200 250 300

z [m

]

fs [kPa]

CPTu 7

Mini CPTu7

0

0,5

1

1,5

2

2,5

3

0 50 100 150 200 250 300

z [m

]

fs [kPa]

CPTu 8

Mini CPTu8

1,65 – 2m = 35 cm2,17-2,35 m = 18 cm

Silty sand

Dep

th (

m)

%

C

gravel % sand %

silt % clay %

Page 40: Thin layering and liquefaction - unipi.it

Man made deposits

Silt with clay

Sandy clay silt

Clay sandy silt with interbedded clay silt

Fine sand with silt

Silty fine grained sand

Medium grained sand with silty layers

0,8

2,352,73,2

4,6

6

9,8

7. RESULTS - Comparison Qc standard CPTuand mini CPTu – SITE B

0,8-3,2 m: low differences

3,2-4,6 m: low differences (D = 0,5-0,8 Mpa)(qcstandard<qc mini)

4,6-6 m: D = 2MPa; (qcstandard>qc mini)

6-9,8 m: D = 2MPa; (qcstandard<qc mini)

40/63Workshop “Recenti sviluppi nelle indagini in sito”

0

1

2

3

4

5

6

7

8

9

10

0 3 6

z [m

]

qc [MPa]

CPTu 2

Mini CPTu2

0

1

2

3

4

5

6

7

8

9

10

-2 1

z [m

]

qc [MPa]

qtCPTu-qtmini

Differences are related to lithological variations?

Distance CPTu2-miniCPTu2 = 0,5 m

Page 41: Thin layering and liquefaction - unipi.it

7. RESULTS - Comparison fs standard CPTu and mini CPTu – SITE B

41/63Workshop “Recenti sviluppi nelle indagini in sito”

0,8-4,6 m: D <50kPa (fsstandard>fs mini)

4,6-9,4 m: small differences(fsstandard<fs mini)

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300

z [m

]

fs [kPa]

CPTu2

Mini CPTu23

4

5

6

7

8

9

10

0 10 20 30 40 50

z [m

]

fs [kPa]

CPTu2

miniCPTu2

0

1

2

3

4

5

6

7

8

9

10

-50 0 50 100 150

z [m

]

fs [kPa]

fsCPTu2-fsmini2

Page 42: Thin layering and liquefaction - unipi.it

42/63Workshop “Recenti sviluppi nelle indagini in sito”

0

0,5

1

1,5

2

2,5

3

3,5

4

0 1 2 3 4

ICm

ini

IC

IC-ICmini CPTU1-miniCPTu1

CPTU2-miniCPTu2

CPTU3-miniCPTu3

CPTU4-miniCPTu4

CPTU5-miniCPTu5

CPTU6-miniCPTu6

CPTU7-miniCPTu7

CPTU8-miniCPTu8

CPTU2-miniCPTu2Cavezzo

CPTU3-miniCPTu3Cavezzo

Serie8

Lineare (Serie8)

0

0,5

1

1,5

2

2,5

3

0 0,5 1 1,5 2 2,5 3

ICm

ini

IC

IC-ICmini Calendasco

1

2

3

4

5

6

7

8

Serie8

Lineare (Serie8)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

IC-ICmini Cavezzo

Serie8

c2

c3

Lineare (Serie8)

7. RESULTS – Site B – IC standard vs ICmini

Page 43: Thin layering and liquefaction - unipi.it

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

A - Icstandard-Icmini thin layer 2,37-2,5

1

2

3

Serie8

Lineare (Serie8)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

B - Icstandard-Icmini no thin layer

4

5

Serie8

Lineare (Serie8)

43/63Workshop “Recenti sviluppi nelle indagini in sito”

IC

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

C - Icstandard-ICmini thin layer1,65-2

CPTu8-miniCPTu8

Serie8

Lineare (Serie8)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4IC

min

iIC

C - Icstandard-Icmini thin layer 2,17-2,33

CPTu8-miniCPTu8

Serie8

Lineare (Serie8)

Icmini<=IcstandardIn thin layers of sand

7. RESULTS – Site A – IC standard vs ICmini

Page 44: Thin layering and liquefaction - unipi.it

Man made deposits

Silt with clay

Sandy clay silt

Clay sandy silt with interbedded clay silt

Fine sand with silt

Sily fine grained sand

Medium grained sand with silty layers

0,8

2,352,73,2

4,6

6

9,8

7. RESULTS – Site B - IC vs ICmini

44/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 45: Thin layering and liquefaction - unipi.it

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

IC-ICmini Cavezzo 0,8-2,35

Serie8

c2

Lineare (Serie8)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

IC-ICmini Cavezzo 2,35-2,7

Serie8

c2

Lineare (Serie8)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

IC-ICmini Cavezzo 2,7-3,2

Serie8

c2

Lineare (Serie8)0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

IC-ICmini Cavezzo 3,2-4,6

Serie8

c2

Lineare (Serie8)

7. RESULTS – Site B – IC standard vs ICmini

45/63Workshop “Recenti sviluppi nelle indagini in sito”

CPTu2-miniCPTu2

Icmini<=Icstandard

Page 46: Thin layering and liquefaction - unipi.it

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

IC-ICmini Cavezzo 6-9,8

Serie8

c2

Lineare (Serie8)

0

0,5

1

1,5

2

2,5

3

3,5

4

0 0,5 1 1,5 2 2,5 3 3,5 4

ICm

ini

IC

IC-ICmini Cavezzo 4,6-6

Serie8

c2

Lineare (Serie8)

7. RESULTS – Site B – Icstandard vs Icmini

Layer (m) Icmini/Icstandard

Average SD Min Max

2,35-2,7 0,95 0,07 0,79 1,67

2,7-3,2 0,88 0,03 0,84 0,93

3,2-4,6 0,88 0,05 0,79 1,02

4,6-6 0,96 0,06 0,85 1,14

6-9,4 1,01 0,07 0,87 1,33

46/63Workshop “Recenti sviluppi nelle indagini in sito”

CPTu2-miniCPTu2

Icmini>=Icstandard

Icmini=Icstandard

Page 47: Thin layering and liquefaction - unipi.it

Thin layer correction (Boulanger and De Jong , 2018)

7. RESULTS – TEST SITE A - thin layer correction

47/63Workshop “Recenti sviluppi nelle indagini in sito”

0

0,5

1

1,5

2

2,5

0 20 40 60 80 100

Dep

th (

m)

%

A

gravel % sand % silt % clay %

The thin layercorrection of standard CPTu doesn’t allow to detect the thin layer of sand

Mini CPTu detect the thin layer of sand

The application of the thin layer correction to mini CPTu does notchange the results

CLIQ

Page 48: Thin layering and liquefaction - unipi.it

0

0,5

1

1,5

2

2,5

0 50 100

Dep

th (

m)

%

C

Ghiaia % Sabbia %

Limo % Argilla %

7. RESULTS – TEST SITE A - thin layer correction

48/63Workshop “Recenti sviluppi nelle indagini in sito”

Thin layer correction (Boulanger and De Jong , 2018)

Thin layer 1,65-2mNot identified by standard CPTuand mini CPTu (corrected and no corrected)

Thin layer 2,17-2,35m• The corrected standard CPTu

identifies the thin layer(different depth)

• Mini CPTu detects the thin layer of sand

• The application of the thin layer correction to mini CPTudoes not change the results

Page 49: Thin layering and liquefaction - unipi.it

CPTu

CPTu with thin layer correction

Mini-CPTu

CPTU1CPTU8 7. RESULTS –TEST SITE A -thin layercorrection

49/63Workshop “Recenti sviluppi nelle indagini in sito”

IC

Page 50: Thin layering and liquefaction - unipi.it

standard CPTU

standard CPTU with thin layer correction

7. RESULTS – TEST SITE B - thin layer correction

50/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 51: Thin layering and liquefaction - unipi.it

LAYER 3,2-4,6 m

CPTu2 standard CPTu2 with thin layer correction

Mini – CPTu2 with thin layer correctionMini – CPTu2

7. RESULTS – TEST SITE B – CPTu vs corrected CPTuvs mini-CPTu vs corrected mini CPTu

51/63Workshop “Recenti sviluppi nelle indagini in sito”

sand mixturessand

silt mixtures

Page 52: Thin layering and liquefaction - unipi.it

52/63Workshop “Recenti sviluppi nelle indagini in sito”

LAYER 3,2-4,6 m

Sand layer

Page 53: Thin layering and liquefaction - unipi.it

LAYER 4,6-6 m

7. RESULTS – TEST SITE B – CPTu vs corrected CPTuvs mini-CPTu vs corrected mini CPTu

CPTu2 standard CPTu2 with thin layer correction

Mini – CPTu2 with thin layer correctionMini – CPTu2

53/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 54: Thin layering and liquefaction - unipi.it

54/63Workshop “Recenti sviluppi nelle indagini in sito”

LAYER 4,6-6 m

Sand layer

Page 55: Thin layering and liquefaction - unipi.it

LAYER 6-9,3m

CPTu2 standard CPTu2 with thin layer correction

Mini – CPTu2 with thin layer correctionMini – CPTu2

7. RESULTS – TEST SITE B – CPTu vs corrected CPTuvs mini-CPTu vs corrected mini CPTu

55/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 56: Thin layering and liquefaction - unipi.it

56/63Workshop “Recenti sviluppi nelle indagini in sito”

LAYER 6-9,3m

Sand layer

Page 57: Thin layering and liquefaction - unipi.it

PGA = 0,17Mw=5,9Depth to the water table = 2,1 mMethod of Boulanger and Idriss, 2014

Cliqv2.3.1.15

7. RESULTS – TEST SITE B – liquefaction potential (LPI)

57/63Workshop “Recenti sviluppi nelle indagini in sito”

Page 58: Thin layering and liquefaction - unipi.it

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,5 1 1,5

FSm

ini

FSstandard

c2corretta

c2

Serie2

Lineare (Serie2)

Fine sand with silt

58/63Workshop “Recenti sviluppi nelle indagini in sito”

7. RESULTS – TEST SITE B – liquefaction potential

Layer 3,2-4,6 m Fsmini=Fsstandard

Page 59: Thin layering and liquefaction - unipi.it

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,5 1 1,5

FSm

ini

FSstandard

c2

Serie2

c2corretta

Lineare (Serie2)

59/63Workshop “Recenti sviluppi nelle indagini in sito”

7. RESULTS – TEST SITE B – liquefaction potential

Silty Fine grained sand

Layer 4,2-6 m Fsmini=Fsstandard

Page 60: Thin layering and liquefaction - unipi.it

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1 1,2 1,4

FSm

ini

FSstandard

layer 6-10 m

c2corretta

c2

Serie2

Lineare (Serie2)

Medium sand with silty layers

Icmini=Icstandard

Fsmini=Fsstandard

60/63Workshop “Recenti sviluppi nelle indagini in sito”

7. RESULTS – TEST SITE B – liquefaction potential

Layer 6-9,3 m

6

7

8

9

10

Page 61: Thin layering and liquefaction - unipi.it

61/63Workshop “Recenti sviluppi nelle indagini in sito”

8. CONCLUSIONSite A – Calendasco

Thin layer of sand in silty clay

Unsaturated conditions

❑Not systematic differences between qc standard,

fsstandard and qcmini, fs mini. In some cases differences

are negligible (sometimes 1-2 MPa). Differences are not

related to differences in grain size

❑Generally qc standard<qcmini

❑ In thin layers Icmini<= Ic standard

❑Thin layers are not detected by standard CPTu; the thin

layer correction improves the identification but the depth

of the layers is not correct

❑Thin layers are generally detected by miniCPTu, the

correction doesn’t improve the identification

❑Overestimation of grain size

Site B – Cavezzo

Thin layers (silty layers in sandy soils and sandy layers in silty soils)

Saturated conditions

❑ differences between qc standard, fsstandard and qcminidepends on the lithological layers

❑ Sand with silt (3,2-4,6m):

❑ qcstandard<qc mini;

❑ Ic mini<Icstandard

❑ Thin layers are generally detected by miniCPTu but not by standard CPTu

❑ the correction of the standard CPTu doesn’t improve the identification of thin layers

❑ silty sand with interbedded sandy layers (4,6-6m)

❑ qcstandard>qc mini;

❑ Ic mini<Icstandard

❑ Thin layers are generally detected by miniCPTu but not by standard CPTu

❑ the correction of the standard CPTu improve the identification of thin layers but it is not in agreement with minicone

❑ Sand with interbedded silty layers (6-9,3 m):

❑ qcstandard<qc mini;

❑ Icmini=Icstandard

❑ Thin layers are detected by mini and standard

Page 62: Thin layering and liquefaction - unipi.it

62/63Workshop “Recenti sviluppi nelle indagini in sito”

8. CONCLUSION

❑The LPI calculated with mini cone is higher than LPI calculated with standard (from 10 to 15)

❑The LPI calculated with standard CPTu does not change with the thin layer correction in the layer 3,2 and 4,6 m (fine sand with silt)

❑Differences between FS standard and Fsmini in the layer between 3,2 and 4,6 m (fine sand with silt)

Page 63: Thin layering and liquefaction - unipi.it

63/63Workshop “Recenti sviluppi nelle indagini in sito”

8. CONCLUSIONPRO

✓More detailed stratigraphic logging;

✓Correct thin layers identification;

✓Very promising for shallowinvestigations in soils with multiple thin layers (shallow landslides,liquefaction in shallow horizons, etc…)

✓Smaller and light vehiche is necessarycompared to the standard CPT test

CONS

✓Unsaturated conditions in thesuperficial layers results in an increaseof the resistance (overestimation ofsoil grain size in terms of SBT)

✓Limited investigation depth (< 10m)

9. FUTURE WORKS• Other tests in thinly layered soils

• Assessment of correction factors for different thin layer thickness

Page 64: Thin layering and liquefaction - unipi.it