31
Thomas Bourdel, Julien Cubizolles , Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris, Séminaire interne, Janvier, 2004 Collège de France Condensate of Fermionic Lithium Dimers -0.2 -0.1 0.0 0.1 X O p tica ld e nsity P o sitio n [m m] Y

Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Embed Size (px)

Citation preview

Page 1: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Thomas Bourdel, Julien Cubizolles , Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans,

Christophe Salomon

Laboratoire Kastler Brossel, Ecole Normale Supérieure, Paris,Séminaire interne, Janvier, 2004

Collège de France

Condensate of Fermionic Lithium DimersCondensate of Fermionic Lithium Dimers

-0.2 -0.1 0.0 0.1

X

Op

tica

l de

nsi

ty

Position [mm]

Y

Page 2: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

OutlineOutline

• Formation and detection of molecules• Cooling to condensation• Condensates

– Double structure– Comparaison with other molecular condensates– Some more proofs of condensation– Condensates in very anisotropic traps– An ellipticity study

Page 3: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

How to form molecules ?How to form molecules ?

• Sympathetic cooling of fermions by evaporation of bosons• Transfer into the optical trap

• Hyperfine transfer by RF adiabatic passage• Increase of the magnetic field to 1060 Gauss• Mixture: ½ Zeeman Transfer by RF sweep on

resonance• (Evaporation by lowering the trap intensity)• Slow crossing of the Feshbach resonance• (Further evaporation)• Detection

Page 4: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

How to detect dimer formation ?How to detect dimer formation ?

0,0 0,5 1,0 1,5 2,0

-200

-100

0

100

200

scat

terin

g le

ngth

[nm

]Magnetic field [kG]

1,3

2

4

Double ramp method :

For the probe laser to be on resonance, the magnetic field needs to be turned off. The unbrocken dimers are not detected.

232 NNNmol

1 B B

B

dE E

E dt

Importance of the ramp speedAdiabaticity:

a>0

a<0

Page 5: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Temperature effectsTemperature effects

The cooler, the more molecules,Independant of ramp speed

Creating molecules is heating

The molecules are likely to be in thermal and chemical equilibrium with the atoms

Page 6: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Evaporative cooling to condensation ?Evaporative cooling to condensation ?

• Very high collision rates– Elastic collision rate– Three body recombinaison rate

• Long Lifetimes close to resonance

• Evaporation with a<0 (D. Jin) or with a>0 (R. Grimm, W. Ketterle)

= 0.5 s = 20 ms

a = 78 nm a = 35 nm

Page 7: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

How to directly detect molecules ?How to directly detect molecules ?

• Low binding energy: It is possible to brake the molecules with a fast magnetic field sweep– When breaking the molecules, some extra energy is released

• High field imaging• RF dissociation of molecules during TOF

– Detection of molecules only

• Increase B during TOF before breaking molecules while going to B=0

Optical trap off Compensation coils off

Pinchcoils off

Detection at low field

0.8 ms

0.2 ms

0.2 ms

Page 8: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Fermion evaporationFermion evaporation

-0.2 -0.1 0.0 0.1

Opt

ical

den

sity

Position [mm]-0.2 -0.1 0.0 0.1

Position [mm]

Opt

ical

den

sity

-0.3 -0.2 -0.1 0.0 0.1Position [mm]

Opt

ical

den

sity

-0.3 -0.2 -0.1 0.0 0.1Position [mm]

Op

tica

l de

nsi

ty

TG=10.5 K

TF =12 KTG/TF =0.87

TG=3.1 K

TF =5.7 KTG/TF =0.54

TG=1.7 K

TF =3.7 KTG/TF =0.46

TG=1 K

TF =2.5 KTG/TF =0.4

TOF=0.35msN=10^5=4 kHz

TOF=0.35 msN=7.10^4=2.7 kHz

TOF=1 msN=5.10^4=1.6 kHz

TOF=1 msN=5.10^4=1.1 kHz

Page 9: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Double structureDouble structure

-0.2 -0.1 0.0 0.1

X

Opt

ical

den

sity

Position [mm]

Y

Gaussian fit on the wings in X: Tat=0.55 K, Tmol=1.1 K

Gaussian fit in Y: Tat=0.55 K, Tmol=1.1 K

K, for amm=120 nm, and 2 10^3 condensed molecules

Tc=1.2 K for 1.5 10^4 molecules

N=4.5 10^4 atoms=1.1 kHz

Page 10: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

2 dimension bimodal fit 2 dimension bimodal fit

No structure in Y direction

Page 11: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Proof of condensationProof of condensation

-0.3 -0.2 -0.1 0.0 0.1

X

position [mm]

Opt

ica

l den

sity

Y

-0.3 -0.2 -0.1 0.0 0.1

Opt

ical

den

sity

position [mm]

X

Y

-0.2 -0.1 0.0 0.1

X

Opt

ical

den

sity

position [mm]

Y

TOF=0.8 ms (with field)+0.2 ms (B up)+0.2 ms (B off)

Fermions @ 950 GEvaporation to 0.1

Atoms+Mol @ 770 GEvaporation to 0.1 Molecular Fraction>0.5

Atoms +Mol @ 770 GEvaporation to 0.2

Page 12: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Condensates of moleculesCondensates of molecules

• D. Jin (JILA)

• R. Grimm (Innsbruck)• W. Ketterle (MIT)

• ENS

                                                          

  

-0.2 -0.1 0.0 0.1

X

Opt

ical

den

sity

Position [mm]

Y

Page 13: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Very anisotropic trap @ 770 GVery anisotropic trap @ 770 G

-0.10 -0.05 0.00 0.05 0.10 0.15

Opt

ical

den

sity

X

X [mm]

Y

-0.10 -0.05 0.00 0.05 0.10 0.15X [mm]

Opt

ical

den

sity

Evaporation only on verticalFrequencies: 5 kHz, 650 Hz=.5 kHz

Fit: RF=31 m

Calcul: RF=20 m

Evaporation only on horizontalFrequencies: 1.25 kHz, 2.4 kHz=2.0 kHz

Page 14: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Ellipticity study as a fonction of fieldEllipticity study as a fonction of field

750 800 850 900 9500.02

0.03

0.04

Clo

ud s

ize

in X

and

Y [m

m]

Magnetic field (Gauss)

sigmaX sigmaY

0

100

200

300

400

500

600

sca

tterin

g le

ngth

(nm

)

sc. length

Page 15: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Double structures ?Double structures ?

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1position [mm]

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

Page 16: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Double structures ?Double structures ?

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1position [mm]

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

-0.2 -0.1 0.0 0.1

770 G

954 G

874 G

848 G

822 G

808 G

795 G

782 G

770 G

Page 17: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

ConclusionsConclusions

• Careful check of the number of remaining atoms• Lifetime of the condensate• Study of the value of Tc• Evaporation toward a pure condensate• Decrease B to lower value, (decrease |a|)• Coming back to the Fermion side

– Ellipticity as a function of degeneracy (a new thermometer)– BCS …

Page 18: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

High field imagingHigh field imaging

Which transition are we using ?The detuning is of the order of 400-600 MHz in the region of interest.A double pass AOM at 225 MHz is added on the probe beam.

1.5 10^5atomes

Page 19: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Thermodynamics of atom-molecule mixtureThermodynamics of atom-molecule mixture

• 3 relevant energy scales: Eb, T, , 2 parameters

• Equilibrium:

mol=2 at+|Eb|

Tat = Tmol

Simple Formulas

]]Exp[ PolyLog[3,)(

13

N

]]Exp[ PolyLog[4,)(

33

E

]]Exp[ PolyLog[4,24]]Exp[ ,6PolyLog[4)(

3B

kS

Condensat to be

added when mol=0

Page 20: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

Thermodynamic resultsThermodynamic results

-8 -6 -4 -2 00.0

0.2

0.4

0.6

0.8

1.0

cond

ensa

te fr

actio

n (d

ashe

d)

Eb [TF

0]

mol

ecul

ar fr

actio

n (s

olid

)

-8 -6 -4 -2 00.0

0.5

1.0

1.5

2.0

TC

Eb [TF

0]

Tem

pera

ture

[TF

0 ]

Eb/T=cst

T/Tc

T/Tc

0

5

10

0

Page 21: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Optical trap transfer problemOptical trap transfer problem

• The three directions of the trap are decoupled in the Hamiltonian:

• With spin polarised fermions, no collision, no adiabatic transformation of the trap possible.

HzHyHxH 222

21

21 xmmvHx xx

Images apres transfer, apres augmentation du champ, apres Ze transfert

Page 22: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Condensat avec a réglableCondensat avec a réglable

Evaporation à a = 2.5 nm en baissant profondeur du piège optique en 250 ms

-0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1

0

5

10

15

20

25

30

dens

ité o

ptiq

ue in

tégr

é [u

. arb

.]

axial distance [mm]

Image en temps de vol:

N =4 10T/TC=0.8

4

Page 23: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Breaking a moleculeBreaking a molecule

• Shift of resonance? Bpeak = 855 +- 53 Gauss unlikely!

• Three-body recombination [D. Petrov, PRA 67, 010703 (2003)]– Molecules form efficiently in highest weakly bound state

2

2

maEB

Molecules can be trapped!

+EB

Binding energy released

EB < Etrap

EB > Etrap

Particles stay in trap

Trap loss

1( ) ( 2 ) exp( / )r r a r a

Page 24: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Notre terrain de jeuxNotre terrain de jeux

E |2,+2>

140 G B

|1 ,-1>

|1,+1>

Lithium bosonique (7Li)

|3/2,+3/2>

|1/2,-1/2>

|1/2,+1/2>

27 G B

Lithium fermionique (6Li)

a = - 1.4 nm = 1 b

{ a = + 2.1 nm6,7

= 1 b{

a = + 0.27 nm = 1/2 b

{ 6,7a = + 2.0 nm = 1/3 b

{ = -1/2 b

{

Page 25: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

Le piège dipolaireLe piège dipolaire

Cols ~ 25mFréquences ~ 2.5 kHz

Page 26: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

La résonance de FeshbachLa résonance de Feshbach

0 500 1000 1500-3

-2

-1

0

1

2

3

Sca

tterin

g le

ngth

[nm

]

B [Gauss]ÉvaporationGaz idéalLongueur de diffusion a < 0

Page 27: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

x

y

z350 m

a b

intkintot l pota E EE E

kr inE E

Images en temps de vol

a) Expansion sans champ

b) Expansion avec champ

Énergie du gaz piégé

intkinrE EE Eint< 0

Mesure du gaz en interactionMesure du gaz en interaction

Page 28: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

0.0 0.5 1.0 1.5 2.0

-200

-100

0

100

200

scat

terin

g le

ngth

[nm

]

Magnetic field [kG]

M. Houbiers, H. Stoof, V. Venturi,C. Williams, S. Kokkelmans

a = 0 at 530(3) Gaussmauvaise évaporationUniv.Innsbruck: S. Jochim et al.Duke Univ. O’Hara et al.

Pertes à 680GaussMIT, K. Dieckmann et al.

Résonnance Feshbach très fine à 550 G.

Résonance entre les états: |1/2, +1/2 >, |entre les états: |1/2, +1/2 >, |1/2, -1/2 >1/2, -1/2 >

Résonance entre les états: |1/2, +1/2 >, |entre les états: |1/2, +1/2 >, |1/2, -1/2 >1/2, -1/2 >

Page 29: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

0.8 0.9 1.0 1.1 1.2 1.3 1.4

30

35

40

45

rx

ry

G

auss

ian

size

[m

]

Magnetic field [kG]

a

b

40

45

50

55

B=0Expansion isotrope

B≠0Asymétrie de l’expansion, maximum à B= 800 Gauss

Mélange de fermions préparé à1060 Gauss à T/TF = 0.6105 atoms; a < 0 : no atom loss

Au delà de résonanceAu delà de résonance

Page 30: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

35

40

45

50

55

60

ato

m n

um

ber

[10 ]

gauss

ian

size

[m

]

4

a

b

c

25

30

35

40

45

50

55

550 600 650 700 750 800 850 900

12345678

550 600 650 700 750 800 850 900

12345678

magnetic field [Gauss]

Mélange préparé à560 Gauss à T/TF=0.67 104 atomes; a > 0 Pertes liées à un chauffage

Perte maximum: 720 Gaussi.e 120 Gauss en dessous de laposition de la résonance prédite!

Chauffage

Le plus anisotrope vers 800 G

La résonance ??La résonance ??

Page 31: Thomas Bourdel, Julien Cubizolles, Lev Khaykovich, Frédéric Chevy, Jing Zhang, Martin Teichmann, Servaas Kokkelmans, Christophe Salomon Laboratoire Kastler

600 700 800 900 1000

-0.4

-0.2

0.0

0.2

0.4

0.6E

int/E

kin

Magnetic field [G]

Effet des molécules ?

Énergie d’interactionÉnergie d’interaction