76
Markus Schmid Tire Modeling for Multibody Dynamics Applications Simulation‐Based Engineering Laboratory University of Wisconsin‐Madison 2011

Tire Modeling for Multibody Dynamics Applications

Embed Size (px)

Citation preview

Page 1: Tire Modeling for Multibody Dynamics Applications

MarkusSchmid

TireModelingforMultibodyDynamicsApplications

Simulation‐BasedEngineeringLaboratory

UniversityofWisconsin‐Madison

2011

Page 2: Tire Modeling for Multibody Dynamics Applications
Page 3: Tire Modeling for Multibody Dynamics Applications

i

Abstract

Invehicledynamics,tiresareoneofthemostimportantfactorsthatgovernthebehaviorofa

movingvehicle.Theyaretheonlylinkbetweenthevehiclechassisandtheroadandhaveto

transmitvertical,longitudinalandlateralforces.Inordertobeabletodescribeavehicle’s

movementproperly,itisnecessarytounderstandthetires’characteristicsandtheireffecton

certaindrivingsituations.

Whileempiricaldatagainedfromon‐the‐roaddrivingexperimentswithrealtiresis

obviouslythemostaccurate(giventhatconditionsaresimilartothedesiredsimulation),thereare

reasonstochoosedynamicalsimulationsinstead.Sinceproductcyclesanddevelopmenttimesare

continuouslyreducedduetocompetitionandprogressoftechnology,buildingphysicalprototypes

inanearlystageofdevelopmentistime‐consumingandveryexpensive.Furthermore,ifthedesign

ischanged,theprototypehastobeupdatedagainandagain.Clearly,withlargermachinerylike

constructionvehicles,thisbecomestimeandcostprohibitive.Thustendingtowardssimulationsin

earlydevelopmentstagescanbehighlybeneficialtothefinaldesign.

Tiresareverycomplexproductsandnottrivialtodescribe.Theircharacteristicsare

influencedbyseveralfactorslikedesignofthetireitself(e.g.material,treadpattern,carcass

stiffness),airpressureinsidethetireandtextureoftheroadsurface,tonameafew.

Severalmodelingapproacheshavebeendevelopedtodescribethephysicsoftiressothat

theycanbeanalyzedandevaluatedmathematically.Inthefirstpartofthiswork,acombinationof

thesteady‐stateMagicFormulaapproach(describedin[1],[2]and[3])andtheSingleContactPoint

transienttiremodel[3]isusedtoimplementatiremodelthatcanhandletranisentdriving

situationsintothemultibodydynamicsengineChrono::Engine[4].Forvalidationandexperimental

purposes,thetiremodelisthenintegratedwithavehiclemodelanddifferentdrivingsituationsare

analyzed.Thesecondpartofthisresearchintroducesabeamelementtypephysicalmodelthat

permitsinteractionwithflexibleterrainforoff‐roadapplications.

Page 4: Tire Modeling for Multibody Dynamics Applications

ii

Acknowledgements

Firstofall,IwouldliketogreatlythankmyadvisorattheDepartmentofMechanical

Engineering,ProfessorDanNegrut,forallthesupport,thevaluableadviceandneverrunningoutof

M&M’stokeepupthemotivation.ThankyouDanformakingmepartoftheteam!

Also,thankyouverymuchtoallthepeopleattheSimulation‐BasedEngineeringLaboratory

(SBEL)forthegreatatmosphereinthelab,helpingoutwheneverpossibleandmakingthisagreat

year!

Finally,IwouldliketothanktheGermanAcademicExchangeService(DAAD),theInstitute

forMachineTools(IfW)attheUniversityofStuttgartandtheDepartmentofMechanical

EngineeringattheUniversityofWisconsin‐MadisonformakingmystudiesintheUnitedStatesand

thereforethisworkpossible.

Page 5: Tire Modeling for Multibody Dynamics Applications

iii

Page 6: Tire Modeling for Multibody Dynamics Applications

iv

TableofContents

Abstract.......................................................................................................................................................................i

Acknowledgements...............................................................................................................................................ii

TableofContents..................................................................................................................................................iv

ListofFigures.........................................................................................................................................................vi

1 Introduction....................................................................................................................................................1

1.1 TireDynamics.........................................................................................................................................................1

1.1.1 TireForcesandTorques...........................................................................................................................1

1.1.2 LongitudinalandLateralSlip..................................................................................................................2

1.1.3 TurnSpin.........................................................................................................................................................3

1.2 TireModeling..........................................................................................................................................................5

1.2.1 TheMagicFormulaTireModel..............................................................................................................5

1.2.2 TheSingleContactPointTransientTireModel...............................................................................8

2 ImplementationoftheMagicFormulaTireModel.........................................................................14

2.1 MATLABimplementation................................................................................................................................14

2.1.1 Tirepropertyfile(*.tire)........................................................................................................................15

2.1.2 Transienttiremodel................................................................................................................................16

2.1.3 MagicFormulasteady‐statemodel....................................................................................................16

2.1.4 Modelverification.....................................................................................................................................18

2.2 Chrono::Engineimplementation..................................................................................................................24

2.2.1 ThemultibodydynamicssimulationengineChrono::Engine.................................................24

Page 7: Tire Modeling for Multibody Dynamics Applications

v

2.2.2 TranslationoftheMATLABimplementationtoC++..................................................................24

2.2.3 VehicleandtiremodelusedinChrono::Engine...........................................................................25

2.2.4 TheStandardTyreInterface(STI).....................................................................................................26

2.2.5 OrganizationoftheMagicFormulatiremodelinChrono::Engine.......................................28

2.2.6 Obtainingreal‐timevehicledata.........................................................................................................29

2.2.7 Applicationoftheforcesandmomentstothevehiclemodel.................................................31

2.2.8 Resultsandconclusions.........................................................................................................................32

3 Beamtiremodelforinteractionwithdeformableterrain...........................................................35

3.1 Tiretreadmodel..................................................................................................................................................35

3.2 Forcesinthetiretreadandcontactpatch................................................................................................37

3.3 Modelverification...............................................................................................................................................41

3.3.1 Verticalmotionofthewheel................................................................................................................42

3.3.2 Longitudinalmotionofthewheel......................................................................................................44

3.4 Resultsandfuturework...................................................................................................................................50

4 Summary........................................................................................................................................................51

5 References.....................................................................................................................................................52

A Appendix........................................................................................................................................................54

A.1 MagicFormulaequationsandfactors[3].................................................................................................54

A.2 .tirepropertyfileusedintheMagicFormulaimplementations.....................................................62

Page 8: Tire Modeling for Multibody Dynamics Applications

vi

ListofFigures

Fig.1.1:Signconventionandtirereferenceframe[3]..............................................................................................1

Fig.1.2:Rotationalslipresultingfrompathcurvatureandwheelcamber[3]..............................................4

Fig.1.3:Thetireasanonlinearfunctionwithmultipleinputsandoutputs(steady‐state)[8]...............5

Fig.1.4:MagicFormulafactors[9]....................................................................................................................................7

Fig.1.5:Sideforcecharacteristicsofa315/80R22.5trucktireforvaryingnormalloads.Comparison

ofMagicFormulacomputedresultswithmeasureddata[3].................................................................................8

Fig.1.6:SingleContactPointTireModel(topview)[3]...........................................................................................9

Fig.1.7:EffectiverollingradiusanddefinitionofslippointS[7].....................................................................10

Fig.1.8:Proceduretocalculateforceandmomentvariationsatthecontactpatch.................................13

Fig.2.1:FlowchartshowingtheconnectionofthetransientmodelandtheMagicFormulamodelin

theMATLABimplementation...........................................................................................................................................15

Fig.2.2:SubroutinesusedintheMATLABimplementationofthetransientmodelandtheMagic

Formula......................................................................................................................................................................................17

Fig.2.3:VelocityprofilesfortestingscenarioA........................................................................................................18

Fig.2.4:TransientslipquantitiesforscenarioA......................................................................................................19

Fig.2.5:LongitudinalforceforscenarioA...................................................................................................................20

Fig.2.6:RollingresistancemomentforscenarioA..................................................................................................20

Fig.2.7:SideslipangleandlateralslipvelocityforscenarioB..........................................................................21

Fig.2.8:TransientslipquantitiesforscenarioB.......................................................................................................22

Fig.2.9:LongitudinalforceforscenarioB...................................................................................................................22

Fig.2.10:LateralforceforscenarioB............................................................................................................................23

Fig.2.11:VisualizationofthevehiclemodelusedinChrono::Engineasspecifiedin

demo_suspension.cpp(modified)...................................................................................................................................25

Fig.2.12:SchematicviewoftheSTI[8]........................................................................................................................27

Page 9: Tire Modeling for Multibody Dynamics Applications

vii

Fig.2.13:Vectorsusedtodescribethemovementofthevehicle......................................................................29

Fig.2.14:CodesnippetofthegetVehicleData()subroutine......................................................................30

Fig.2.15:Longitudinalvelocitiesfortheleftreartire............................................................................................32

Fig.2.16:Longitudinalslipandlongitudinalforcefortheleftreartire..........................................................32

Fig.2.17:Sideslipangleandlateralslipvelocityfortheleftfronttire...........................................................33

Fig.2.18:Transientslipangleandlateralforcefortheleftfronttire..............................................................33

Fig.3.1:Beamelementsetupforthetiretread:anetofbeamsconnectedtotherim..............................36

Fig.3.2:Circumferentialandradialforcesatelement(i,j)...................................................................................37

Fig.3.3:Setofforcesactingononeelement(i,j).......................................................................................................38

Fig.3.4:Deflectedtireandresultingnormalforcesduetocontactwithground........................................42

Fig.3.5:Deflectedtireandresultingnormalforcesduetocontactwithground........................................43

Fig.3.6:ResultingverticalForcedevelopedinthetirecontactpatch.............................................................43

Fig.3.7:Verticalmovementofthewheelhubcenter(integrationstepsize:0.001s)...............................44

Fig.3.8:Kinematic‐basedfrictionmodel[17]...........................................................................................................45

Fig.3.9:ScenarioA:angularposition,velocityandaccelerationofthewheel.............................................47

Fig.3.10:Slipandtotallongitudinalforce...................................................................................................................48

Fig.3.11:ScenarioB:xvelocityandaccelerationofthewheelcenter............................................................49

Fig.3.12:ScenarioB:Slipandtotallongitudinalforce...........................................................................................50

Fig.A.5.1:Positivedirectionsofforcesandmoments[3]....................................................................................56

Page 10: Tire Modeling for Multibody Dynamics Applications
Page 11: Tire Modeling for Multibody Dynamics Applications

1 Int

B

Chrono:

theMagi

1.1 Ti

T

Thesequ

1.1.1 T

T

Thisisfo

adapted

troductio

Beforeweco

:Engine,we

icFormulam

ireDynam

Themostim

uantitiesallo

TireForce

Thecoordina

orpracticalr

versionoft

on

onsiderthei

needtocov

modelandth

mics

mportantfact

owustodes

sandTorq

ateframean

reasons,sin

theSAEstan

Fig.1

implementa

erthebasic

hesinglecon

torsintired

scribethech

ques

ndsignconv

cethetirem

ndardcoordi

1.1:Signconv

1

tionoftheM

ideasoftire

ntactpointt

dynamicsare

haracteristic

ventionused

modelsprop

inateframe

ventionandti

MagicFormu

edynamicsa

transientmo

etireforces

csofatirein

dinthiswor

osedin[3]a

(SAEJ670e

irereference

ulatiremode

andtiremod

odel).

andtorques

nalldrivings

kisadopted

alsousethis

1976)andis

frame[3]

elinto

deling(inpa

s,slipandtu

situations.

dfromPacej

sasareferen

sshowninF

articular

urnspin.

ka[3].

nce.Itisan

Fig.1.1.

Page 12: Tire Modeling for Multibody Dynamics Applications

2

Inthisreferenceframe,

isthespeedoftravelofthewheelcenter.

isthesideslipangle(theanglebetweenthexz‐planeand ).

isthecamberangle(theanglebetweenthexz‐planeandthemeanwheelplane).

istheyawrateorturnslipvelocity.

isthelongitudinalforceactingalongthex‐axis( 0foracceleration, 0for

braking).

isthelateralorsideforce.Itisappliedatapointinadistance behindthecenter

ofthecontactzoneoftireandroad[5].

istheloadornormalforce.

istheself‐aligningtorque.Itiscausedbythenon‐centralapplicationof and

forcesthemeanplaneofthewheeltowardsthedirectionof . canbecalculated

as ∗ ,wheretisthepneumatictrail[5].

Ingeneral, , and arefunctionsoflongitudinalslip ,load ,sideslipangle and

camberangle [3].

1.1.2 LongitudinalandLateralSlip

Unlessthewheelisrollingfreely(withnodrivingorbrakingtorqueappliedand 0),

longitudinalandlateralslipquantitieshavetobeconsidered.Morespecific,atireneedsslip(dueto

elasticdeformationsorsliding)totransmitforces[6].

Page 13: Tire Modeling for Multibody Dynamics Applications

3

Ingeneral,whenatorqueisappliedtothewheel,wehavetodistinguishtheactualforward

speedofthetireovertheroadsurface(x‐componentofthespeedoftravel: )andthevelocity

thatisclassifiedbythetire’sangularvelocityΩanditseffectiverollingradius [3]:

x0 Ω eV r (1.1)

Toquantifythedifferenceof and ,longitudinalslip isdefinedas[3]:

x0 Ω x x e

x x

V V V r

V V

(1.2)

Thisresultsinnegative forbrakingandpositive foracceleration(positivelongitudinal

slipmeanspositivelongitudinalforce ).

Bythesametoken,lateralorsideslip iscalculatedfromtheratioofthelateralvelocity

andtheforwardvelocity ofthewheel:

tan y

x

V

V (1.3)

Again,positivesideslip meanspositivesideforce .Theslipangle denotestheangle

betweenthetravellingdirectionandtherollingdirectionofthetire.

1.1.3 TurnSpin

Theyawvelocity(orturnslipvelocity)ΨdisplayedinFig.1.2denotestheangularvelocityof

thewheelaboutthenormaltotheroad[7].

Page 14: Tire Modeling for Multibody Dynamics Applications

I

canbed

where

axleand

T

Inthisconte

escribedas

∗ istheforw

dlocatedatd

Turnslip

t

Fig.1.2

ext,spinslip

afunctiono

*z

cxV

wardrunnin

distance fr

(thatis,spin

*

1

cxV R

2:Rotationals

(thecomp

ofyawratea

*

sin

cxV

ngspeedoft

romthewhe

nonlydueto

1

R

4

slipresultingwheelcambe

ponent

andcambera

,

theimaginar

eelcenterbe

opathcurva

frompathcuer[3]

oftheabsol

angle:

rypoint ∗t

elowroadle

ature,notwh

urvatureand

utespeedof

hatisperpe

evel[3].

heelcamber

frotationve

endiculartot

r )isdefine

ector )

(1.4)

thewheel

edas:

(1.5)

Page 15: Tire Modeling for Multibody Dynamics Applications

1.2 Ti

M

quantitie

shownin

T

statecon

Formula

1.2.1 T

O

propose

compare

formulas

ireModel

Mostgenera

es,anglesan

nFig.1.3.

Fig.1.3

Todescribet

nditions,sev

aTireModel

TheMagic

Ofthemany

din[1],[2]

edtoexperim

saren’tderi

ling

al,atirecanb

ndloadforce

3:Thetireas

the“blackb

veralapproa

.

FormulaT

differenttir

and[3]ison

mentaldata

ivedfromap

bemodeled

e)andoutpu

anonlinearf

ox”between

acheshaveb

TireModel

remodelsth

neofthemo

.Theapproa

physicalbac

5

asanonline

uts(longitud

functionwith

state)[8

ninputsand

beensuggest

l

hatareavaila

ostadvanced

achofthem

ckgroundtha

earsystemw

dinalandlat

multipleinp]

doutputsfor

ted,includin

abletoday,t

dandhaspr

modelissemi

atmodelsth

withmultipl

teralforcesa

utsandoutpu

rsteady‐stat

ngPacejka’s

theMagicFo

roventobev

i‐empirical,m

hetire’sstru

einputs(sli

andtiremom

uts(steady‐

teandnons

so‐calledM

ormulaTire

veryaccurat

meaningtha

ucturebutra

p

ments),as

teady‐

Magic

Model

tewhen

atthe

atherare

Page 16: Tire Modeling for Multibody Dynamics Applications

6

mathematicalapproximationsofcurvesthatwererecordedinexperiments.Forthispurpose,

scalingfactorshavetobeobtainedfrommeasurements.

ThegeneralformoftheMagicFormulais[3]:

sin[ arctan arctan( ) ]y D C Bx E Bx Bx , (1.6)

whereyrepresentsatireforceortorqueandxistheslipquantitythisforceortorquedependson

(i.e.longitudinalorlateralslip).B,C,D,Earefactorstodefinethecurve’sshapeinordertogetan

appearancesimilartotherecordedcurve.Specifically,

B isastiffnessfactor

C isashapefactor

D isthepeakvalue

E isacurvaturefactor

arctan istheslopeofthecurveattheorigin.

Eachofthesefactorshastobeapproximatedfrommeasureddatafromexperimentsforthe

respectivetireandenvironment.Itisalsopossibletoapplyanoffsetin x and y withrespecttothe

origintothisgeneralformula.Anoffsetcanariseduetoply‐steerandconicityeffectsaswellas

wheelcamber[3].Theshiftin x and y canbeperformedbyusingthemodifiedcoordinates

VY X y x S with beingtheverticalshiftand

Hx X S with beingthehorizontalshift.

Page 17: Tire Modeling for Multibody Dynamics Applications

F

A

thosepa

describe

torque),

A

where

T

showscu

Fig.1.4show

Asinputvari

arametersal

edbythefor

depending

Asanexamp

yoF

istheslip

Todisplayth

urvesobtain

wsaninterpr

iable wec

sodependo

rmulamight

ontheprobl

ple,thesidef

sin[y yD C

angle.Thef

heagreemen

nedfromme

retationoft

Fig.1.4:

canusetan

onverticallo

be (longi

lem.

force can

arctany yB

fullsetoffac

ntoftheMag

easurements

7

thefactorsu

MagicFormu

( beingth

oad andca

itudinalforc

nbedescrib

(y y yE B

ctorsinvolve

gicFormula

scompared

sedinthege

ulafactors[9]

helateralslip

amberangle

ce), (sidef

bedas[3]:

arctan(y B

edcanbefou

approachan

toMagicFor

eneralform

]

pangle)orκ

e .Theoutp

force)or

))]y y VB S

undinAppe

ndexperime

rmulacomp

oftheMagic

κ(longitudin

putvariable

(selfalignin

Vy ,

ndixA.1.

entaldata,F

putedresults

cFormula.

nalslip)–

ng

(1.7)

Fig.1.5

s.

Page 18: Tire Modeling for Multibody Dynamics Applications

H

e.g.pure

describe

theMagi

imperfec

wellasd

T

consider

1.2.2 T

U

transien

Fig.1.loads

However,th

ecorneringo

ethenon‐lin

icFormulai

ctions,off‐ro

dealingwith

Todescribe

redinadditi

TheSingle

UnliketheM

nttiremodel

5:Sideforces.Comparison

eMagicForm

orbrakingo

near,nonste

sincapable

oadusageof

non‐flatroa

non‐linear,n

ion.

eContactP

MagicFormu

lpresentedi

characteristicnofMagicFo

mulamodel

racombina

eady‐statedr

ofdescribin

fthetire(inc

adcondition

nonsteady‐

ointTrans

laTireMode

in[3]iscapa

8

csofa315/8ormulacompu

itselfislimi

ationofthose

rivingsituat

ngthermalef

cludinginte

ns(shortwav

statedriving

sientTireM

elalone,the

ableofdescr

0R22.5truckutedresultsw

itedto(quas

etwo[2],an

tionsthatare

ffects,tirew

ractionwith

velengths).

gsituations,

Model

esemi‐non‐li

ribingnon‐l

ktireforvarywithmeasure

si)steady‐st

ndistherefo

eofinterest

wearanddur

hflexibleter

,asecondap

inearSingle

inear,nonst

yingnormalddata[3]

tateconditio

orenotsuffic

tinthiswork

rability,tire

rrain,cf.chap

pproachhas

ContactPoi

teady‐state

onsonly,

cientto

k.Also,

pter3)as

tobe

int

driving

Page 19: Tire Modeling for Multibody Dynamics Applications

situation

[10],the

T

contactp

springs(

groundi

groundg

slipdata

currentt

F

by and

andco

nswhencom

emodelislim

Thebasicide

point that

(representin

inbothlong

generateslo

acanthenbe

transientfor

Figure1.6sh

d duetoth

ontactpatch

mbinedwith

mitedtolow

eaofthemo

tisconnecte

ngtheflexib

itudinaland

ongitudinala

eputintoth

rceandtorq

Fig.1

howstheset

hedifferentv

hspeed ′ r

thesteady‐

wslippages(

odelistocon

edtothewh

ilityofthec

dlateraldire

andsideforc

esteady‐sta

quevariation

.6:SingleCon

tupofthem

velocitiesof

respectively

9

stateMagic

(excludinge

ncentratethe

heelrimwith

carcass)allow

ection.Thus

ceaswellas

ateMagicFo

ns[3].

ntactPointTi

odelfromth

slippoint

y).

Formulaeq

.g.ABSbrak

einteraction

hlongitudina

wthecontac

theslipofth

self‐alignin

rmulamode

reModel(top

hetopview.

andsinglec

uations.How

king).

nofroadand

alandlatera

ctpointtosl

hecontactp

ngtorque.Lo

eldescribed

pview)[3]

Thecarcass

contactpoin

wever,assh

dtireinasi

alsprings.Th

lipwithresp

pointrelative

ongitudinala

in1.2.1toc

sspringsare

nt ′(wheels

hownin

ngle

hese

pectto

eto

andlateral

calculate

edeflected

slipspeed

Page 20: Tire Modeling for Multibody Dynamics Applications

T

imaginar

istheeff

O

freely,i.e

direction

when m

I

displaye

T

compon

Todescribet

rypointisa

fectiverollin

Obviously,th

e.slipisnot

nwiththelo

movessidew

Inthefollow

ed.Theyhav

Thechangeo

entsofthev

du

dt

dv

dt

Fig.1.7:E

themotiono

ttachedtoth

ngradius t

heslippoint

equaltozer

ongitudinals

ways[7].

wing,theequ

vebeenderiv

oflongitudin

velocitiesof

'( sx sV V

'( sy sV V

ffectiverollin

of ′theslip

hewheelrim

thathasbee

tmovesrela

ro.Whenthe

slipvelocity

uationsforth

vedin[3].

nalandlater

S and 'S ,re

)sx

)sy

10

ngradiusand

ppoint isin

mperpendic

endefinedin

ativetothew

ewheelisbr

.Bythe

heSingleCo

raldeflection

espectively,

definitionof

ntroduceda

culartothew

n(1.1).

wheelaxisw

raked,forex

sametoken,

ntactPointt

ns and o

asfollows:

f slippointS[

sareferenc

wheelcenter

whenthewhe

xample, mo

,alateralsli

transienttir

overtimeisr

7]

e(Fig.1.7).

r,wherethe

eelisnotrol

ovesinafor

ipvelocity

remodelare

relatedtoth

This

edistance

lling

rward

arises

e

hexandy

(1.8)

(1.9)

Page 21: Tire Modeling for Multibody Dynamics Applications

11

Afterseveralconversions,weobtainthefollowingdifferentialequationthatdescribesthe

lateraldeflectionduetosideslip :

1x x sy

dvV v V V

dt

, (1.10)

where istherelaxationlengthforsideslip / ( isthecorneringstiffness, isthe

lateraltirestiffnessatroadlevel)and isthewheelslipangle /| |.

Similarly,weobtainthedifferentialequationthatdescribesthelongitudinaldeflection :

1x x sx

duV u V V

dt

, (1.11)

where / istherelaxationlengthforlongitudinalslip(with beingthelongitudinal

tirestiffnessatroadleveland beingthelongitudinalslipstiffness),and /| |isthe

longitudinalwheelslipratio.

Ifthewheelistiltedsothatthecamberangle 0,anadditionalsideforceapplies.Thisis

partlybecauseofwheelpathcurvature,butalsobecauseofthetransientsideslipangle thatis

developedimmediatelyandcausesadditionalcarcassdeflection .

Thedifferentialequationforthiscaseis:

1| |F

x xF

dv CV v V

dt C

(withsideslipkeptequaltozero) , (1.12)

where isthecamberstiffnessforsideforce.

Page 22: Tire Modeling for Multibody Dynamics Applications

12

Bythesametoken,regardingtotalspin (thatis,includingturnslipandcamber)yieldsthe

followingdifferentialequation:

1| |F

x xF

dv CV v V

dt C

, (1.13)

where isthespinstiffnessforsideforceandtotalspin isdefinedas( isareductionfactor):

1 1 sin

xV . (1.14)

Usingtheseequations,wearenowabletocalculatethetransientslipquantities , ′and ′

forthetire.First,thecontactpointdeflections and areobtainedbysolvingtheinitialvalue

problemdefinedbythedifferentialequations(1.10),(1.11),(1.12)and (1.13)andusing

velocitiesandtirestiffnessesasinput.Inasecondstep, , ′and ′canbecomputedusingthe

followingequations:

'v

(1.15)

'u

(1.16)

' F

F

C v

C

(1.17)

Withthetransientmodelequationsintroducedabove,itisnowpossibletocalculatefirstthe

transientslipquantitiesandthen,usingtheMagicFormulaequationsshowninappendixA.1,

transientforceandmomentvariationsatthecontactpatch.ThisprocedureisshowninFig.1.8.

Page 23: Tire Modeling for Multibody Dynamics Applications

13

Fig.1.8:Proceduretocalculateforceandmomentvariationsatthecontactpatch

', ', '

,u v

Page 24: Tire Modeling for Multibody Dynamics Applications

14

2 ImplementationoftheMagicFormulaTireModel

ThisresearchaimsforanimplementationoftheMagicFormulatiremodelintothe

multibodydynamicsengineChrono::Engine[4].However,fordebuggingandtestingpurposes,the

transienttiremodelandtheMagicFormulasteady‐statemodelareimplementedinMATLABfirst.

Thismakesiteasiertooptimizethestructureofthecodewhileatthesametimethetranslationto

C++(thelanguageinwhichChrono::Engineiswritten)isofreasonableeffort.Also,MATLABoffers

fairlygoodvisualizationtoevaluatemeasureddata.

2.1 MATLABimplementation

Theflowoftheforcesandmomentscalculationprocessperformedateachtimestepis

showninFig.2.1.Specialattentionwaspaidtoaclear,easytounderstandmodularstructure.Thisis

especiallyimportantbecauseofthecomplexityoftheMagicFormulamodelwiththeseveral

subroutinesandthelargeamountofparametersusedtocharacterizethetire.

Thevehiclemodelprovidesvelocities(suchas| |,thelongitudinalvelocityofthewheel

center),wheelspeedofrevolution ,sideslipangle ,camberangle andturnslipvelocityΨ.For

codetestingwithoutneedforanactualvehiclemodel,thosequantitiesareassumedtobegivenat

eachtimestepwhendifferenttestingmaneuversareexamined.

Page 25: Tire Modeling for Multibody Dynamics Applications

15

Fig.2.1:FlowchartshowingtheconnectionofthetransientmodelandtheMagicFormulamodelintheMATLABimplementation

2.1.1 Tirepropertyfile(*.tire)

Touseavailabletiredataspecifiedforthecommercialmultibodydynamicssimulation

softwareMSCADAMS,itwouldbeappreciatedtouseADAMS’*.tirtiredatafilestoinputtiredata.

However,therearesomecompatibilityissuesbetweenthe2006versionoftheMagicFormulaused

inthisworkandthe2002versionusedinADAMS.Forthisreason,anewyetsimilartireproperty

file(*.tire)isintroduced.Thisfilecontainsalltheinformationtofullycharacterizeaspecifictire

underspecificenvironmentalconditionsusingtheMagicFormulacoefficients.Asmentionedbefore,

thecoefficientscanbeobtainedthroughparameterfittingofmeasurementdata(usuallycarriedout

bythetiresupplier).

Transient tire model- Solve ODEs -

Velocities,

, , , MF parametersfor tire of interest

Magic Formula steady-state model

Transient slip quantities

VelocitiesMF parameters

', ', ', '

Transient tire forces and moments

, , , , ,x y z x y zF F F M M M

Time loopTire property file(.tire) Vehicle model

Page 26: Tire Modeling for Multibody Dynamics Applications

16

2.1.2 Transienttiremodel

Sincesolvingthedifferentialequationsofthetransientsinglecontactpointmodelrequires

initialvaluesfordeflections and ,initiallystartingfromstandstill(where 0)is

suggested.Inthefollowingtimesteps,thedeflectionsfromtheprevioustimestepareusedasinitial

values.Theinitialvalueproblemsaresolvednumericallyusinga4thorderRunge‐Kuttamethod.

Specialhandlingforverylowvelocities| | hasbeenimplementedtoavoidhigh

deflectionsthatarebeyondwhatisphysicallypossibleandintroducesomeartificialdampingto

reduceoscillationsthatwouldotherwisebeundamped[3].

2.1.3 MagicFormulasteady‐statemodel

IntheMATLABimplementation,thetransientmodelsubroutinecallstheMagicFormula

subroutine,usingthetransientslipquantitiesaswellasvelocitiesandMagicFormulaparametersas

input.TheMagicFormulasubroutineitselfconsistsofsubroutinesforcalculationofeachforceand

momentofinterest.Atfirst,longitudinalforce,lateralforceandself‐aligningmomentarecalculated

forpurelongitudinalandsideslipconditions,respectively.Thesequantitiesarethenusedto

calculatetheactualforcesandmomentsduetocombinedlongitudinalandsideslip.Adetailed

structureofsubroutinesandparametersinvolvedisshowninFig.2.2.

Page 27: Tire Modeling for Multibody Dynamics Applications

17

Fig.2.2:SubroutinesusedintheMATLABimplementationofthetransientmodelandtheMagicFormula.

readTIRE.m

tireData

alphaPrimegammaPrimekappaPrimephiPrimephi_t

tireDataV_cV_s

getRelaxationLengths.m

can turn slip phi_t

be neglected?no yes

zeta_i = 1(i = 0,…,8)zeta_i ≠ 1

longitudinalForcePure.m lateralForcePure.m aligningTorquePure.m

longitudinalForceCombined.m lateralForceCombined.m aligningTorqueCombined.m

overturningCouple.mrollingResistanceMoment.m

205_60_R15_91V_2-2bar.tire

turnSlip.m

normalLoad.m

F_z

F_y0

F_yF_x

F_x0 M_z0

magicFormula.m

transientMF.m

Page 28: Tire Modeling for Multibody Dynamics Applications

2.1.4 M

A

andtoid

I

accelera

I

reaches

resulting

Thelong

Modelveri

Asetoftesti

dentifytheir

InscenarioA

ateandbrake

Inthisscena

avelocityof

gfromwhee

gitudinalslip

ification

ngscenario

rlimits.The

A,apurelylo

einastraigh

F

ario,aftersta

fabout

elspeedofre

pvelocity

s,AandB,h

tiretypeuse

ongitudinalm

htline(cf.Fi

ig.2.3:Veloci

artingfroms

13.3 att

evolutionΩ

isthediffe

18

havebeenca

edhereis20

maneuveris

ig.2.3).

ityprofilesfo

standstill,th

=9s.Dueto

andeffectiv

erenceoftho

arriedoutto

05/60R159

sexaminedw

rtestingscen

hevehicleac

oincreasing

verollingrad

osevelocitie

verifytheim

91V.

wherethev

narioA

cceleratesco

longitudinal

dius ishig

s:

mplemented

ehicleisass

onstantlyun

lslip,theve

gher(about1

Ω .

dmodels

umedto

ntilit

elocity

14.6 ).

Page 29: Tire Modeling for Multibody Dynamics Applications

W

isthenr

asbrake

t=19.9s

F

modelin

builtup

brakesli

T

thisman

braking

appliedf

Whilemaint

ollingfreely

eslipincreas

s.

Figure2.4sh

nconjunctio

whenstarti

ipisdevelop

Theresulting

neuveraresh

theforcetur

for 0.

tainingavelo

y.Att=14s,

ses.Finally,a

Fi

howsthetra

nwiththeM

ngfromstan

ped(negativ

glongitudin

howninFig

rnsnegative

.15.

ocityof13.3

brakingbeg

att=18s,th

ig.2.4:Transi

ansientslipq

MagicFormu

ndstill.Atfre

ve′)andrea

nalforceasw

.2.6.Aposit

e.Asitcanb

19

3 ,theclut

gins.Theslip

hewheelislo

ientslipquan

quantitiesfo

ulamodel.As

eerolling, ′

aches

wellasrollin

tivelongitud

beseeninth

tchisdiseng

pvelocity

ockedandth

ntitiesforscen

orscenarioA

sexpected,p

′dropstoze

1asthewh

ngresistance

dinalforceis

efigure,am

gagedatt=1

becomesp

hevehicleco

narioA

Afoundthro

positivelong

ero.Whenth

heelislocke

emomentap

sappliedfor

maximumbra

11s,sothatt

positiveand

omestoast

oughthetran

gitudinalslip

hewheelisb

ed.

ppliedtothe

racceleratio

akingforce

thewheel

increases

andstillat

nsient

p ′is

braked,

ewheelin

on,for

is

Page 30: Tire Modeling for Multibody Dynamics Applications

20

Fig.2.5:LongitudinalforceforscenarioA

Fig.2.6:RollingresistancemomentforscenarioA

0 2 4 6 8 10 12 14 16 18 20-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

time [s]

Long

itudi

nal F

orce

Fx [

N]

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

5

6

7

8

9

10

time [s]

Rol

ling

Res

ista

nce

Mom

ent

My [

Nm

]

Page 31: Tire Modeling for Multibody Dynamics Applications

standstil

turntot

T

constant

cornerin

inFig.1.

I

Howeve

Kamm’s

thatcan

andlater

ScenarioBd

lltoaconsta

theright.Fig

Theresulting

tvalueof0.0

ngtotheleft

.1.

Inthiscorne

r,lateraland

Circle[11].

beapplieda

ralforcesfo

describesal

antlongitud

g.2.7shows

Fig.2.7:S

gtransients

05forconsta

tandpositiv

eringmaneu

dlongitudin

Briefly,alat

andvicever

rscenarioB

laterallanec

dinalspeedo

theimposed

Sideslipangl

slipquantiti

antspeedof

veforcorner

uver,lateralf

nalforcesde

teralforcea

rsa.Thisrela

BshowninF

21

changeman

of10 andt

dsideslipan

leandlateral

esareshow

ftravel,whil

ringtotheri

forcesareof

pendoneac

actingonthe

ationshipcan

Fig.2.9andF

euver.Thev

thenperform

ngle andla

slipvelocityf

wninFig.2.8

letransient

ight.Thiscoi

fmoreinter

chother,asd

etirereduce

nbeverified

Fig.2.10.

vehicleisacc

msaturnto

ateralslipve

forscenarioB

.Longitudin

lateralslip

incideswith

estthanlon

describedin

esthemaxim

dintheplots

celeratedfro

theleft,foll

elocity .

B

nalslip ′att

′isnegativ

hthesignco

gitudinalfor

nasimplified

mumlongitu

softhelong

om

lowedbya

tainsa

efor

nvention

rces.

dwayby

dinalforce

gitudinal

Page 32: Tire Modeling for Multibody Dynamics Applications

Fiig.2.8:Transi

Fig.2.9:Lon

22

ientslipquan

ngitudinalfor

ntitiesforscen

rceforscenar

narioB

rioB

Page 33: Tire Modeling for Multibody Dynamics Applications

23

Fig.2.10:LateralforceforscenarioB

Asaconclusionfromtheverificationscenarios,theresultsobtainedthroughtheMagic

FormulaMATLABimplementationareplausibleandmatchwhatwouldbeexpectedasbehaviorof

thephysicaltireintherespectivedrivingmaneuvers.Themodelisthereforereadytobetranslated

toC++inordertouseitinChrono::Engineandintegrateitwithavehiclemodel.

0 2 4 6 8 10 12 14 16 18 20-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

time [s]

Late

ral F

orce

Fy [

N]

Page 34: Tire Modeling for Multibody Dynamics Applications

24

2.2 Chrono::Engineimplementation

AftersuccessfulverificationusingtheMATLABmodel,thenextstepistoswitchfrom

MATLABtoC++andthemultibodydynamicssoftwareChrono::Engine.

2.2.1 ThemultibodydynamicssimulationengineChrono::Engine

Chrono::Engineismiddleware,thatisready‐to‐useC++librarieswithmultibodysimulation

methodsthatcanbeusedforhigh‐performancedynamics,kinematicsandstaticssimulations[12].

Complexrigidbodymechanismscanbemodeledusingalargesetofpre‐definedroutines,jointsand

constraints,motorsandactuators.TheChrono::Enginemiddlewarealsoincludesmodulesforlinear

algebra,advancednumericalmethodsandmethodsforcollisiondetection.

ThearchitectureisbasedonC++headerfilesalongwithpre‐compiledcodeinstaticand/or

dynamiclibraries(.dll)andisstructuredinclasses.Visualizationofthesimulationismadepossible

throughtheopensource3DgraphicsengineIrrlicht.ItsefficiencyandspeedmakeChrono::Engine

suitableforreal‐timesimulations;verylargeproblemscanbesolvedbyleveragingGPUparallel

computingandNVIDIACUDAtechnology.Chrono::EngineisdevelopedbyProfessorAlessandro

Tasora[4]attheUniversityofParma,Italy,andiswidelyusedformultibodydynamicssimulations

intheSimulation‐BasedEngineeringLaboratoryattheUniversityofWisconsin‐Madison.

2.2.2 TranslationoftheMATLABimplementationtoC++

InordertoimplementtheMagicFormulatiremodelintoChrono::Engine,atranslationofthe

existingMATLABcodetoC++needstobeperformed.Whilethebasicstructureofthecodeaswell

asthetirepropertyfileisthesameasintheMATLABimplementation(cf.Fig.2.2),some

optimizationsofdetailshavebeencarriedout,e.g.reorganizationofthenearly300variablesin

structuresforimprovedclarityanddataexchangeandintroductionofaclass“PacejkaTire”for

easierinclusionandbetterinterchangeabilityofthetiremodel.Inaddition,thecodewasmodified

Page 35: Tire Modeling for Multibody Dynamics Applications

toallow

calculate

2.2.3 V

T

spring‐d

simplifie

ofinertia

demopr

graphica

forinteract

edforcesto

Vehiclean

Thevehiclem

damperwhe

edlineareng

aandareco

rovided,the

aluserinterf

Fig.2.1

tionbetween

thetires).

dtiremod

modelthati

elsuspensio

ginemodel.A

onnectedusi

usercancon

face(GUI).A

11:Visualizat

nthetireand

delusedin

susedinCh

onusingmas

Allbodiesar

ngrevolute

ntrolthrottl

A3Dvisualiz

tionofthevehdemo_s

25

dthevehicle

nChrono::E

hrono::Engin

sslessrods,

reassumed

joints,sphe

le,steeringa

zationofthe

hiclemodeluuspension.cp

emodel(ob

Engine

neisarather

rearwheeld

toberigid,h

ricaljointsa

andspring‐d

evehicleiss

usedinChronpp(modified)

tainingvehi

rsimpleone

drivewitha

haveconsta

anddistance

damperchar

howninFig

no::Engineas

icledataand

e,basicallyc

differential

ntmassand

econstraints

racteristicsi

g.2.11.

specifiedin

dapplying

ontaining

anda

dmoments

s.Inthe

na

Page 36: Tire Modeling for Multibody Dynamics Applications

26

Thegeometryofthevehicleaswellasthetransmissionandenginesetupandthesuspension

systemaredefinedinthe“MySimpleCar”class.Thismakesiteasiertomanagedataflowsuchas

calculationandapplicationofthewheeltorque.Thesimpletiremodelusedinthismodelisfriction‐

based,sotimeevolutionofthevehicleiscalculatedbysolvingthecontactproblembetweenrigid

bodies(tiresandground)atgivenfrictioncoefficientsandwheeltorque.

Thewheeltorqueiscomputedateverytimestepofthesimulationusinginformationsuchas

throttle(userinput),wheelspeed,finaldriveratioandgearratio.Thetorquecurveoftheengineis

assumedtobelineartokeepthemodelsimple.

2.2.4 TheStandardTyreInterface(STI)

In1997,theso‐calledStandardTyreInterface(STI)wasintroducedbytheinternational

TYDEXworkshopasastandardFORTRAN‐77interfacebetweenvehicle,tireandroadmodel[8].

Theuseofastandardizedinterfacemakesitpossibletoswitchbetweendifferenttiremodels

withouttheneedtomodifythevehicleorroadmodels[13].STIfeaturesanexchangeofallthe

necessaryinformationtoconnectroad,tireandvehiclemodel(cf.Fig.2.12)andalsodefines

coordinatesystemsandphysicalunits(SI).TheTYDEXworkshopalsodefinedtheTYDEXfileformat

tostandardizestorageoftiredataobtainedfromexperimentalmeasurements.

Page 37: Tire Modeling for Multibody Dynamics Applications

T

thetirem

1

2

3

4

5

6

7

F

between

approac

canbefo

Thefollowin

modelwhen

1) Current

2) Kinemat

3) Forcesan

4) Statevar

5) Signalsfo

6) Tirespec

7) Workarr

Furthermore

nroad,tirea

htheroadis

oundin[14]

nginformatio

nusingSTI[8

simulationt

ticinformati

ndtorquesa

riables,state

forpost‐proc

cificparame

raytostore

e,roadinfor

andvehiclem

sassumedto

].

Fig.2.12:S

onistransfe

8]:

time

ononmotio

appliedtoth

ederivatives

cessing

etersandnam

internalcom

rmation(like

modelusing

obeplanar.

27

Schematicvie

erredbetwe

onofthewh

hewheelcen

sandinitial

meofthetir

mputationre

ealtitude a

STI.Howev

Thefulldes

ewoftheSTI

enthemulti

eelcenter

nter

conditions

repropertyf

esultsofthe

anditsderiv

ver,inthissi

scriptionofv

[8]

ibodysystem

file

etiremodel

vatives)can

mplifiedimp

variablesan

m(MBS)solv

beexchange

plementatio

ndarraysuse

verand

ed

on

edinSTI

Page 38: Tire Modeling for Multibody Dynamics Applications

28

2.2.5 OrganizationoftheMagicFormulatiremodelinChrono::Engine

InsideChrono::Engine,theMagicFormulatiremodelisorganizedasaclass,“PacejkaTire”,

whichincludesallthenecessarysubroutines,structuresandvariablesthatareneededtodefinethe

tireproperties,theStandardTyreInterfaceandtheconnectiontothevehiclemodel,inthissimple

casethedemovehicle“MySimpleCar”.Twofilesdescribethemodel:“pacejka_definitions.h”,a

headerfilethatcontainsclassdefinitionandfileincludes,and“pacejka_functions.cpp”,which

incorporatestheactualsubroutinesusedbythe“PacejkaTire“class.Uponexecutingthemain

functionofthesimulation,fourtireobjectsarebeinginitialized,eachwithanindependentMagic

Formulamodel(whichalsoallowsfordifferent.tirepropertyfilesforeachtire)andauniquetireID.

Page 39: Tire Modeling for Multibody Dynamics Applications

29

2.2.6 Obtainingreal‐timevehicledata

Ahighlyaccuratetiremodelmakesitimperativetousereal‐timedatafromthevehicle

model.Forthispurpose,thegetVehicleData()subroutineusesvectorsandtransformation

matricesprovidedbytheChrono::Engineenvironmenttocalculatevehicleandtireinformationsuch

aswheelspeedofrevolution orsideslipangle ,whichistheanglebetweenthez‐axisofthe

wheelspindleanditsabsolutevelocity spindle wheel xV V V .Calculationofthesequantitiestakes

placeateveryintegrationstepofthedynamicssolverandisperformedseparatelyforeachtire.

Fig.2.13:Vectorsusedtodescribethemovementofthevehicle

Toavoidsingularitieswhichcouldhavenegativeimpactonthequalityofslipdataandforce

calculationsofthetiremodel,specialstepsaretakenforcriticalsituations,e.g.whenawheelisata

standstillandtherefore 0spindleV ,whichwouldresultinunrealistic,arbitraryslipangles and

potentiallydisturbthesimulation.

wheelV

chassisV

spindlezvehicle path

wheel path

wheel

Page 40: Tire Modeling for Multibody Dynamics Applications

30

Asanexampleofinteractionofvehiclemodelandtiremodel,acodesnippetofthe

getVehicleData()subroutineisshowninFig.2.14.Inthissectionofthecode,thewheelangular

velocity andspindlevelocityareusedtocalculatelongitudinalvelocity wheel xV V ofthewheel,

whichisanelementaryinputtotheMagicFormula.

Fig.2.14:CodesnippetofthegetVehicleData()subroutine

FollowingthesamestructureasintheMATLABimplementation,thevehicledatacanthen

beusedtodetermineforces ,,x y zF F F andmoments , ,x y zM M M usingcomputeForces()(called

transientMF.mintheMATLABcodeofFig.2.2)anditssubroutines.

switch (stiParameters.IDTYRE)case1:

// left front tire (tireID 1)

// wheel position in global RF ------------------------------------------------------------stiParameters .DIS[1] = mWheelLF ‐>get_ptr ()‐>GetPos().x;stiParameters .DIS[2] = mWheelLF ‐>get_ptr ()‐>GetPos().y;

stiParameters .DIS[3] = mWheelLF ‐>get_ptr ()‐>GetPos().z;

// wheel rotation in local RF --------------------------------------------------------------ChVector <>wheelRotationLRF = mWheelLF ‐>get_ptr ()‐>GetWvel _loc();stiParameters .OMEGAR = ‐wheelRotationLRF .y;

if (stiParameters.OMEGAR > 0)vehicleData.travelDirection = 1.0;

else

vehicleData.travelDirection = ‐ 1.0;

// -------------------------------------------------------------------------------------------------// transform spindle orientation to global reference frameChMatrix 33<>*spindleMatA = mSpindleLF ‐>get_ptr()‐>GetA ();ChVector <>spindleOrientation = spindleMatA ‐>Matr_x_Vect(VECT_Z);

ChVector <>spindleVelocity = mSpindleLF ‐>get_ptr()‐>GetPos _dt();

// calculate V _x -------------------------------------------------------------------------------vehicleData.V_x = vehicleData .travelDirection *sqrt(spindleVelocity .x *

spindleVelocity .x + spindleVelocity .z * spindleVelocity .z);

Page 41: Tire Modeling for Multibody Dynamics Applications

31

2.2.7 Applicationoftheforcesandmomentstothevehiclemodel

Inordertoapplythetireforcesandmomentstothevehicle,anewreferenceframeis

attachedtothecontactpatchofeachtire.Theprimarypurposeofthistirereferenceframeisto

transformtheforcesandmomentsobtainedthroughtheMagicFormulasubroutines(andexpressed

inthelocaltirereferenceframe)totheglobalreferenceframeusingthetransformationmatrix A .

Thustheforcesandmomentscaneasilybeappliedtothewheelobjectsinglobalcoordinatesusing

Chrono::Engine’sAccumulate_force() function.

TheverticalforceoftheChrono::Engineimplementationismodeledasaspringforce,

linearlydependingonthedeflectionofthetire.Therefore,thecollisioncontactbetweenwheelsand

groundhasbeendeactivatedtoallowthetires(rigidbodiesinthismodel)tosinkintotheground,

simulatingthetires’deflectionunderload.Inthisway,thevehicleisfloatinginanequilibriumof

normalload(staticanddynamic)andnormalforcesproducedbythetires.

TheverticalforceintheMagicFormulamodelcanbeobtainedusing

01

0

'zz z z Cz

FF p

R and (2.1)

0max(( )cos( ) (1 cos( )),0)z l cr r r , (2.2)

where lr istheloadedtireradius, 0r istheunloadedtireradiusand cr istheradiusofthe

approximatelycirculartirecontour[3].Theotherparametersarespecificfortherespectivetire.

Page 42: Tire Modeling for Multibody Dynamics Applications

2.2.8 R

I

theonee

Resultsan

Inalongitud

examinedin

0

0

1

` [

-]

0

dconclusi

dinalacceler

n2.1.4,thefo

Fig.2

Fig.2.16:Lon

11

`

Fx

ions

rationofthe

ollowingdat

2.15:Longitu

ngitudinalslip

2

` a

2

32

vehiclefollo

tawerereco

udinalvelociti

pandlongitu

3time [s]

and longitudinal for

3

owedbyala

orded(Fig.2

iesfortheleft

udinalforcefo

4

rce, tire ID 3

4

anechangem

2.15‐Fig.2.1

ftreartire

ortheleftrea

55

maneuversi

18):

rtire

6

6

0

5

milarto

0

5000

Fx [

N]

Page 43: Tire Modeling for Multibody Dynamics Applications

33

Fig.2.17:Sideslipangleandlateralslipvelocityfortheleftfronttire

Fig.2.18:Transientslipangleandlateralforcefortheleftfronttire

0 1 2 3 4 5 6-4

-3

-2

-1

0

1

2

3

4

time [s]

[-]

[m/s

]Side slip and lateral slip velocity, tire ID 1

V

sy

0 1 2 3 4 5 6-0.5

0

0.5

time [s]

`

[-]

` and lateral force, tire ID 1

0 1 2 3 4 5 6-5000

0

5000

Fy [

N]

`

Fy

Page 44: Tire Modeling for Multibody Dynamics Applications

34

AsitcanbeseeninFig.2.15andFig.2.16,thelongitudinalaccelerationoftherear‐wheel

drivenvehiclecauseslongitudinalslip(duetothedifferencebetween xV and eR )andtherefore

alongitudinalforce, xF .Thepeaksin eR and sxV arecausedbywheelspinduringacceleration.

Theactuallanechangeisbestexaminedforthesteeredfronttires(Fig.2.17‐Fig.2.18).In

Fig.2.17,thesideslipangle andlateralslipvelocity syV areshownfortheleftfronttire.The

correspondingtransientslipangle ' andthelateralforce yF areshowninFig.2.18.

InFig.2.16andFig.2.18,itcanbeseenthatespeciallythecalculatedlongitudinalforceson

thedrivenwheels,butalsothelateralforcesaresubjecttoheavyoscillations.Thiscouldbefor

severalreasons,likenoiseandalackofdampingintheinputparameters.However,asmentionedin

1.2.2,thesimplecontactpointmodelusedtocalculatetransientslipquantitiesislimitedtolow

slippages.Toavoidsuchproblems,switchingtoamoreadvanced,butalsomorecomplexand

computationallymoreexpensivetransientmodeltoproduceinputdatafortheMagicFormula

modelmightbeconsidered.

Page 45: Tire Modeling for Multibody Dynamics Applications

35

3 Beamtiremodelforinteractionwithdeformableterrain

Thesemi‐empiricalPacejkaMagicFormulatiremodeldescribedinthepreviouschaptersis

veryaccurateonrigidterrainandpowerfulforreal‐timeapplications.Itis,however,alsorelianton

precedingprecisemeasurementsoftherespectivetire.FurtherpracticalissuesoftheMagic

Formulatiremodelindailyworkhavebeendescribedin[15].Also,itthemodelisnotcapableof

interactingwithdeformable,undulatedterrainsuchassoil,sandorsnow.Foroff‐roadvehicle

applicationsthisinteractionisanimportantfactorthathastobeconsideredandthetiremodel

shouldbeabletohandle.Allowingfordeformableterrainalsotakesintoaccounttherolling

resistanceduetoelastichysteresisofthegroundandbulldozingresistancewhengroundmaterialis

pushedinfrontofthecontactpatchofthetire[5].Thereforeinthischapteraphysics‐basedtire

modelusingabeam‐basedapproachissuggested.

3.1 Tiretreadmodel

Inthismodel,thetiretreadisrepresentedbyasetofmasslessthinbeamswithequivalent

springstiffnesses /axialk AE L (axial)and 3 3 /lateralk EI L (lateral)[16].Theradialbeamsare

connectedtothewheelrimatonesideandarelinkeduptoeachotherattheothersidewithshort

connectingbeamstoformanet,simulatingthetiretread(Fig.3.1).Thisconfiguration,also

consideringfrictionbetweenthebeamtippoints(furtherreferredtoas“elements”)andground,

allowsforlongitudinalaswellaslateralflexibilityandthereforeslipinxandydirectionstoinduce

longitudinalandlateralforcesinthecontactpatch.Itisimportanttonotethatthetireisnottreated

asadynamicsystemwithmassesandequationsofmotionassociatedwithit,butasaforceelement.

Thisisjustifiedbytheobservationthat,whenconnectedtoavehiclemodel,nottheforcesinsidethe

tireareofinterest,buttheforcesthatareappliedtothewheelhub.Consequently,itisassumedto

Page 46: Tire Modeling for Multibody Dynamics Applications

36

besufficienttoobtaintheequationsofmotionforthewheel,therebyconsideringtheforcescreated

bythedeflectionofthebeams.

rz

Fig.3.1:Beamelementsetupforthetiretread:anetofbeamsconnectedtotherim

Forsimplicityandtolimitcomputationalcostofthesimulation,bendingandtorsional

momentsinthebeamsarebeingneglectedandsmalldisplacementsandrotationsareassumed.

Page 47: Tire Modeling for Multibody Dynamics Applications

37

3.2 Forcesinthetiretreadandcontactpatch

Sincethecontactpatchismodeledasacollectionofbeamsorientedinlongitudinal,lateral

andradialdirection,numerousforcesbetweenthebeamshavetobeconsidered.Theseforcesarea

resultoftherelativedisplacementoftheelementswithrespecttoeachotheraswellasthewheel

rimduetoloadonthetireandinteractionwithground(friction,normalforce).Asideviewofthe

tirewithforcesin and r directionisshowninFig.3.2.

,i jr, 1i jr

, 2i jr

, 1i jr ,i jrF

,i jF

,i jF

Fig.3.2:Circumferentialandradialforcesatelement(i,j)

Theradialforces rF representthetirecarcassstiffnessandtheairpressureinsidethetire

andcausedeformationoftheterrainunderthecontactpatchifthegroundisnotrigid.Atopview

schematicoffiveelementsofthetiretreadandthecorrespondingforcesisshowninFig.3.3.

Page 48: Tire Modeling for Multibody Dynamics Applications

38

1F

2F

1zF 2zFrF

r z

1,i j

, 1i j

, 1i j

1,i j

,i j

Fig.3.3:Setofforcesactingononeelement(i,j)

Theforcesactingonanelement ,i j andresultingfromtherelativedeflectionofthebeams

toeachotheraswellastheradialdeflectionwithrespecttotheunloadedtireradiuscanbe

calculatedasfollows(cf.Fig.3.3):

I. Forcesin direction:

Force ,1F duetolongitudinaldeflectionofbeam1:

,1 , , , 1 ,( )axial i j i j i j refF k r (3.1)

Force ,2F duetolateraldeflectionofbeam2:

,2 , , 1, ,( )z lateral i j i j i jF k r (3.2)

Page 49: Tire Modeling for Multibody Dynamics Applications

39

Force ,3F duetolateraldeflectionofbeam3:

,3 , , 1, ,( )z lateral i j i j i jF k r (3.3)

Force ,4F duetolongitudinaldeflectionofbeam4:

,4 , , , , 1( )axial i j i j i j refF k r (3.4)

Force ,5F duetolateraldeflectionoftheradialbeam:

,,5 , , , 0 0( )i jr lateral i j i jF k r r

(3.5)

Thesumofforcesinthe directionforoneelement ,i j istherefore:

,

, , , , 1 , , , 1, ,

, , 1, , , , , , 1

, , , 0 0

( ) ( )

( ) ( )

( )i j

i axial i j i j i j ref z lateral i j i j i ji

z lateral i j i j i j axial i j i j i j ref

r lateral i j i j

F F k r k r

k r k r

k r r

(3.6)

II. Forcesin z direction:

Force ,1zF duetolateraldeflectionofbeam1:

,1 , , 1 ,( )z lateral i j i jF k z z (3.7)

Force ,2zF duetolongitudinaldeflectionofbeam2:

,2 , , 1,( )z z axial i j i j refF k z z z (3.8)

Page 50: Tire Modeling for Multibody Dynamics Applications

40

Force ,3zF duetolongitudinaldeflectionofbeam3:

,3 , 1, ,( )z z axial i j i j refF k z z z (3.9)

Force ,4zF duetolateraldeflectionofbeam4:

,4 , , 1 ,( )z lateral i j i jF k z z (3.10)

Force ,5zF duetolateraldeflectionoftheradialbeam:

,,5 , , 0( )i jz r lateral i jF k z z (3.11)

Thus,thesumofforcesinthe z directionforoneelement ,i j is:

,

, , , 1 , , , 1,

, 1, , , , 1 ,

, , 0

( ) ( )

( ) ( )

( )i j

z z i lateral i j i j z axial i j i j refi

z axial i j i j ref lateral i j i j

r lateral i j

F F k z z k z z z

k z z z k z z

k z z

(3.12)

III. Forcesin r direction:

Force ,1rF duetolateraldeflectionofbeam1:

,1 , , 1 ,( )r lateral i j i jF k r r (3.13)

Force ,2rF duetolateraldeflectionofbeam2:

,2 , 1, ,( )r z lateral i j i jF k r r (3.14)

Force ,3rF duetolateraldeflectionofbeam3:

Page 51: Tire Modeling for Multibody Dynamics Applications

41

,3 , 1, ,( )r z lateral i j i jF k r r (3.15)

Force ,4rF duetolateraldeflectionofbeam4:

,4 , , 1 ,( )r lateral i j i jF k r r (3.16)

Force ,5rF duetoradialdeflectionofthecenterelement(thisincorporatestireinflation

pressureandcarcassstiffness:

,5 , ,( )r r axial ref i jF k r r (3.17)

Theresultingradialforceis

, , , 1 , , 1, ,

, 1, , , , 1 ,

, ,

( ) ( )

( ) ( )

( )

r r i lateral i j i j z lateral i j i ji

z lateral i j i j lateral i j i j

r axial ref i j

F F k r r k r r

k r r k r r

k r r

. (3.18)

Bysumminguptheforcesofalltheelementsthatarepartofthecontactpatchin , r and

z direction,wecanthenobtaintheoverallforces(andmoments)actingontherim.

3.3 Modelverification

Thebeammodelisimplementedintoasimulationenvironmentandverifiedusingaself‐

writtenMATLAB2DsimulationenginecalledSimEngine2D,developedinProfessorDanNegrut’s

“ME451:Kinematics&DynamicsofMachineSystems”classattheUniversityofWisconsin‐Madison.

SimEngine2Dfeaturesstandardizeddatainput(twodatafilestocharacterizetheanalysisandthe

desiredmodel)andusesaNewmarkintegratortoperformdynamicsanalysis.Theadvantageofthis

simulationpackageisitsversatileandhighlycustomizablecode,facilitatingtheimplementationof

thetiremodelasasetofforceelementsaswellasitsattachmenttotherigidbodyrim.However,

Page 52: Tire Modeling for Multibody Dynamics Applications

42

sincethesoftwareislimitedto2‐dimensions,onlyverticalandlongitudinalmotionofthewheelcan

beexamined.

3.3.1 Verticalmotionofthewheel

Thenormalforceisverifiedby“dropping”thetire(with240elementsin4layers)tothe

groundfromaheightof0.35m(theunloadedtireradiusbeing0.305m).Sinceaflexibleterrain

modelhasn’tbeenimplementedyet,thegroundisassumedtobenon‐deformable.However,the

respectiveelementscouldinteractwiththeterrainaswell.

Wewouldexpectthetiretodeflectradiallyinthecontactpatchzoneandtherebydevelopa

resultingverticalforcethatcounteractsthegravitationalinertiaofthetire.Indeed,thetire

successivelydeformsasithitstheground(cf.Fig.3.4andFig.3.5)andaverticalforce(thesumof

theforcesatalloftheelements,Fig.3.6)pushesthewheelbackupsothatitstartsbouncingupand

downcontinuously(Fig.3.7).

Fig.3.4:Deflectedtireandresultingnormalforcesduetocontactwithground

(t=0.125s‐2Dview)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Page 53: Tire Modeling for Multibody Dynamics Applications

43

InFig.3.6andFig.3.7,itcanbeobservedthatdampingoccurs(theamplitudedecreases)–

however,thisisduetonumericalintegrationdampingsincethebeamtiremodelitselfdoesn’t

includeatthistimeanymechanicaldamping.

Fig.3.5:Deflectedtireandresultingnormalforcesduetocontactwithground

(t=0.125s‐3Dviewofcontactpatch)

Fig.3.6:ResultingverticalForcedevelopedinthetirecontactpatch

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

200

400

600

800

1000

1200

1400

1600

1800

time [s]

Fr [

N]

Page 54: Tire Modeling for Multibody Dynamics Applications

3.3.2 L

F

contactp

direction

between

relatedt

I

Fig.3.7

Longitudin

Forlongitud

patchisnece

nandthusin

ntheelemen

totheonede

Inthecaseo

z

7:Verticalmo

nalmotion

dinal(andlat

essaryinord

nducelongit

ntsandgrou

escribedin[

ofbraking( v

1 0

0

.

ovementofth

nofthewh

teral)motio

dertodeflec

tudinalandl

ndinlongitu

[17]isused

v r ),the

44

hewheelhub

eel

nofthetire

cttheeleme

lateralforce

udinaldirec

(Fig.3.8):

normalized

center(integ

,frictionbet

ntsincircum

es,respectiv

ction,akinem

dlongitudina

grationsteps

tweentirea

mferential(

ely.Tomode

matic‐based

alslip z isde

ize:0.001s)

ndgroundin

)orlatera

elfrictional

frictionmo

efinedas

nthe

al( z )

contact

del

(3.19)

Page 55: Tire Modeling for Multibody Dynamics Applications

F

yields

forbraki

fordrivi

T

motionb

Forsimplicit

bs

ing( ,v r

ds

ng( ,v r

Toobtainth

betweenthe

,i j

F

ty,however,

1r

v

,

, 0v )and

1v

r ,

0 ).

edeflection

ebeamelem

,0 ,i j i js

Fig.3.8:Kinem

,insteadwe

s(cf.Fig.3.2

entsandgro

,

45

matic‐basedf

usethedefi

2and 1

ound,thefol

frictionmode

initionofsli

0 inFig.3.8)

llowingemp

el[17]

pasalready

resultingfr

piricalrelatio

ydefinedin(

romtherelat

onisused:

(1.2)‐this

(3.20)

(3.21)

tive

(3.22)

Page 56: Tire Modeling for Multibody Dynamics Applications

46

where ,i j istheactualangularcoordinate(polarcoordinatesystem)oftheelement ( , )i j ,,0i j

is

thereferenceangularcoordinateoftheundeformedelement(free‐rollingtire), s isslipforbraking

ordriving, isthekinematicfrictioncoefficientbetweentireandground,and isacorrection

factor.

Thus,theprocessofdevelopinglongitudinalforcesinthetirecontactpatchisthefollowing:

Withthewheelspinning(forexamplebyapplyingatorquetothewheelhub)orbypullingthetire,

relativemotionbetweenthetireandground(i.e.slip)results,causingthebeamelementsinthe

contactpatchtodeformin directionasdepictedinFig.3.8.Thisgivesrisetoalongitudinal

reactionforcethatcanbecalculatedusingtheequationsintroducedin3.2andthateventually

contributestothegeneralizedforcesappliedtothewheelinSimEngine2D.

Toverifythisprocess,thefollowingscenarioshavebeenimplementedinSimEngine2D:

A.Pullingthe(non‐rotating)wheeloverground,thewheelshouldstartturning;

B.Rotatingthewheelhub,alongitudinalmotionshouldresult.

Foreachscenario,thefollowingvaluesareused:

kinematicfriction(constant) 0.4

correctionfactor 0.25

unloadedtireradius 0.305refr m

loadedtireradius 0.295r m

radiusoftherim 0.2rimr m

tirewidth 0.2b m

Theequivalentspringstiffnessesareasfollows:

beamsin direction:

axial , 100axialNk m

lateral , 100lateralNk m

beamsin z direction:

axial , 100z axialNk m

lateral , 100z lateralNk m

beamsin r direction:

axial , 5000r axialNk m

lateral , 100r lateralNk m

Page 57: Tire Modeling for Multibody Dynamics Applications

I

speedof

thewhee

InscenarioA

f 0.5v m

eltostartro

Fig

A,thewheel

s .Through

otating(cf.F

g.3.9:Scenari

(1080elem

themechan

Fig.3.9):

oA:angularp

47

mentsin3lay

ismsdescrib

position,velo

yers)ispulle

bedabove,t

ocityandacce

edhorizonta

thetireelem

elerationofth

allyatacons

mentdeflectio

hewheel

stant

onscause

Page 58: Tire Modeling for Multibody Dynamics Applications

T

coincide

F

correspo

zero,the

I

standstil

therotat

(Fig.3.1

Theangular

eswiththea

Figure3.10s

ondingsum

elongitudina

InscenarioB

llandarota

tionistrans

1):

velocityapp

ngularveloc

showsthed

oflongitudi

alforcealso

B,thewheel

ation(

formedtoa

proachesan

cityofafree

ecreaseofb

nalforcesof

decreasesa

Fig.3.10:Sl

(withtirem

0.4 rad s

longitudina

48

asymptotic

e‐rollingwhe

brakeslipas

falltheelem

andeventua

ipandtotallo

modelspecifi

s )isapplied

almotionby

maximumo

eel:

thewheelst

mentsinthe

llybecomes

ongitudinalfo

icationssim

dtothewhee

thetireelem

of 1.695

0.5 0v r

tartsrotatin

contactpatc

zeroforthe

orce

milartoscena

elhub.Thes

mentsalmos

rad s ,whic

0.295 1.695

ngandthe

ch.Asslipap

efree‐rolling

arioA)isini

simulations

stinstantane

ch

5rad s .

pproaches

gwheel.

tiallyat

howsthat

eously

Page 59: Tire Modeling for Multibody Dynamics Applications

S

accelera

velocity

Similartosc

ationofthew

plots,tracti

Fig.3.11:Sce

enarioA,th

wheeldecrea

onisbuiltu

enarioB:xve

etotallongi

asesasslipd

pveryquick

49

elocityandac

tudinalforc

decreases(F

kly.

ccelerationof

e F andthe

Fig.3.12).As

fthewheelce

ereforethel

sitcanbese

enter

longitudinal

eeninthesli

ipand

Page 60: Tire Modeling for Multibody Dynamics Applications

50

Fig.3.12:ScenarioB:Slipandtotallongitudinalforce

3.4 Resultsandfuturework

Thebeamtiremodel’sfunctionalityhasbeenshownintheprecedingchapter.However,this

rathersimplemodelstillneedsvalidation–e.g.sincetheelementdeflectionsandthereforeforce

calculationsarelinear,thismodelmightberestrictedtosmallslipconditions,wherethefriction

coefficientandthelongitudinalforcearenearlylinearfunctionsofslip.

Anoff‐roadimplementationofthetiremodelfurthermorerequiresanappropriateinterface

betweentireandflexibleterraintoobtaintheradial,circumferentialandlateraldeflectionsofthe

beamelements.Foroff‐roaduse,factorssuchassinkagealsohavetobeconsidered,resultingin

higherrollingresistance.Thisofcoursedependsontheterrainmodelused.

Also,sincethesimulationpackageusedispurely2D,portingtheimplementationofthetire

modeltoa3DengineorcommercialsoftwaresuchasMSCADAMScanbeconsidered.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

500

time [s]

Fal

pha [

N]

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.20

0.5

1

slip

[-]

Falpha

slip

Page 61: Tire Modeling for Multibody Dynamics Applications

51

4 Summary

Inthiswork,thefocushasbeenonimplementingtwoverydifferenttiremodelsforusein

multibodydynamicssimulations.Thesemi‐empiricalPacejkaMagicFormulatiremodelhasshown

tobeaveryaccurateapproachonflat,rigidterrainbuthassomedifficultieswhenitcomestohighly

dynamicdrivingsituations.Also,itisnotsuitableforoff‐roadapplicationsthatrequireinteraction

withflexibleterrainorundulatedsurfaceswithshortwavelengths.

Forthisreason,asecondmodelhasbeenintroducedthatusesbeamstosimulatethetire.

Thisdiscretemodelhasaphysicalbackgroundbutisalsosubjecttolimitationsthatcouldbesolved

byextendingandfine‐tuningthemodel.Thismodelcertainlyisn’tsuitableforhighlydynamicon‐

roadapplicationsbuthasbeendesignedtosimulatee.g.construction‐typevehiclesmovingover

flexibleterrainsuchassoil,gravelorsand.

Page 62: Tire Modeling for Multibody Dynamics Applications

52

5 References

[1]EgbertBakker,LarsNyborg,andHansB.Pacejka,"TyreModellingforUseinVehicleDynamicsStudies,"SAEPaperNo.8704211987.

[2]EgbertBakker,HansB.Pacejka,andLarsLidner,"ANewTireModelwithanApplicationinVehicleDynamicsStudies,"SAEPaperNo.8900871989.

[3]HansB.Pacejka,TireandVehicleDynamics.Warrendale:SAEInternational,2006.

[4]AlessandroTasora.(2011)DeltaKnowledgeWebsite.[Online].http://www.deltaknowledge.com/chronoengine/

[5]GiancarloGentaandLorenzoMorello,TheAutomotiveChassis,Volume1:ComponentsDesign.Berlin:Springer,2009.

[6]Hans‐HermannBraessandUlrichSeiffert,HandbookofAutomotiveEngineering.Warrendale:SAEInternational,2005.

[7]AkiraHiguchi,"TransientResponseofTyresatLargeWheelSlipandCamber,"TU‐Delft,Dissertation1997.

[8]IgoJ.M.Besselink,"ExperienceswiththeTYDEXstandardtyreinterfaceandfileformat,"inTyreModelsforVehicleDynamicsAnalysis.London:Taylor&Francis,2005,vol.43Supplement1,pp.63‐75.

[9]DieterSchramm,ManfredHiller,andRobertoBardini,ModellbildungundSimulationderDynamikvonKraftfahrzeugen.Berlin:Springer,2010.

[10]FrancescoBraghinandEdoardoSabbioni,"ADynamicTireModelforABSManeuverSimulations,"TireScienceandTechnology,no.Vol.38,No.2,pp.137‐154,2010.

[11]JochenWiedemann,SkriptKraftfahrzeugeI(Wintersemester2009/2010).Stuttgart:InstitutfürVerbrennungsmotorenundKraftfahrwesen,UniversitätStuttgart,2009.

[12]AlessandroTasora,MarcoSilvestri,andPaoloRighettini,"ArchitectureoftheChrono:EnginePhysicsSimulationMiddleware,"inProceedingsofMultibodyDynamics.ECCOMASThematicConference,Milano,Italy,2007.

[13]J.J.M.VanOosten,H.‐J.Unrau,A.Riedel,andE.Bakker,"TYDEXWorkshop:StandardisationofDataExchangeinTyreTestingandTyreModelling,"VehicleSystemDynamics,no.27S1,pp.272‐288,1997.

[14]AndreasRiedelandUweWurster,"STI‐StandardizedInterfaceTyreModel‐VehicleModel(Release1.4),"Karlsruhe,1996.

Page 63: Tire Modeling for Multibody Dynamics Applications

53

[15]JochenRauhandMonikaMössner‐Beigel,"Tyresimulationchallenges,"VehicleSystemDynamics,no.46S1,pp.49‐62,2008.

[16]HorstIrretier,GrundlagenderSchwingungstechnikI.Braunschweig:Vieweg,2000.

[17]CarlosCanudas‐de‐Wit,PanagiotisTsiotras,EfstathiosVelenis,MichelBasset,andGerardGissinger,"DynamicFrictionModelsforRoad/TireLongitudinalInteraction,"VehicleSystemDynamics,no.39Issue3,pp.189‐226,2003.

Page 64: Tire Modeling for Multibody Dynamics Applications

54

A Appendix

A.1 MagicFormulaequationsandfactors[3]

Parametersused

g accelerationduetogravity

cV magnitudeofthevelocityofthewheelcontactcenterC

,cx yV componentsofthevelocityofthewheelcontactcenterC

,sx yV componentsofslipvelocity sV (ofpointS)with s cyV V

rV ( )e cx sxR V V forwardspeedofrolling

oV referencevelocity(= ogR orotherspecifiedvalue)

oR unloadedtireradius ( )or

eR effectiverollingradius ( )er

wheelspeedofrevolution

z tireradialdeflection( 0 ifcompression)

zoF nominal(rated)load( 0 )

'zoF adaptednominalload: 'zo Fzo zoF F

Otherquantities

'

'z zo

zzo

F Fdf

F

normalizedchangeinverticalload

* tan( )sgn( )| |

cycx

cx

VV

V tangentoftheslipangle(forverylargeslipangles)

* sin spinduetocamberangle

| |sx

cx

V

V longitudinalslipratio

cos'( )'

cx cx

c c V

V V

V V

avoidsingularitiesat 0cV byaddingasmall 0.1V

1 ( 0,..,8)i i factors i canbesetequaltounitywhenturnslipmay

beneglected(pathradiusR )andcamber remainssmall

Page 65: Tire Modeling for Multibody Dynamics Applications

55

Userscalingfactors (defaultvalueofthesefactorsissetequaltooneifnotused)pureslip

Fzo nominal(rated)load

,x y peakfrictioncoefficient(lessthanoneforlowfrictionroadsurface)

V withslipspeed sV decayingfriction(defaultvalueisequaltozero!)

Kx brakeslipstiffness

Ky corneringstiffness

,Cx y shapefactor

,Ex y curvaturefactor

,Hx y horizontalshift

,Vx y verticalshift

Ky camberforcestiffness

Kz cambertorquestiffness

t pneumatictrail(effectingself‐aligningtorquestiffness)

Mr residualtorque

,*,

1

x yx y

sV

o

V

V

,

*,

, *,

'1 ( 1)

x yx y

x y

A

A

(suggestion: 10A )

combinedslip

x influenceon ( )xF

y influenceon ( )yF

Vy induced‘ply‐steer’ yF

s zM momentarmof xF

other

Cz radialtirestiffness

', ', ', '

,u v

overturningcouplestiffness

My rollingresistancemoment

Page 66: Tire Modeling for Multibody Dynamics Applications

L

F

C

D

E

K

B

S

S

L

F

α

C

Longitudinal

sinxo xF D

Hxκ Sx

1 x Cx CC p

x x zD F

1x Dxp

1x ExE p

x z KK F p

/ (x xB K C

1Hx HxS p

Vx z VS F p

LateralForce

yo sinyF D

*y Hα α S

1 y Cy CC p

lForce

n[ arctanxC

( 0)Cx

1 ( 0)

2 Dx zp df

2 Ex zp df p

2 2Kx K zp df

)x x xC D

2 Hx zp df

1 2 Vx Vx zp df

e(pureside

yn[ arctanC

Hy

( 0)Cy

Fig.A.5.1:

x x xB E B

*x

23 z f 1Exp d

3 exp Kp d

Hx

cx

Vx cx

V

V

eslip)

y y α yB E

56

Positivedireandmoment

arctax xB

4 Exp sgn

z Kxdf B

1 ' Vx x

y yα arctaB

ectionsofforcts[3]

an ]x xB

Ex λ (x

x x xB C D at

y yan α ]B

ces

VxS

1)

0 (x C

Vy] S

)FC

(A.5.1)

(A.5.2)

(A.5.3)

(A.5.4)

(A.5.5)

(A.5.6)

(A.5.7)

(A.5.8)

(A.5.9)

(A.5.10)

(A.5.11)

(A.5.12)

(A.5.13)

Page 67: Tire Modeling for Multibody Dynamics Applications

57

2 y y zD F (A.5.14)

Dy1 Dy2 z *μy*2

Dy3

p p df λ ( 0)

1 p γy

(A.5.15)

*2 *21 2 5 3 4 1 signy Ey Ey z Ey Ey Ey y EyE p p df p p p (A.5.16)

' *2z

1 Ky4 3 3*2 'Ky2 Ky5 z0

Fsin p arctan / (1 )

p p γ Fy Ky zo Ky KyK p F p

(A.5.17)

yy y y

yKB

C D

(A.5.18)

*0 0

1 2 4

1

y Vy

Hy Hy Hy z Hy

y K

K SS p p df

K

(A.5.19)

*3 4 2 ' Vy z Vy Vy z Ky yS F p p df (A.5.20)

1 2 2 ' Vy z Vy Vy z Vy y VyS F p p df S (A.5.21)

6 7y o z Ky Ky z KyK F p p df (A.5.22)

Self‐aligningTorque(puresideslip)

'zo zo zroM M M (A.5.23)

'zo o yoM t F (A.5.24)

( ) cos[ arctan ( arctan( ))]cos'( )o t t t t t t t t t tt t D C B E B B (A.5.25)

*t HtS (A.5.26)

*1 2 3 4( )Ht Hz Hz z Hz Hz zS q q df q q df (A.5.27)

( ) cos[ arctan( )]zro zr r r r r rM M D C B (A.5.28)

* ( )r Hf fS (A.5.29)

'Vy

Hf Hyy

SS S

K

(A.5.30)

'y y KK K (A.5.31)

Page 68: Tire Modeling for Multibody Dynamics Applications

58

2 * *21 2 3 5 6 *

( )(1 | | ) ( 0)Kyt Bz Bz z Bz z Bz Bz

y

B q q df q df q q

(A.5.32)

1( 0)t CzC q (A.5.33)

1 2( ) sgn'o

to z Dz Dz z t cxzo

RD F q q df V

F (A.5.34)

* *23 4 5(1 | | )t to Dz DzD D q q (A.5.35)

2 *1 2 3 4 5

2( )1 ( ) arctan( )( 1)t Ez Ez z Ez z Ez Ez t t tE q q df q df q q B C

(A.5.36)

9 10 6 9*( ) ( : 0)Ky

r Bz Bz y y Bzy

B q q B C preferred q

(A.5.37)

7rC (A.5.38)

*6 7 2 8 9 0

* * *10 11 0 8

( ) ( ) ...

... ( ) | | cos'( ) sgn 1

r z o Dz Dz z Mr Dz Dz z Kz

Dz Dz z y cx

D F R q q df q q df

q q df V

(A.5.39)

, 0 ( ~ , 0)( )zoz o to y y M

y

MK D K C

(A.5.40)

8 9( ) ( ~ , 0)( )zoz o z o Dz Dz z Kz to y o y M

MK F R q q df D K C

(A.5.41)

LongitudinalForce(combinedslip)

x x xoF G F (A.5.42)

cos[ arctan ( arctan( )) /x x x s x x s x s x oG C B E B B G (A.5.43)

cos[ arctan ( arctan( ))]x o x x Hxa x x Hxa x HxaG C B S E B S B S (A.5.44)

*s HxS (A.5.45)

*21 3 2( ) cos[arctan( )] ( 0)x Bx Bx Bx xB r r r (A.5.46)

1x CxC r (A.5.47)

1 2x Ex Ex zE r r df (A.5.48)

1Hx HxS r (A.5.49)

Page 69: Tire Modeling for Multibody Dynamics Applications

59

LateralForce(combinedslip)

y y yo VyF G F S (A.5.50)

cos[ arctan ( arctan( ))] /y y y s y y s y s y oG C B E B B G (A.5.51)

cos[ arctan ( arctan( ))]y o y y Hy y y Hy y HyG C B S E B S B S (A.5.52)

s HyS (A.5.53)

*2 *1 4 2 3( ) cos[arctan ( )]y By By By By yB r r r r (A.5.54)

1y CyC r (A.5.55)

1 2 ( 1)y Ey Ey zE r r df (A.5.56)

1 2Hy Hy Hy zS r r df (A.5.57)

5 6sin[ arctan( )]Vy Vy Vy Vy VyS D r r (A.5.58)

* *1 2 3 4 2( ) cos[arctan( )]Vy y z Vy Vy z Vy VyD F r r df r r (A.5.59)

NormalLoad

01

0

'zz z z Cz

FF p

R (A.5.60)

0max(( ) cos( ) (1 cos( )),0)z l cr r r (A.5.61)

( lr :loadedtireradius, cr :radiusofcirculartirecontour(approx.))

OverturningCouple

*1 2 3( )

'y

x z o sx sx sx Mxzo

FM F R q q q

F (A.5.62)

RollingResistanceMoment

1 2 arctan 'xr

y z o sy sy Myo zo

FVM F R q q

V F (A.5.63)

Self‐aligningTorque(combinedslip)

'z z zr xM M M sF (A.5.64)

Page 70: Tire Modeling for Multibody Dynamics Applications

60

' 'z yM tF (A.5.65)

, , , ,( ) cos[ arctan ( arctan( ))]cos'( )t eq t t t t eq t t t eq t t eqt t D C B E B B (A.5.66)

'y y VyF F S (A.5.67)

, ,( ) cos[ arctan( )]zr zr r eq r r r r eqM M D C B (A.5.68)

*1 2 3 4 ( )

'y

o sz sz sz sz z szo

Fs R s s s s df

F (A.5.69)

2 2 2, ( ) sgn( )

'x

t eq t ty

K

K

(A.5.70)

2 2 2, ( ) sgn( )

'x

r eq r ry

K

K

(A.5.71)

ExtensionofthemodelforTurnSlip(if t islarge,otherwise 1, 1,...,8i i )

2 0 4 0cos[arctan ( | | | |)]y t Dy tB R p R (A.5.72)

1 2 3(1 ) cos[arctan( tan )]y Dy Dy z DyB p p df p (A.5.73)

2 23 1 0cos[arctan( )]Ky tp R (A.5.74)

0 0 0sin[ arctan ( arctan( ))]Hy Hy Hy Hy Hy Hy HyS D C B R E B R B R (A.5.75)

1 2( )'

VyHy Hy Hy z Hy Hy

y

SS p p df S

K

(A..5.76)

*3 4 2( ) 'Vy z Vy Vy z Ky yS F p p df (A.5.77)

0 0 (A.5.78)

4 1'

VyHy

y

SS

K

(A.5.79)

1Hy HyC p (A.5.80)

2 3( ) sgn( )Hy Hy Hy z cxD p p df V (A.5.81)

4Hy HyE p (A.5.82)

0

0( )yR

HyHy Hy y K

KB

C D K

(A.5.83)

Page 71: Tire Modeling for Multibody Dynamics Applications

61

00 1

yyR

y

KK

(A.5.84)

1 2(1 )zp p df (A.5.85)

5 1 0cos[arctan( )]Dt tq R (A.5.86)

8 1 rD (A.5.87)

sin[ arctan ( arctan( ))]r Dr Dr Dr o Dr Dr o Dr oD D C B R E B R B R (A.5.88)

sin(0.5 )z

DrDr

MD

C

(A.5.89)

1 00'

zz Cr y z M

z

FM q R F

F (A.5.90)

1Dr DrC q (A.5.91)

2Dr DrE q (A.5.92)

0

( )(1 )z r

DrDr Dr r

KB

C D

(A.5.93)

0 0 8 9( )z r z Dz Dz z KzK F R q q df (A.5.94)

0 0 0 0z z r t yK K D K (A.5.95)

00 1

zzR

KK

(A.5.96)

6 1 0cos[arctan( )]Brq R (A.5.97)

90 2 0

2arctan( | |) ( )z z Cr t yM M q R G

(A.5.98)

907

2arccos[ ]

| |z

r r

M

D

(A.5.99)

1 0cos[arctan( )]xB R (A.5.100)

1 2 3(1 ) cos[arctan( )]x Dx Dx z DxB p p df p (A.5.101)

Page 72: Tire Modeling for Multibody Dynamics Applications

62

A.2 .tirepropertyfileusedintheMagicFormulaimplementations

%========================================================================== % Magic Formula parameters % Tire: 205/60R15 91V, 2.2bar (Pacejka, 2006) % Comments: %========================================================================== %-------------------------------------------------------------------------- % general parameters %-------------------------------------------------------------------------- % free unloaded tire radius R_0 = 0.313 % effective rolling radius (R_e = V_x / Omega_0) R_e = 0.305 % radius of the circular tire contour R_c = 0.15 % nominal (rated) load F_z0 = 4000 % reference velocity V_0 = 16.67 % tire stiffnesses C_Fx = 435000 % (taken from ADAMS file) C_Fy = 166500 % (taken from ADAMS file) %========================================================================== %-------------------------------------------------------------------------- % user scaling factors / default values %-------------------------------------------------------------------------- % pure slip lambda_Fz0 = 1.0 % 1.0 nominal (rated) load lambda_mux = 1.0 % 1.0 peak friction coefficient (x) lambda_muy = 1.0 % 1.0 peak friction coefficient (y) lambda_muV = 0.0 % 0.0 with slip speed decaying friction lambda_KxKap = 1.0 % 1.0 brake slip stiffness lambda_KyAlp = 1.0 % 1.0 cornering stiffness lambda_Cx = 1.0 % 1.0 shape factor (x) lambda_Cy = 1.0 % 1.0 shape factor (y) lambda_Ex = 1.0 % 1.0 curvature factor (x) lambda_Ey = 1.0 % 1.0 curvature factor (y) lambda_Hx = 0.0 % 1.0 horizontal shift (x) lambda_Hy = 0.0 % 1.0 horizontal shift (y) lambda_Vx = 0.0 % 1.0 vertical shift (x) lambda_Vy = 0.0 % 1.0 vertical shift (y) lambda_KyGam = 1.0 % 1.0 camber force stiffness lambda_KzGam = 1.0 % 1.0 camber torque stiffness lambda_t = 1.0 % 1.0 pneumatic trail lambda_Mr = 1.0 % 1.0 residual torque

Page 73: Tire Modeling for Multibody Dynamics Applications

63

% combined slip lambda_xAlp = 1.0 % 1.0 alpha influence on F_x(kappa) lambda_yKap = 1.0 % 1.0 kappa influence on F_y(alpha) lambda_VyKap = 1.0 % 1.0 kappa induces ply-steer F_y lambda_s = 1.0 % 1.0 M_z moment arm of F_x % other lambda_Cz = 1.0 lambda_Mx = 1.0 lambda_My = 1.0 lambda_MPhi = 1.0 %========================================================================== %-------------------------------------------------------------------------- % parameters for longitudinal force at pure longitudinal slip %-------------------------------------------------------------------------- % shape factor p_Cx1 = 1.685 % peak value p_Dx1 = 1.210 p_Dx2 = -0.037 % curvature factors p_Ex1 = 0.344 p_Ex2 = 0.095 p_Ex3 = -0.020 p_Ex4 = 0 % horizontal shift p_Hx1 = -0.002 p_Hx2 = 0.002 % slip stiffness p_Kx1 = 21.51 p_Kx2 = -0.163 p_Kx3 = 0.245 % vertical shift p_Vx1 = 0 p_Vx2 = 0 %-------------------------------------------------------------------------- % parameters for overturning couple %-------------------------------------------------------------------------- q_sx1 = 0 q_sx2 = 0 q_sx3 = 0 %-------------------------------------------------------------------------- % parameters for longitudinal force at combined slip %-------------------------------------------------------------------------- % stiffness factors r_Bx1 = 12.35 r_Bx2 = -10.77 r_Bx3 = 0

Page 74: Tire Modeling for Multibody Dynamics Applications

64

% shape factor r_Cx1 = 1.092 % curvature factors r_Ex1 = 1.644; r_Ex2 = -0.0064359; % horizontal shift r_Hx1 = 0.007 %-------------------------------------------------------------------------- % parameters for lateral force at pure side slip %-------------------------------------------------------------------------- % shape factor p_Cy1 = 1.193 % peak values p_Dy1 = -0.990 p_Dy2 = 0.145 p_Dy3 = -11.23 % curvature factors p_Ey1 = -1.003 p_Ey2 = -0.537 p_Ey3 = -0.083 p_Ey4 = -4.787 p_Ey5 = 0 % slip stiffness p_Ky1 = -14.95 p_Ky2 = 2.130 p_Ky3 = -0.028 p_Ky4 = 2 p_Ky5 = 0 p_Ky6 = -0.92 p_Ky7 = -0.24 % horizontal shift p_Hy1 = 0.009 p_Hy2 = -0.001 p_Hy3 = 0 % vertical shift p_Vy1 = 0.045 p_Vy2 = -0.024 p_Vy3 = -0.532 p_Vy4 = 0.039 %-------------------------------------------------------------------------- % parameters for lateral force at combined slip %-------------------------------------------------------------------------- % stiffness factors r_By1 = 6.461 r_By2 = 4.196 r_By3 = -0.015 r_By4 = 0

Page 75: Tire Modeling for Multibody Dynamics Applications

65

% shape factor r_Cy1 = 1.081 % curvature factors r_Ey1 = 0 % (taken from ADAMS file) r_Ey2 = 0 % (taken from ADAMS file) % horizontal shift r_Hy1 = 0.009 r_Hy2 = 0 % (taken from ADAMS file) % vertical shift r_Vy1 = 0.053 r_Vy2 = -0.073 r_Vy3 = 0.517 r_Vy4 = 35.44 r_Vy5 = 1.9 r_Vy6 = -10.71 %-------------------------------------------------------------------------- % parameters for self-aligning moment at pure side slip %-------------------------------------------------------------------------- % stiffness factors q_Bz1 = 8.964 q_Bz2 = -1.106 q_Bz3 = -0.842 q_Bz5 = -0.227 q_Bz6 = 0 q_Bz9 = 18.47 q_Bz10 = 0 % shape factor q_Cz1 = 1.180 % peak values q_Dz1 = 0.100 q_Dz2 = -0.001 q_Dz3 = 0.007 q_Dz4 = 13.05 q_Dz6 = -0.008 q_Dz7 = 0.000 q_Dz8 = -0.296 q_Dz9 = -0.009 q_Dz10 = 0 q_Dz11 = 0 % curvature factors q_Ez1 = -1.609 q_Ez2 = -0.359 q_Ez3 = 0 q_Ez4 = 0.174 q_Ez5 = -0.896 % horizontal shift q_Hz1 = 0.007 q_Hz2 = -0.002 q_Hz3 = 0.147 q_Hz4 = 0.004

Page 76: Tire Modeling for Multibody Dynamics Applications

66

%-------------------------------------------------------------------------- % parameters for self-aligning moment at combined slip %-------------------------------------------------------------------------- s_sz1 = 0.043 s_sz2 = 0.001 s_sz3 = 0.731 s_sz4 = -0.238 %-------------------------------------------------------------------------- % parameters for normal load %-------------------------------------------------------------------------- p_z1 = 15.0 %-------------------------------------------------------------------------- % parameters for turn slip %-------------------------------------------------------------------------- p_DxPhi1 = 0.4 % (taken from ADAMS file) p_DxPhi2 = 0 % (taken from ADAMS file) p_DxPhi3 = 0 % (taken from ADAMS file) p_DyPhi1 = 0.4 % (taken from ADAMS file) p_DyPhi2 = 0 % (taken from ADAMS file) p_DyPhi3 = 0 % (taken from ADAMS file) p_DyPhi4 = 0 % (taken from ADAMS file) p_epsGamPhi1 = 0.7 % (taken from ADAMS file) p_epsGamPhi2 = 0 % (taken from ADAMS file) p_HyPhi1 = 1.0 % (taken from ADAMS file) p_HyPhi2 = 0.15 % (taken from ADAMS file) p_HyPhi3 = 0 % (taken from ADAMS file) p_HyPhi4 = -4.0 % (taken from ADAMS file) p_KyPhi1 = 1 % (taken from ADAMS file) % q_BrPhi1 = 0.1 % (taken from ADAMS file) q_CrPhi1 = 0.2 % (taken from ADAMS file) q_CrPhi2 = 0.1 % (taken from ADAMS file) q_DrPhi1 = 1.0 % (taken from ADAMS file) q_DrPhi2 = -1.5 % (taken from ADAMS file) q_DtPhi1 = 10.0 % (taken from ADAMS file) %-------------------------------------------------------------------------- % parameters for rolling resistance moment %-------------------------------------------------------------------------- q_sy1 = 0.01 % (taken from ADAMS file) q_sy2 = 0 % (taken from ADAMS file) %==========================================================================