31
EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 Last lecture – Active biquads Sallen- Key & Tow-Thomas Integrator based filters – Signal flowgraph concept – First order integrator based filter – Second order integrator based filter & biquads – High order & high Q filters Cascade of biquads & 1 st order sections EECS 247 Lecture 4: Filters © 2006 H.K. Page 2 This Lecture Sensitivity of high order high-Q filters built with cascade of biquads to component matching – Build a 7 th order elliptic filter Ladder type filters – For simplicity, will start with all pole ladder type filters Convert to integrator based form- example shown – Then will attend to high order ladder type filters incorporating zeros Implement the same 7 th order elliptic filter in the form of ladder RLC with zeros – Find level of sensitivity to component mismatch – Compare with cascade of biquads Convert to integrator based form utilizing SFG techniques Example shown

This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 1

EE247 Lecture 4

• Last lecture– Active biquads

• Sallen- Key & Tow-Thomas• Integrator based filters

– Signal flowgraph concept– First order integrator based filter– Second order integrator based filter &

biquads

– High order & high Q filters• Cascade of biquads & 1st order sections

EECS 247 Lecture 4: Filters © 2006 H.K. Page 2

This Lecture• Sensitivity of high order high-Q filters built with cascade of

biquads to component matching– Build a 7th order elliptic filter

• Ladder type filters – For simplicity, will start with all pole ladder type filters

• Convert to integrator based form- example shown– Then will attend to high order ladder type filters incorporating

zeros• Implement the same 7th order elliptic filter in the form of ladder

RLC with zeros– Find level of sensitivity to component mismatch – Compare with cascade of biquads

• Convert to integrator based form utilizing SFG techniques• Example shown

Page 2: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 3

Higher Order FiltersCascade of Biquads

Example: LPF filter for baseband portion of a CDMA phone receiver path

• LPF with the following specifications:– fpass = 650 kHz Rpass = 0.2 dB– fstop = 750 kHz Rstop = 45 dB– Assumption: Can compensate for phase distortion in the digital domain

• Choice filter type requiring lowest order 7th order Elliptic filter• Implementation with cascaded biquads

– Pair poles and zeros & implement with one biquad– Highest Q poles with closest zeros is a good starting point, but not

necessarily optimum– Ordering: Lowest Q poles first is a good start

EECS 247 Lecture 4: Filters © 2006 H.K. Page 4

Overall Filter Frequency Response

Bode Diagram

Pha

se (d

eg)

Mag

nitu

de (d

B)

-80

-60

-40

-20

0

-540

-360

-180

0

Frequency [Hz]300kHz 1MHz

Mag

. (dB

)

-0.2

0

3MHz

Page 3: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 5

Pole-Zero Map

Qpole fpole [kHz]

16.7902 659.4963.6590 611.7441.1026 473.643

319.568

fzero [kHz]

1297.5836.6744.0

Pole-Zero Map

-2 -1.5 -1 -0.5 0-1

-0.5

0

0.5

1

Imag

Axi

s X

107

Real Axis x107

s-Plane

EECS 247 Lecture 4: Filters © 2006 H.K. Page 6

CDMA FilterBuilt with Cascade of 1st and 2nd Order Sections

• 1st order filter implements the single real pole• Each biquad implements a pair of complex conjugate pole and a

pair of imaginary axis zero

1st orderFilter Biquad2 Biquad4 Biquad3

Page 4: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 7

Individual Section Magnitude Response

104

105

106

107

-40

-20

0

LPF1

-0.5 0

-0.5

0

0.5

1

104

105

106

107

-40

-20

0

Biquad 2

104

105

106

107

-40

-20

0

Biquad 3

104

105

106

107

-40

-20

0

Biquad 4

-1

EECS 247 Lecture 4: Filters © 2006 H.K. Page 8

Biquad ResponseBode Magnitude Diagram

Frequency [Hz]

Mag

nitu

de (d

B)

104 105 106 107-50

-40

-30

-20

-10

0

10

LPF1Biquad 2Biquad 3Biquad 4

-0.5 0

-0.5

0

0.5

1

-1

Page 5: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 9

Magnitude Response of Intermediate Outputs

Frequency [Hz]

Mag

nitu

de (d

B)

-80

-60

-40

-20

Mag

nitu

de (d

B)

LPF1 +Biquad 2

Mag

nitu

de (d

B)

Biquads 1, 2, 3, & 4

Mag

nitu

de (d

B)

-80

-60

-40

-20

0

LPF10

10kHz10

6

-80

-60

-40

-20

0

100kHz 1MHz 10MHz

5 6 7

-80

-60

-40

-20

0

4 5 6

Frequency [Hz]

10kHz10

100kHz 1MHz 10MHz

LPF1 +Biquads 2,3 LPF1 +Biquads 2,3,4

EECS 247 Lecture 4: Filters © 2006 H.K. Page 10

-10

Sensitivity Component mismatch in Biquad 4 (highest pole Q):

– Increase ωp4 by 1%

– Decrease ωz4 by 1%

High Q poles High sensitivityin biquad realizations

Frequency [Hz]1MHz

Mag

nitu

de (d

B)

-30

-40

-20

0

200kHz

3dB

600kHz

-50

2.2dB

Page 6: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 11

High Q & High Order Filters

• Cascade of biquads– Highly sensitive to component mismatch not

suitable for implementation of high Q & high order filters

– Cascade of biquads only used in cases where required Q for all biquads <4 (e.g. filters for disk drives)

• LC ladder filters more appropriate for high Q & high order filters (next topic)– Less sensitive to component mismatch

EECS 247 Lecture 4: Filters © 2006 H.K. Page 12

Ladder Type Filters• For simplicity, will start with all pole ladder type filters

– Convert to integrator based form– Example shown

• Then will attend to high order ladder type filters incorporatingzeros– Implement the same 7th order elliptic filter in the form of ladder

type• Find level of sensitivity to component mismatch • Compare with cascade of biquads

– Convert to integrator based form utilizing SFG techniques– Example shown

Page 7: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 13

Ladder Type FiltersLow-Pass RLC Filter

• Made of resistors, inductors, and capacitors• Doubly terminated (with Rs) or singly terminated (w/o Rs)

Doubly terminated LC ladder filters Lowest sensitivity to component mismatch when RS=RL

RsC1 C3

L2

C5

L4

inV RL

oV

EECS 247 Lecture 4: Filters © 2006 H.K. Page 14

Ladder FiltersLow-Pass RLC Filter

• Design:– CAD tools

• Matlab• Spice

– Filter tables• A. Zverev, Handbook of filter synthesis, Wiley, 1967.• A. B. Williams and F. J. Taylor, Electronic filter design, 3rd

edition, McGraw-Hill, 1995.

RsC1 C3

L2

C5

L4

inV RL

oV

Page 8: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 15

RLC Ladder Filter Design ExampleDesign a LPF with maximally flat passband:

f-3dB = 10MHz, fstop = 20MHzRs >27dB

From: Williams and Taylor, p. 2-37

Stopband A

ttenuation dB

Νοrmalized ω

•Maximally flat passband Butterworth•Determine minimum filter order :

-Use of Matlab-or tables & graphs from books

•Here tables & graphs used

fstop / f-3dB = 2Rs >27dB

Minimum Filter Order5th order Butterworth

1

-3dB

2

EECS 247 Lecture 4: Filters © 2006 H.K. Page 16

RLC Ladder Filter Design Example

From: Williams and Taylor, p. 11.3

Find values for L & C from Table:Normalized values:C1Norm =C5Norm =0.618C3Norm = 2.0L2Norm = L4Norm =1.618

Note L &C values normalized to:

ω-3dB =1

Page 9: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 17

RLC Ladder Filter Design Example

Denormalization Example:Since ω-3dB =2πx10MHz

R=50 ΩLr = R/ω-3dB = 796 nHCr = 1/(RXω-3dB )= 318.3 pF

L2= Lr xL2Norm= 1.288mHL2=L4= 1.288mHC1= Cr xC1Norm=196.7pFC1=C5= 196.7pF, C3= Cr xC3Norm= 636.6pF

Denormalization Recipe:Multiply all LNorm, CNorm by:

Lr = R/ω-3dBCr = 1/(RXω-3dB )

Then: L= Lr xLNorm

C= Cr xCNorm

R is the value of the source and termination resistor (choose both 50Ω for now)

EECS 247 Lecture 4: Filters © 2006 H.K. Page 18

Low-Pass RLC FilterMagnitude Response Simulation

Frequency [MHz]

Mag

nitu

de (d

B)

0 10 20 30-50

-40

-30

-20

-10-50

Note:-6 dB passband attenuationdue to double termination

30dB

Rs=50 ΩC1196.7pF

L4= 1.288mΗ

inV

oV

SPICE simulation Results

L2= 1.288mΗ

RL=50 ΩC5196.7pF

C5636.6pF

Page 10: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 19

Low-Pass RLC Ladder FilterConversion to Integrator Based Active Filter

1I2V

RsC1 C3

L2

C5

L4

inV RL

4V 6V

3I 5I

2I4I 6I

7I

• Use KCL & KVL to derive equations:

1V+ − 3V+ − 5V+ −oV

1 in 2

1 31 3

25 6

5 74

I2V V V , V , V V V2 3 2 4sC1I I4 6V , V V V , V V V4 5 4 6 6 o 6sC sC3 5

V VI , I I I , I2 1 3Rs sL

V VI I I , I , I I I , I4 3 5 6 5 7sL RL

= − = = −

= = − = =

= = − =

= − = = − =

EECS 247 Lecture 4: Filters © 2006 H.K. Page 20

Low-Pass RLC Ladder FilterSignal Flowgraph

SFG

1Rs 1

1sC

2I1I

2VinV 1−1

1

1V oV1− 11

3

1sC 5

1sC2

1sL 4

1sL

1RL

1− 1− 1−1 1

1− 13V 4V 5V 6V

3I 5I4I 6I 7I

1 in 2

1 31 3

25 6

5 74

I2V V V , V , V V V2 3 2 4sC1I I4 6V , V V V , V V V4 5 4 6 6 o 6sC sC3 5

V VI , I I I , I2 1 3Rs sL

V VI I I , I , I I I , I4 3 5 6 5 7sL RL

= − = = −

= = − = =

= = − =

= − = = − =

Page 11: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 21

Low-Pass RLC Ladder FilterSignal Flowgraph

SFG

1Rs 1

1sC

2I1I

2VinV 1−1

1

1V oV1− 11

3

1sC 5

1sC2

1sL 4

1sL

1RL

1− 1− 1−1 1

1− 13V 4V 5V 6V

3I 5I4I 6I 7I

1I2V

RsC1 C3

L2

C5

L4

inV RL

4V 6V

3I 5I

2I4I 6I

7I1V+ − 3V+ − 5V+ −

EECS 247 Lecture 4: Filters © 2006 H.K. Page 22

Low-Pass RLC Ladder FilterNormalize

1

1

*RRs *

1

1sC R

'1V

2VinV 1−1 1V oV1− 1

*

2

RsL

1− 1− 1−1 1

1− 13V 4V 5V 6V

'3V'2V '

4V '5V '

6V '7V

*3

1sC R

*

4

RsL

*5

1sC R

*RRL

1Rs 1

1sC

2I1I

2VinV 1−1

1

1V oV1− 11

3

1sC 5

1sC2

1sL 4

1sL

1RL

1− 1− 1−1 1

1− 13V 4V 5V 6V

3I 5I4I 6I 7I

Page 12: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 23

Low-Pass RLC Ladder FilterSynthesize

1

1

1

*RRs

*1

1sC R

'1V

2VinV 1−1 1V oV1− 1

*

2

RsL

1− 1− 1−1 1

1− 13V 4V 5V 6V

'3V'2V '

4V '5V '

6V '7V

*3

1sC R

*

4

RsL

*5

1sC R

*RRL

inV

1+ -

-+ -+

+ - + -

*R Rs−

*R RL21

sτ 31

sτ 41

sτ 51

sτ11

oV2V 4V 6V

'3V '

5V

EECS 247 Lecture 4: Filters © 2006 H.K. Page 24

Low-Pass RLC Ladder FilterIntegrator Based Implementation

* * * * *2* *

L L4C C C C.R , .R , .R , .R , C .R11 2 2 3 3 4 4 5 5R R

τ τ τ τ τ= = = = = = =

Building Block:RC Integrator

V 12V sRC1

= −

inV

1+ -

-+ -+

+ - + -

*R Rs−

*R RL21

sτ 31

sτ 41

sτ 51

sτ11

oV2V 4V 6V

'3V '

5V

Page 13: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 25

Negative Resistors

V1-

V2-

V2+

V1+

Vo+

Vo-

V1-

V2+ Vo+

EECS 247 Lecture 4: Filters © 2006 H.K. Page 26

Synthesize

oV

4V

'3V

'5V

2V

Page 14: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 27

Frequency Response

oV

4V

'3V

'5V

2V

0.5

1

0.1

1

EECS 247 Lecture 4: Filters © 2006 H.K. Page 28

Scale Node Voltages

Scale Vo by factor “s”

Page 15: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 29

Node Scaling

VO X 2

X1.8/2

V4 X 1.6

V3’ X 1.2

X 1.2

X 1.8/1.6

X 1.2/1.6 X 1.6/1.2

X 1/1.2

X 1.6/1.8

X 2/1.8

V5’ X 1.8

V2

EECS 247 Lecture 4: Filters © 2006 H.K. Page 30

Maximizing Signal Handling by Node Voltage Scaling

Scale Vo by factor “s”

Page 16: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 31

Filter Noise

Total noise @ the output: 1.4 μV rms(noiseless opamps)

That’s excellent, but the capacitors are very large (and the resistors small high power dissipation). Not possible to integrate.

Suppose our application allows higher noise in the order of 140 μV rms …

EECS 247 Lecture 4: Filters © 2006 H.K. Page 32

Scale to Meet Noise TargetScale capacitors and resistors to meet noise objective

s = 10-4

Noise: 141 μV rms (noiseless opamps)

Page 17: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 33

Completed Design

5th order ladder filterFinal design utilizing:

-Node scaling -Final R & C scaling based on noise considerations

oV

4V

'3V

'5V

2V

EECS 247 Lecture 4: Filters © 2006 H.K. Page 34

Sensitivity

• C1 made (arbitrarily) 50% (!) larger than its nominal value

• 0.5 dB error at band edge

• 3.5 dB error in stopband

• Looks like very low sensitivity

Page 18: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 35

inVDifferential 5th Order Lowpass Filter

• Since each signal and its inverse readily available, eliminates the need for negative resistors!

• Differential design has the advantage of even order harmonic distortion components and common mode spurious pickup automatically cancels

• Disadvantage: Double resistor and capacitor area!

+

+

--+

+

--

+

+--+

+--

+

+

--

inV

oV

EECS 247 Lecture 4: Filters © 2006 H.K. Page 36

RLC Ladder FiltersIncluding Transmission Zeros

RsC1 C3

L2

C5

L4

inV RLC7

L6

C2 C4 C6

oV

RsC1 C3

L2

C5

L4

inV RL

oVAll poles

Poles & Zeros

Page 19: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 37

RLC Ladder Filter Design Example

• Design a baseband filter for CDMA IS95 receiver with the following specs.– Filter frequency mask shown on the next page– Allow enough margin for manufacturing variations

• Assume pass-band magnitude variation of 1.8dB• Assume the -3dB frequency can vary by +-8% due to

manufacturing tolerances & circuit inaccuracies– Assume any phase impairment can be compensated in the

digital domain

* Note this is the same example as for cascade of biquad while the specifications are given closer to a real product cases

EECS 247 Lecture 4: Filters © 2006 H.K. Page 38

RLC Ladder Filter Design ExampleCDMA IS95 Receive Filter Frequency Mask

+10

-1

Frequency [Hz]

Mag

nitu

de (d

B)

-44

-46

600k 700k 900k 1.2M

Page 20: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 39

RLC Ladder Filter DesignExample: CDMA IS95 Receive Filter

• Since phase impairment can be corrected for, use filter type with max. cut-off slope/pole

Elliptic• Design filter freq. response to fall well within the freq. mask

– Allow margin for component variations & mismatches• For the passband ripple, allow enough margin for ripple change

due to component & temperature variationsPassband ripple 0.2dB

• For stopband rejection add a few dB margin 44+5=49dB• Design to spec.:

– fpass = 650 kHz Rpass = 0.2 dB– fstop = 750 kHz Rstop = 49 dB

• Use Matlab or filter tables to decide the min. order for the filter (same as cascaded biquad example)– 7th Order Elliptic

EECS 247 Lecture 4: Filters © 2006 H.K. Page 40

RLC Low-Pass Ladder Filter DesignExample: CDMA IS95 Receive Filter

RsC1 C3

L2

C5

L4

inV RLC7

L6

C2 C4 C6

oV

7th order Elliptic

• Use filter tables to determine LC values

Page 21: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 41

RLC Ladder Filter DesignExample: CDMA IS95 Receive Filter

• Spec.– fpass = 650 kHz Rpass = 0.2 dB– fstop = 750 kHz Rstop = 49 dB

• Use filter tables to determine LC values – Table from: A. Zverev, Handbook of filter synthesis, Wiley,

1967– Elliptic filters tabulated wrt “reflection coeficient ρ”

– Since Rpass=0.2dB ρ =20%– Use table accordingly

( )2Rpass 10 log 1 ρ= − × −

EECS 247 Lecture 4: Filters © 2006 H.K. Page 42

RLC Ladder Filter DesignExample: CDMA IS95 Receive Filter

• Table from Zverev book page #281 & 282:

• Since our spec. is Amin=44dB add 5dB margin & design for Amin=49dB

Page 22: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 43

• Table from Zverev page #281 & 282:

• Normalized component values:

C1=1.17677C2=0.19393L2=1.19467C3=1.51134C4=1.01098L4=0.72398C5=1.27776C6=0.71211L6=0.80165C7=0.83597

EECS 247 Lecture 4: Filters © 2006 H.K. Page 44

-65

-55

-45

-35

-25

-15

-5

200 300 400 500 600 700 800 900 1000 1100 1200

RLC Filter Frequency Response

•Frequency mask superimposed•Frequency response well within spec.

Frequency [kHz]

Mag

nitu

de (d

B)

Page 23: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 45

Passband Detail

-7.5

-7

-6.5

-6

-5.5

-5

200 300 400 500 600 700 800

• Passband well within spec.

Frequency [kHz]

Mag

nitu

de (d

B)

EECS 247 Lecture 4: Filters © 2006 H.K. Page 46

RLC Ladder Filter Sensitivity

• The design has the same specifications as the previous example implemented with cascaded biquads

• To compare the sensitivity of RLC ladder versus cascaded-biquads:– Changed all Ls &Cs one by one by 2% in order to

change the pole/zeros by 1% (similar test as for cascaded biquad)

– Found frequency response most sensitive to L4 variations

– Note that by varying L4 both poles & zeros are varied

Page 24: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 47

RCL Ladder Filter Sensitivity

Component mismatch in RLC filter:– Increase L4 by 2%– Decrease L4 by 2%

-65

-55

-45

-35

-25

-15

-5

200 300 400 500 600 700 800 900 1000 1100 1200Frequency [kHz]

Mag

nitu

de (d

B)

L4 nomL4 lowL4 high

EECS 247 Lecture 4: Filters © 2006 H.K. Page 48

RCL Ladder Filter Sensitivity

-6.5

-6.3

-6.1

-5.9

-5.7

200 300 400 500 600 700

-65

-60

-55

-50

600 700 800 900 1000 1100 1200

Frequency [kHz]

Mag

nitu

de (d

B)

1.7dB

0.2dB

-65

-55

-45

-35

-25

-15

-5

200 300 400 500 600 700 800 900 1000 1100 1200

Page 25: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 49

-10

Cascade of Biquads SensitivityComponent mismatch in Biquad 4 (highest Q pole):

– Increase ωp4 by 1%– Decrease ωz4 by 1%

High Q poles High sensitivityin Biquad realizations

Frequency [Hz]1MHz

Mag

nitu

de (d

B)

-30

-40

-20

0

200kHz

3dB

600kHz

-50

2.2dB

EECS 247 Lecture 4: Filters © 2006 H.K. Page 50

Sensitivity Comparison for Cascaded-Biquads versus RLC Ladder

• 7th Order elliptic filter – 1% change in pole & zero pair

1.7dB(21%)

3dB(40%)

Stopband deviation

0.2dB(2%)

2.2dB (29%)

Passband deviation

RLC LadderCascadedBiquad

Doubly terminated LC ladder filters Significantly lower sensitivity compared to cascaded-biquads particularly within the passband

Page 26: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 51

RLC Ladder Filter DesignExample: CDMA IS95 Receive Filter

RsC1 C3

L2

C5

L4

inV RLC7

L6

C2 C4 C6

oV

7th order Elliptic

• Previously learned to design integrator based ladder filters without transmission zeros

Question: o How do we implement the transmission zeros in the integrator-

based version? o Preferred method no extra power dissipation no active

elements

EECS 247 Lecture 4: Filters © 2006 H.K. Page 52

Integrator Based Ladder FiltersHow Do to Implement Transmission zeros?

• Use KCL & KVL to derive :

1I 2VRs

C1 C3

L2

inV RL

4V

3I5I

2I4I

1V+ − 3V+ −

Ca

oV

( )

( )

CI I1 3 aV V2 4C Cs C C1 1a a

CI I3 5 aV V4 2C Cs C C3 a 3 a

−= + ×

+ +

−= + ×

+ +

Frequency independent constants

Page 27: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 53

Integrator Based Ladder FiltersHow Do to Implement Transmission zeros?

• Use KCL & KVL to derive :

1I 2VRs

C1 C3

L2

inV RL

4V

3I5I

2I4I

1V+ − 3V+ −

Ca

oV

( )

( )

CI I1 3 aV V2 4C Cs C C1 1a a

CI I3 5 aV V4 2C Cs C C3 a 3 a

−= + ×

+ +

−= + ×

+ +

Voltage Controlled Voltage Source!

EECS 247 Lecture 4: Filters © 2006 H.K. Page 54

Integrator Based Ladder FiltersTransmission zeros

1I 2V

( )

( )

CI I1 3 aV V2 4C Cs C C1 1a aCI I3 5 aV V4 2C Cs C C3 a 3 a

−= +

+ +

−= +

+ +

Rs L2

inV RL

4V

3I5I

2I 4I

1V+ − 3V+ −

Ca

• Replace shunt capacitors with voltage controlled voltage sources:

+-

( )C C1 a+ ( )C C3 a+

CaV4 C C1 a+CaV2 C C3 a+

+-

Page 28: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 55

LC Ladder FiltersTransmission zeros

1I 2VRs L2

inVRL

4V

3I5I

2I 4I

1V+ − 3V+ −

( )C C1 a+ ( )C C3 a+

CaV4 C C1 a+CaV2 C C3 a+

1Rs ( )1 aC C

1s +

2I1I

2VinV 1−1

1

1V oV1− 11

( )3 a

1s C C+2

1sL

1RL

1− 1−1

3V 4V

3I 4I

oV

CaC C1 a+

CaC C3 a+

+- +-

EECS 247 Lecture 4: Filters © 2006 H.K. Page 56

Integrator Based Ladder FiltersHigher Order Transmission zeros

C1

2V 4V

C3

Ca6VCb

2V 4V

+- +-

( )C C1 a+ ( )C C C3 a b+ +

CaV4 C C1 a+

CaV2 C C3 a+

6V

+-

( )C C5 b+

CbV4 C C3 b++-CbV6 C C3 b+

C5Convert zero generating Cs in C loops to voltage-controlled voltage sources

Page 29: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 57

Higher Order Transmission zeros

*RRs ( )1 aC C

1*s R+

2VinV 1−1

1

1V oV1− 11

( )3 a b

1*s C C CR + +

*

2

RsL

*RRL

1− 1−1

3V 4V

CaC C1 a+

CaC C3 a+

1−*

4

RsL

1

5V 6V

RL1I

2VRs L2

inV

4V

3I5I

2I

4I1V+ − 3V+ −

+-+-

( )C C1 a+ ( )C C C3 a b+ +

CaV4 C C1 a+

CaV2 C C3 a+

oVL4

6V 7I

6I

5V+ −

+-

( )C C5 b+

CbV4 C C5 b++- CbV6 C C3 b+

( )5 bC C

1*sR +

CbC C3 b+ Cb

C C5 b+

1

1−'1V '

3V'2V '4V

'5V '

6V '7V

EECS 247 Lecture 4: Filters © 2006 H.K. Page 58

Example:5th Order Chebyshev II Filter

• 5th order Chebyshev II

• Table from: Williams & Taylor book, p. 11.112

• 50dB stopband attenuation• f-3dB =10MHz

Page 30: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 59

Realization with Integrator

( )i 1 a2

1 3*s a 1a 1

V V CV1V VR C Cs C C R−⎡ ⎤= − +⎢ ⎥ ++ ⎣ ⎦

-Rs

R*

Rs

EECS 247 Lecture 4: Filters © 2006 H.K. Page 60

5th Order Butterworth Filter

From:Lecture 4page 26

oV

4V

'3V

'5V

2V

Page 31: This Lecture - EECS Instructional Support Group Home Pageee247/fa06/lectures/L4_f... · 2006-09-07 · EECS 247 Lecture 4: Filters © 2006 H.K. Page 1 EE247 Lecture 4 • Last lecture

EECS 247 Lecture 4: Filters © 2006 H.K. Page 61

Opamp-RC Simulation

oV

4V

'3V

'5V

2V

EECS 247 Lecture 4: Filters © 2006 H.K. Page 62

Seventh Order Differential Low-Pass Filter Including Transmission Zeros

+

+

--

+

+

--

+

+--

+

+

--

+

+--

+

+

--

+

+--

inV

oV

Transmission zeros implemented with coupling capacitors