17
Copyright: Thomas Rosol Ohio State University 2014 1 Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus, Ohio, USA 01 November 2014 STP-India Bangalore Adrenal Glands Most common endocrine organ with chemically-induced lesions Understanding structure and function is important for interpreting the mechanisms and significance of chemically-induced lesions Rat Adrenal Cortex Zona Glomerulosa (Arcuata) 20% Zona Fasciculata 65% Zone Reticularis 15% Homeostatic Model of Adrenocortical Growth Stem cells (Sf1-, Gli1+) Capsule cells (Sf1-) Progenitor cells (Sf1+) Zona glomerulosa cells (Sf1+) Zona fasiculata cells (Sf1+) Zona reticularis cells (Sf1+) ACTH (+) Hypothalamus Pituitary Adrenal CORT: Cortisol (-) Corticosterone (-) Drugs: Dexamethasone (-) HPA Axis AVP CRH Subcellular Structure/Function Relationships Lipid droplets (cholesterol esters) Smooth endoplasmic reticulum • Mitochondria Minimal storage of hormone Steroids are hydrophobic molecules diffuse out of cells

Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

  • Upload
    others

  • View
    10

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 1

Adrenal Cortex and Medulla in

Preclinical Toxicology

Thomas Rosol, DVM, PhD, DACVPVeterinary Biosciences

Ohio State University, Columbus, Ohio, USA

01 November 2014

STP-India

Bangalore

Adrenal Glands

• Most common endocrine organ with

chemically-induced lesions

• Understanding structure and function is

important for interpreting the mechanisms

and significance of chemically-induced

lesions

Rat Adrenal Cortex

Zona Glomerulosa (Arcuata) 20%

Zona Fasciculata 65%

Zone Reticularis 15%

Homeostatic Model of

Adrenocortical Growth

Stem cells (Sf1-, Gli1+)

Capsule cells (Sf1-)

Progenitor cells (Sf1+)

Zona glomerulosa cells (Sf1+)Zona fasiculata cells (Sf1+)Zona reticularis cells (Sf1+)

ACTH (+)

Hypothalamus

Pituitary

AdrenalCORT:

Cortisol (-)

Corticosterone (-)

Drugs:

Dexamethasone (-)

HP

A A

xis

AVP

CRH

Subcellular Structure/Function

Relationships

• Lipid droplets (cholesterol esters)

• Smooth endoplasmic reticulum

• Mitochondria

• Minimal storage of hormone

• Steroids are hydrophobic molecules

diffuse out of cells

Page 2: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 2

Steroidogenesis

• ACTH (cAMP second messenger)– StAR protein (steroidogenic acute regulator protein)

• Moves cholesterol to inner mitochondrial membrane

– Cyp11A1

• Mitochondria– Side chain cleavage (Cyp11A1)

– Hydroxylation to Pregnenalone

• SER– Converted to 11-Deoxycorticosterone

• Mitochondria– Hydroxylated to Corticosterone or Cortisol

Adrenal Cortex:

Steroid Hormones

• Cholesterol is precursor

• Cytochrome P450 enzymes– Mitochondria, SER, Shuttling

• Secretion– Circadian rhythm

– Nocturnal animals (rats, mice, cats): High at night

– Daytime animals (dogs, humans): High in morning

– Decreased secretion with age

• Bound in serum (90%) to CBG (transcortin)

• Metabolized in liver (hydroxylated and conjugated)

Major Glucocorticoids

• Cortisol

– Fish (teleosts)

– Hamsters

– Dogs (similar to

humans)

– Cats

– Nonhuman primates

– Humans

• Corticosterone

– Amphibians

– Reptiles

– Birds

– Rats

– Mice

– Rabbits (also have

cortisol, increases

during stress)

HOCholesterol

Pregnenalone

OProgesterone

O

O11-Deoxy-

corticosterone

O

CH2OH

OCorticosterone

O

CH2OH

HO

O

Aldosterone

O

CH2OH

HOO

17 -OH-

Pregnenalone

O17 -OH-

Progesterone

OOH

O11-Deoxycortisol

O

CH2OH

OH

OCortisol

O

CH2OH

OHHO

Dehydroepiadrosterone

Androstenedione

3ß-OH-STEROID DE-OH-ASE-

4,5 ISOMERASE

3ß-OH-STEROID

DE-OH-ASE-

4,5 ISOMERASE

CYP17 CYP17

CYP17

CYP17

CYP21 CYP21

CYP11B1 CYP11B1

CYP11B2

Acetate

HDL

LDL

Cholesterol

EstersnCEH

ACAT

**CYP11A1**

HO

O

O

O

HO

O

HO

OOH

ACAT: acyl-CoA:cholesterol acyltransferase, nCEH: neutral cholesterol ester hydrolase

HO Cholesterol

Pregnenalone

OProgesterone

O

O11-Deoxy-

corticosterone

O

CH2OH

OCorticosterone

O

CH2OH

HO

O

Aldosterone

O

CH2OH

HOO

17 -OH-

Pregnenalone

O17 -OH-

Progesterone

OOH

O11-Deoxycortisol

O

CH2OH

OH

OCortisol

O

CH2OH

OHHO

Dehydroepiadrosterone

Androstenedione

3ß-OH-STEROID DE-OH-ASE-

4,5 ISOMERASE

3ß-OH-STEROID

DE-OH-ASE-

4,5 ISOMERASE

CYP17 CYP17

CYP17

CYP17

CYP21 CYP21

CYP11B1 CYP11B1

CYP11B2

Cholesterol

EstersnCEH

ACAT

**CYP11A1**

HO

O

O

O

HO

O

HO

OOH

ACTH

cAMP StAR

Page 3: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 3

HO Cholesterol

HOPregnenalone

OProgesterone

O

O

O11-Deoxy-

corticosterone

O

CH2OH

OCorticosterone

O

CH2OH

HO

O

Aldosterone

O

CH2OH

HOO

HO17 -OH-

Pregnenalone

OOH

O17 -OH-

Progesterone

OOH

O11-Deoxycortisol

O

CH2OH

OH

OCortisol

O

CH2OH

OHHO

HO

O

Dehydroepiadrosterone

O

AndrostenedioneO

CYP11A1

3ß-OH-STEROID DE-OH-ASE-

4,5 ISOMERASE

3ß-OH-STEROID

DE-OH-ASE-

4,5 ISOMERASE

CYP17 CYP17

CYP17

CYP17

CYP21 CYP21

CYP11B1 CYP11B1

CYP11B2

HO Cholesterol

Pregnenalone

OProgesterone

O

O11-Deoxy-

corticosterone

O

CH2OH

OCorticosterone

O

CH2OH

HO

O

Aldosterone

O

CH2OH

HOO

17 -OH-

Pregnenalone

O17 -OH-

Progesterone

OOH

O11-Deoxycortisol

O

CH2OH

OH

OCortisol

O

CH2OH

OHHO

Dehydroepiadrosterone

Androstenedione

3ß-OH-STEROID DE-OH-ASE-

4,5 ISOMERASE

3ß-OH-STEROID

DE-OH-ASE-

4,5 ISOMERASE

CYP17 CYP17

CYP17

CYP17

CYP21 CYP21

CYP11B1

CYP11B2

Acetate

HDL

LDL

Cholesterol

EstersnCEH

ACAT

**CYP11A1**

HO

O

O

O

HO

O

HO

OOH

Angiotensin II

K+

HO Cholesterol

HOPregnenalone

OProgesterone

O

O

O11-Deoxy-

corticosterone

O

CH2OH

OCorticosterone

O

CH2OH

HO

O

Aldosterone

O

CH2OH

HOO

HO17 -OH-

Pregnenalone

OOH

O17 -OH-

Progesterone

OOH

O11-Deoxycortisol

O

CH2OH

OH

OCortisol

O

CH2OH

OHHO

HO

O

Dehydroepiadrosterone

O

AndrostenedioneO

CYP11A1

3ß-OH-STEROID DE-OH-ASE-

4,5 ISOMERASE

3ß-OH-STEROID

DE-OH-ASE-

4,5 ISOMERASE

CYP17 CYP17

CYP17

CYP17

CYP21 CYP21

CYP11B1 CYP11B1

CYP11B2

17 -HSD: 17 -hydroxysteroid dehydrogenase

Cynomolgus Monkey Cynomolgus Monkey: CYP17A IHC

Page 4: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 4

Cynomolgus Monkey: CYP11B2 IHC Cynomolgus Monkey: Ki-67

Factors Contributing to Chemical

Injury of the Adrenal Cortex

• Rich vascular supply

• High lipid content (steroidogenesis)

• Bioactivation by cytochrome P450 enzyme

systems to reactive toxic forms

• Limited mechanisms of detoxification

Species Variations

• Sensitivity varies according to species

• Variation in pathways of steroid

metabolism

• Variation in xenobiotic metabolism

– Dogs and humans are similar (e.g. o,p’-DDD)

– Rats susceptible to DMBA

Ultrastructural Lesions

• May be more useful than histopathology

– Correlates with mechanism of toxicity

– Organelle-specific enzymes

Chemical-Induced Injury of the

Adrenal Cortex

• Selected Examples of Mechanisms:

– Inhibition of microsomal enzymes

Page 5: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 5

HO Cholesterol

HOPregnenalone

OProgesterone

O

O

O11-Deoxy-

corticosterone

O

CH2OH

OCorticosterone

O

CH2OH

HO

O

Aldosterone

O

CH2OH

HOO

HO17 -OH-

Pregnenalone

OOH

O17 -OH-

Progesterone

OOH

O11-Deoxycortisol

O

CH2OH

OH

OCortisol

O

CH2OH

OHHO

HO

O

Dehydroepiadrosterone

O

AndrostenedioneO

CYP11A1

3ß-OH-STEROID DE-OH-ASE-

4,5 ISOMERASE

3ß-OH-STEROID

DE-OH-ASE-

4,5 ISOMERASE

CYP17 CYP17

CYP17

CYP17

CYP21 CYP21

CYP11B1 CYP11B1

CYP11B2

CCl4

Mechanism:

Inhibition of

microsomal

17 - an 21

hydrolases

Lesions:

Swollen SER

and necrosis

X

X X

X

Chemical-Induced Injury of the

Adrenal Cortex

• Selected Examples of Mechanisms:

– Inhibition of neutral cholesterol ester

hydrolase

Inhibition of Neutral

Cholesterol Hydrolase

Triaryl Phosphate

• Cholesterol lipidosis

• Adrenal cortical and ovarian interstitial

cells

TRIARYL PHOSPHATES

HOCholesterol

Pregnenalone

OProgesterone

O

O11-Deoxy-

corticosterone

O

CH2OH

OCorticosterone

O

CH2OH

HO

O

Aldosterone

O

CH2OH

HOO

17 -OH-

Pregnenalone

O17 -OH-

Progesterone

OOH

O11-Deoxycortisol

O

CH2OH

OH

OCortisol

O

CH2OH

OHHO

Dehydroepiadrostero

Androstenedione

3ß-OH-STEROID DE-OH-ASE-

4,5 ISOMERASE

3ß-OH-STEROID

DE-OH-ASE-

4,5 ISOMERASE

CYP17 CYP17

CYP17

CYP17

CYP21 CYP21

CYP11B1 CYP11B1

CYP11B2

Acetate

HDL

LDL

Cholesterol

EstersnCEH

ACAT

**CYP11A1**

HO

O

O

O

HO

O

HO

OOH

Triaryl PhosphateMechanism: Inhibition of neutral cholesterol

ester hydrolase

Lesions: Cytoplasmic lipid droplets in zona

glomerulosa, reticularis, and fasciculata

X

CORTICAL LIPIDOSIS: 3 WEEKS

Page 6: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 6

Cortical Lipidosis

L

N

Chemical-Induced Injury of the

Adrenal Cortex

• Selected Examples of Mechanisms:

– Inhibition of ACAT* Enzyme in Cortical

Cells

*Acyl Coenzyme: Cholesterol Acyl Transferase

ACAT-Inhibiting Compounds

Degeneration of zonae fasciculata And reticularis

– ( ) Mitochondria and SER

Direct cytotoxic effect

Species sensitivity:

– Dog > Guinea Pig > Rabbit > Monkey > Rat

Chemical-Induced Injury of the

Adrenal Cortex

• Selected Examples of Mechanisms:

–Selective mitochondrial degeneration

Selective Mitochondrial Degeneration with Vacuolation

Zonae fasciculata and reticularis

Zona glomerulosa much less sensitive

Species susceptibility:

– Dog unusually sensitive

ORTHO, PARA, PRIME DDD

(O,P’-DDD)

Page 7: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 7

Vacuolation of Mitochondria Cessation of O,P’DDD Therapy

Chemical-Induced Injury of the

Adrenal Cortex

• Selected Examples of Mechanisms:

– Disruption of organellar membrane turnover

Disruption of Organellar

Membrane Turnover

• Examples:

– Cationic Amphiphilic Compounds

(Chloroquine, Triparanol,

Chlorophentermine)

– Toxin activation of CYP P450 enzymes

• Lesion: Phospholipidosis of cortical cells

(vacuolation, need EM)

Page 8: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 8

Cortical Phospholipidosis

Spontaneous Degenerative Lesions of

Adrenal Cortex

Examples in Laboratory Rodents

Adrenal Cortex (Rat)

Cystic Degeneration

Adrenal Cortex

(F344 Rat)

Telangiectasis

Proliferative Lesions of Adrenal Cortex

Spindle Cell (Mice)

Focal (Rats)

Extracortical Nodular (Dog)

HYPERPLASIA

Adrenal Cortex (F344 Rat)

Focal (Eosinophilic) Hyperplasia

Page 9: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 9

50

BrdU

Subcapsular Spindle Cell Hyperplasia

Common in mice

Infrequent in rats and hamsters

Proliferative Lesions of the Adrenal Cortex

NEOPLASIA

Adrenal Cortex Adenoma: Rat

Page 10: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 10

Adrenal Cortex Adenoma: MouseSubcapsular Type (A and B cells)

Mechanism of Induction of Cortical Neoplasia

Hormonal Imbalance: ( Gonadotropins, esp., LH)

– Gonadectomy

• Species: Mice, Hamsters, Ferrets, Goats

– Transgenic Mice Deficient in Inhibin

– Estrogen Receptor Antagonists

– Ionizing Radiation, Chemicals (DMBA)

• Ovarian Follicle Destruction• ( )E2, ( ) LH

Development of the adrenal gland and gonads from the urogenital ridge

Bielinska M et al. Vet Pathol 2006;43:97-117

Adrenocortical Tumors(Human Relevance)

• Humans

– Adenomas: 5% of people over 50 years,

incidentalomas, nonfunctional

• Carcinoma is rare (500/yr in USA)

• Dogs: Similar to humans

– Functional tumors more common

• Gonadectomy

– Goats, ferrets, hamsters, and mice

The Stress Response and

the Adrenal Cortex• Physiological response to an environmental

change

• Activation of the HPA axis with increased

glucocorticoids

• Maximizes survivability and suppresses

nonessential functions

• Increased gluconeogenesis; decreased insulin

sensitivity; diabetogenic

• Suppression of reproduction

• Regulation of immune function

• Increases activity and appetite

Page 11: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 11

Rat Adrenal Glands

Normal Hypertrophy

Chemicals as stressors

• The HPA response is not stressor-specific

• Chemicals can alter homeostatic balance

– Organ effects

– Metabolism effects

• High doses of test articles

Increased Adrenal Gland Weight

(Adrenal Hypertrophy)

• Stress

– Known exposure to stress-inducing stimuli

– Histopathology (Morphology)

– Concurrence with other stress-related changes (e.g., thymic

atrophy)

– Clinical chemistry

• Functional challenge

• Differential Diagnosis: Toxic Effect

– Histopathology (Morphology)

– Clinical chemistry

• Functional challenge (functional suppression)

– Mechanistic studies of adrenal cell function (steroidogenic

enzymes)

Adrenal Hypertrophy:

Significance

• Stress-Related

– Primary and secondary stress-related effects

– Less significant finding in toxicology study

– Cause should be identified

– Functional significance could be tested

• Test Compound-Related

– Potentially serious

– Understand mode of action

– Human relevance

– Species differences

Assessment of the HPA Axis

• ACTH challenge assay

– Tests the integrity of the HPA axis through steroid

hormone secretion

• Evaluation of in vitro mechanisms

– H295R human adrenal cortical cells• Enzyme inhibition

– CYP17, not well expressed in rodent adrenal glands

• StAR function (steroidogenic acute regulatory protein; transport

protein for cholesterol in mitochondria and rate limiting step in

steroidogenesis)

• Species differences in susceptibility to toxicants

Page 12: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 12

ACTH Stimulation AssayRodents

• Most sensitive time to measure

corticosterone in rodents is about 7-10

a.m.

– Trough of circadian rhythm

• 12 hr light-dark cycle; starting at 6 a.m.

• Pre-test sample usually not collected (to

avoid stress of blood collection)

• Post-ACTH sample at 0.5-2.0 hours0

2

4

6

8

10

12

14

16

BASELINE PLASMA

CORTISOL

POST STIMULATION

PLASMA CORTISOL

PL

AS

MA

CO

RT

ISO

L (

ug

/dl)

HYPOADRENOCORTICISM

ACTH STIMULATION TEST

ADRENAL MEDULLA

• Less common site of toxic manifestations

• Proliferative lesions

– Important in the rat

– Less common in the mouse

Epinephrine Norepinephrine

Page 13: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 13

Immunohistochemistry

• Tyrosine hydroxylase: All chromaffin cells

– Cytosolic (independent of granules)

– All tumors produce this enzyme

• Chromogranin A: All chromaffin cells

– Secretory Granules (variable in tumors)

• PNMT: Only Epinephrine cells

– Cytoplasmic (variable in tumors)

Tyr Hydroxylase, Chromogranin A PNMT (Epinephrine Cells)

Focal Medullary Hypeplasia Focal Medullary Hyperplasia

Page 14: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 14

Adrenal Medulla: Neoplasms

• Secretory Cells

– Pheochromocytoma (benign)

• May start as hyperplasia

• Expandsile medullary mass

• Well differentiated

• Behavior

– Space-occupying mass

– Excess catecholamine secretion

Adrenal Medulla: F344 RatPheochromocytoma

Interspecies Comparison of Pheochromocytomas

Lifetime Frequency

Sex Predilection

Inducing Agents

Cell Type

RAT

Up to 80%

MALE

HORMONES

DRUGS, TOXINS

DIETARY FACTORS

NE

MOUSE

<5%

NONE

NONE

E+NE

HUMAN

<0.09%

NONE

NONE

E+NE

Page 15: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 15

Factors Influencing Incidence of

Pheochromocytomas in the Rat

• Age

• Strain

– Holtzman 0.5%

– Wistar 67%

• Sectioning technic

– Single vs. serial

– 7.5% of adrenal volume is medulla

• Chronic Stress, Ca2+

– Chronic renal and lung disease

Agents associated with Pheochromocytomas in Rats

Hypothalamic-Endocrine

– Growth Hormone

– Estrogen

– Antithyroid Drugs

– Alloxan

– Neuroleptics

Autonomic Nervous System

– Nicotine

– Reserpine

Agents associated with

Pheochromocytomas in Rats

Phosphodiesterase Inhibitors

– Indolidan

– Isomazole

Dietary Factors

– Excess Food

– Excess Ca2+, sugars, sugar alcohols

Agents associated with Pheochromocytomas in Rats

Miscellaneous Factors

– Gemfibrozil (Hypolidemic)

– Zomepirone (Anti-inflammatory)

– Diphenylamine (Anti-oxidant)

– Retinol Acetate

– 1,4, Dioxane

– Ethylene Glycol Monoethyl Ether

– P-chloroaniline

– Radiation

– Chronic Respiratory Disease

ADRENAL MEDULLA: NEOPLASMS

• Malignant Pheochromocytomas

– Local invasion

– Invasion into the posterior vena cava

Page 16: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 16

Adrenal Medulla: F344 RatMalignant Pheochromocytoma

Differential Diagnosis of Adrenal

Medullary and Cortical Tumors

• Chromaffin Reaction

– Dichromate fixative oxidizes catecholeamines

to form brown-black pigment

– Differentiate cortical and medullary neoplasms

Adrenal Medulla: Ganglioneuroma

Page 17: Thomas Rosol Adrenal Cortex and Medulla...Adrenal Cortex and Medulla in Preclinical Toxicology Thomas Rosol, DVM, PhD, DACVP Veterinary Biosciences Ohio State University, Columbus,

Copyright: Thomas Rosol

Ohio State University 2014 17

Dual Differentiation (‘Complex’)

Pheochromocytoma & Ganglioneuroma