55
Title 特定位置応力を用いた各種応力集中部の疲労強度・寿命予 測法( 本文(Fulltext) ) Author(s) MUHAMMAD AMIRUDDIN BIN AB WAHAB Report No.(Doctoral Degree) 博士(工学) 工博甲第507号 Issue Date 2016-09-30 Type 博士論文 Version ETD URL http://hdl.handle.net/20.500.12099/55516 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

Title 特定位置応力を用いた各種応力集中部の疲労強 …...Title 特定位置応力を用いた各種応力集中部の疲労強度・寿命予 測法( 本文(Fulltext)

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Title 特定位置応力を用いた各種応力集中部の疲労強度・寿命予測法( 本文(Fulltext) )

Author(s) MUHAMMAD AMIRUDDIN BIN AB WAHAB

Report No.(DoctoralDegree) 博士(工学) 工博甲第507号

Issue Date 2016-09-30

Type 博士論文

Version ETD

URL http://hdl.handle.net/20.500.12099/55516

※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。

Fatigue Strength/Life Estimation Method Using

Critical-Distance-Stress Theory

by

MUHAMMAD AMIRUDDIN BIN AB WAHAB A thesis Submitted to the

Graduate School of Engineering, Gifu University in Partial Fulfillment of the

Requirements for the degree of

DOCTOR OF ENGINEERING

(September 2016)

Supervisor

Prof. Dr. Minoru Yamashita

I

……………………………………………………………………………...1

1.1 …………………………………………………………………...1 1.2 ………………………………………………………………...3 1.3 ………………………………………………...5 1.4 ……………………………………………………………………...6 1.5 ……………………………………………………………...8 1.6 Kth ………….……………....9 1.7 ………………………………………………...…………..11 1.8 ……………………………………………...……..14 1.9 ……………………………………………………...……..16

2 ………………………………….…….......…18

2.1 ………………………………………………………………………………….18 2.2 …………………………………………………………………….18 2.3 …………………………………….20 2.3.1 …………………………………………………………………………….22 2.3.2 ………………………………………………….25 2.3.3 ……………………………………………….28 2.4 …….30 2.5 ………………………………………………………………………………….36

3 ……...……………...37 3.1 ………………………………………………………………………………….37 3.2 ……………………………………………………………….37 3.3 FEM ……………………….……...38 3.4 ……………………………….39 3.4.1 ………………………………………………………….39 3.4.2 ………………………………………………….40 3.4.3 FEM …………………………………………………42 3.4.4 ……………………………………………….44 3.5 ………………………………………………………………………………….46

II

4 ………………………………………………………………….47

……………………………………………………………………….49

…………………………………………………………………………….51

1

1

1.1

2

Fig. 1.1

( )( )

2

FEM

,

( ρ = 0)

(16,17) ρ ≠ 0 ρ

Fig. 1.1 General structure for fatigue strength evaluation

Applied force

Adhesive Contact edge Applied force

A

B C

D E

Hole Hole A

2

FEMCAE

(18~20) 2

(Point method Line method)

Point methodLine method

3

CAE

2

100

V

SS400

3

SS400 SKS93

3

1.2

Fig. 1.1

(1) pq (pm,nq) A F pq σn

σn F/A 1.1

mn max σn σmax σn 1.2

(1~4) Fig. 1.2 FEM Fig. 1.3 a/W

σmax a/Wσn σmax σmax= σn σmax= σ

Fig. 1.2 Stress distributions of finite plate with circular hole

n ma

a 2

W 2

F

F

qp m n

F

F

p m

max

n

4

Fig. 1.3 Relationship between and a/W

FEM

Stre

ss c

once

ntra

tion

fact

or

Ratio of circular hole diameter to plate width a/W 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

5

1.3

Fig. 1.2 W2a

y σ0 Fig. 1.40

(1)

2c o s)431(2

)1(2 2

2

4

40

2

20

ra

ra

ra

r

2cos)31(2

)1(2 4

40

2

20

ra

ra

(1.3)

2sin)231(2 2

2

4

40

ra

ra

r

σ0

pq σ θ π/2

)32(2 4

4

2

20

ra

ra

(1.4)

m σmax=3σ0

σ0 r=2a σ =1.22 0 r=4a σ =1.04σ0

=3

Fig. 1.3 a/W (1)

6

1.4

Fig. 1.5

(5~7)

Fig. 1.5 Various deformation modes of crack

y

x

0

(a) Mode Tensile

(b) Mode In-plane shear

(c)Mode (Vertical shear

0 Fig. 1.4 Stress distribution around circular hole

7

Mode

23c o s

2s i n

2c o s

2

23s i n

2s i n1

2c o s

2

23s i n

2s i n1

2c o s

2

rK

rK

rK

xy

y

x

(1.5)

Mode

23sin

2sin1

2cos

2

23cos

2cos

2sin

2

23cos

2cos2

2sin

2

rK

rK

rK

xy

y

x

(1.6)

Mode

2cos

2

2sin

2

rK

rK

y

x

(1.7)

σz= (σx+σy) : (1.8)

K K K K

8

1.5

K Kσ

)(FaK (1.9)

a F(ξ)1 F(ξ)

(5~7) 3Fig. 1.6 3 (c)

(c) Single-crack

(b) Double edge crack (a) Center crack

Fig. 1.6 Crack type model

9

2sec06.0025.01)( 42F =a/W (1.10)

1/109.0471.0205.0561.0122.1)( 432F =a/W (1.11)

2cos

2sin1199.0923.0

2tan2)(

4

F (1.12)

1.6 ΔKth

Fig. 1.7K (1.5)

σmax σmin aK Kmax Kmin

(8)

aK

aK

minmin

maxmax (1.13)

σ=σmax σmin

K

aKKK minmax (1.14)

σmin 0 R 0

K Kmax

da/dN ΔKFig. 1.8

K (c) K da/dN Kmax

KIC

K (a) K da/dNK K Kth

10

K (b) K da/dN (1.15)

mKCdNda (1.15)

Paris C, m (8)

0

r

π ∆Kth

Fig. 1.7 Stress singularity and stress intensity factor at crack tip

0

11

1.7

Fig. 1.9 σ

K σ ( σ4) da/dN Kσ ( σ2 σ3)

σ2 σ4 K( σ1)

σ1 σ2

∆σth

Stress intensity factor range log(ΔK)

Fatig

ue c

rack

gro

wth

rate

log

(da/

dN) a

ΔK th

K fc

da /dN =C(ΔK )m

1m

(a ) (b )

(c )

Fig. 1.8 Relationship between ΔK and da/dN

KIC

Kth

(a) (b)

(c) da/dN = C ( K)m

Stress intensity factor range ( K)

Fatig

ue c

rack

gro

wth

rate

(da/

dN)

12

Fig. 1.9 Fatigue crack growth rate for various levels in stress amplitude Fig. 1.10 ∆σth a

K= Kth

∆σth ∆σw0

Fig. 1.10 An example of fatigue strength of SS400 with small crack

0.01 0.05 0.1 0.5 1 5 50

100

500

1000

Crack length a (mm)

Stre

ss

∆σth

(M

Pa)

Linear fracture mechanicsFatigue limit of smooth specimen

Kth : Constant

∆σw0

Stress intensity factor range K

Fatig

ue c

rack

gro

wth

rate

da

/dN

σ1< σ2< σ3< σ4

σ4

σ3 σ2

σ1

Final fracture

Big crack

Kth

13

El Haddad (9~12) El Haddada 0 a ( aa 0)

a 0

1.17 1.14 2

0

0

1

w

thKa

0aaKth (1.17)

1.17 a El Haddad a 0

aEl Haddad a 0

Fig. 1.11

0.01 0.05 0.1 0.5 1 550

100

500

1000

crack length a mm

Thre

shol

d St

ress

M

Pa

linear fracture mechanicsfatigue limit of smooth specimenEl Haddad equation

Fig. 1.11 Fatigue strength predicted using El Haddad equation for SS400 material

Linear fracture mechanicsFatigue limit of smooth specimen El Haddad equation

Crack length a (mm)

Stre

ss

w (

MPa

)

(1.16)

14

1.8

K

Point method Line method Area method 3

Fig. 1.12O Point method

rC

Line methodLC LC

Area method OAC

Point method ,

, Point method rC

rC

(1.5) 0 (13~17).

rKr2

(1.18)

rC (1.18) K Kth σ(r)σw0 r

2

21

wo

thC

Kr (1.19)

15

rC σw0

(1.5)(1.5) rC σw0 σy

(1.5)

cy r

Kr

K2

)2

3sin2

sin1(2

cos2

(1.20)

r=rC σy= σw0 σw(18~20)

r crack

rC

Δσw0 r

Kr th

2)(

σ

Fig. 1.13 Stress distributions near crack edge

Fig. 1.12 Point, line and area near circular hole in critical distance theory

O

LC rC

16

1.9

S20C Fig. 1.14

σw1

σw2 A B ρ0

σw1

ρ0

σw2(21)

ρ1 ρ0 σw2 σw1

ρ0 σw1

σ w1σ w

2,M

Pa

0

50

100

150

200

250

1 2 3 4 5

Stress concentration factor

σw1

σw2

ρ=1.0 mm

Fig. 1.14 S20C Fatigue strength of notched material

ρ0=0.5 mm

A

B

17

Table 1.1(2,22,23) ρ0

Table 1.1 Critical radius ρ0 for each materials. Material σB

MPa σS

MPa σw0

MPa ρ0

mm S10C Carbon steel 372 203 181 0.6 S20C Carbon steel 469 279 211 0.5 S25C Carbon steel 494 297 255 0.5 S35C Carbon steel 600 336 274 0.4 S50C Carbon steel 673 347 265 0.25

S50C Carbon steel refining 1010 858 500 0.1 S50C Carbon steel refining 1246 1132 617 0.1

SNCM26 Nickel-chromium-molybdenum steel 1389 1140 629 0.1 σB: Tensile strength σS: Yield stress σw0: Fatigue limit ρ0: Notch radius

18

2

2.1

100

SS400V

SS400

2.2

Fig. 2.1 ∆σw0

∆Kth rC Point methodLC Line method

. rC LC

.

rC=(∆Kth /Δσw0)2/2 π (Point method) (2.1) LC=2(∆Kth /Δσw0)2/π

(2.2) (Line method)

19

(a) Point method

(b) Line method

Fig. 2.1 Derivation of critical distance rC and LC

Crack r

σ

π ∆Kth

Δσw0

rC

Crack r

σ

π ∆Kth

Δσw0

LC

S1

S2

20

2.3

σB KIC

Fig. 2.2 ∆σw0 () ∆Kth rC

σB KIC rC

2

2

σ S-N

Fig. 2.2 rC rC

σn

σ

Fig. 2.2 Critical distances and stress range

rC

F

F

F

F

Critical distance

Stre

ss ra

nge

rC

σ

σB

∆σw0

(∆Kth)

(KIC)

Cycling loading

F

F

F

F

21

Fig. 2.3 S-N NFig. 2.4 σn

S-N .

Fig. 2.3 Determination of N from smooth specimen S-N curve of smooth specimen

Fig. 2.4 Plotting using average stress σn and N on S-N curve

σB

∆σw0

σ

N Number of cycle to failure Nf

Stre

ss ra

nge

σ

σn

N

Stre

ss ra

nge

σ

Number of cycle to failure Nf

F

F

F

F

22

2.3.1

σ N V10t

EHF-EA10 4830Fig. 2.5

R 0 20Hz

N 5 106

2 kN

Table 2.1 SS400(20) Fig. 2.6 .

23

Fig. 2.5 General view of fatigue testing apparatus

∆σw0 (MPa)

∆Kth (MPa m1/2)

σB (MPa)

KIC

(MPa m1/2) 305 6.7 448 39.5

Hydraulic unit

Testing machine

Servo controller

Load cell

Specimen

Hydraulic actuator

Table 2.1 Mechanical properties of SS400 steel

24

(a) Smooth specimen

(b) V-notch specimen

(c) Circular hole specimen Fig. 2.6 Dimensions of specimens

rC rC (2.1),(2.2)

rC = (∆KIC /ΔσB)2/2 π = 1.240 mm ( )

rC (∆Kth /Δσw0)2/2 π= 0.077 mm ( )

4 mm or 10 mm

60 or 120

8- 10

8- 10

8- 10

15

25

2.3.2

NX NASTRAN 1/4 V

Fig. 2.7 200 MPa 450 MPaTable 2.2 5 mm

(a) V-notch specimen (1/4 region)

(b) Circular hole specimen (1/4 region)

Fig. 2.7 Finite element meshes

Element type 2-Dimensional 6 node triangular element (PLANE183) Element model Plane stress condition

Material property Linear elastic body Young's modulus 210 GPa Poisson's ratio 0.3

Table 2.2 Calculation condition of FEM analysis

26

V 60° 120° Fig. 2.8

4 mm10 mm Fig. 2.9

(a) 60° V-notch specimen

(b) 120° V-notch specimen

Fig. 2.8 Stress distributions for V-notch specimen

Location r (mm)

Stre

ss σ

(M

Pa)

Location r (mm)

Stre

ss σ

(M

Pa)

(KIC)

(KIC)

σB

σB

(∆Kth)

(∆Kth)

Assumed relationship between ∆Kth and KIC

200MPa 250MPa 300MPa 350MPa 400MPa

450MPa

60

120

Assumed relationship between ∆Kth and KIC

250MPa 300MPa 320MPa 335MPa 350MPa 370MPa

0.01 0.1 1 10 100

0.01 0.1 1 10 100

1000

800

600

400

200

0

500

400

300

200

100

0

∆σw0

∆σw0

27

(a) 4 mm circular hole specimen

(b) 10 mm circular hole specimen

Fig. 2.9 Stress distributions for circular hole specimen

Location r (mm)

Stre

ss σ

(M

Pa)

Location r (mm)

Stre

ss σ

(M

Pa)

(KIC)

(KIC)

σB

σB

(∆Kth)

(∆Kth)

∆σw0

Assumed relationship between ∆Kth and KIC

200MPa 250MPa

300MPa

350MPa 400MPa 450MPa

Assumed relationship between ∆Kth and KIC

300MPa

325MPa

350MPa

375MPa

400MPa

600

500

400

300

200

100

0 0.01 0.1 1 100

600

500

400

300

200

100

0

700

0.01 0.1 1 10 100

∆σw0

28

2.3.3

Fig. 2.10 60° 120° V 100 103

103 106 103 105

10

(a) 60° V-notch specimen

(b) 120° V-notch specimen

Fig. 2.10 Predicted and experimental by obtained S-N curves for V-notch specimen

Number of cycle to failure Nf

Number of cycle to failure Nf

100 101 102 103 104 105 106 107

100 101 102 103 104 105 106 107

Predicted S-N curve

V-notch 60°

Smooth specimen

Predicted S-N curve

V-notch 120°

Smooth specimen

Stre

ss ra

nge

σ

(MPa

)

500 450 400 350 300 250 200 150 100 50 0

120

500 450 400 350 300 250 200 150 100

50 0

Stre

ss ra

nge

σ

(MPa

)

60

29

Fig. 2.11 4 mm 10 mm4 mm

100 104 104 105 105 106

10 mm 100 103 103

106 103 105

(a) 4 mm circular hole specimen

(b) 10 mm circular hole specimen

Fig. 2.11 Predicted and experimental by obtained S-N curves for circular hole specimen

Number of cycle to failure Nf 100 101 102 103 104 105 106 107

Predicted S-N curve Circle 4 mm Smooth specimen

Predicted S-N curve

Circle 10 mm

Smooth specimen

Stre

ss ra

nge

σ

(MPa

) St

ress

rang

e σ

(M

Pa)

500 450 400 350 300 250 200 150 100 50 0

500 450 400 350 300 250 200 150 100 50 0

100 101 102 103 104 105 106 107

Number of cycle to failure Nf

30

2.4

2 S-N

(24~27) (27~28)

(29~31)

DSS(Daily Start Stop)Fig. 2.12

(30,31)

Fig. 2.13H r

rH / (2.3)

High cycle fatigue

Low cyclefatigue

Time t

Stre

ss σ

Fig. 2.12 Assembled gas-turbine compressor rotors and blade dovetail joint

31

Fig. 2.13 Stress distribution near contact edge

λ Fig. 2.14 1 2

θ1 θ2 1 2 ν1 ν2 μλ HC

Fig. 2.14 Geometry of contact edge and stress singularity parameter

HC

Ni-Mo-V σw0 = 360 MPa∆Kth = 6 MPa·m1/2 (24,25,26) H Fig. 2.15

H=f(F)

Intensity of stress singularity H Order of stress singularity

= H/r St

ress

Distance from the adherent edge r Contact edge

Contact edge Contact Surface

P

F

Frictional coefficient

F Intensity of stress singularity

Order of stress singularity

=f (E1,E2, ν1,ν2, θ1,θ2, )

32

0 0.1 0.2 0.3 0.4 0.50

200

400

Fig. 2.15 Fretting fatigue crack initiation criteria using stress singularity

parameters derived from critical distance theory

(26) Fig. 2.16 90°65° Δσθ Fig. 2.17

(2.1) rC = 0.11mm

Fig. 2.16 Contact model for initiation of fretting fatigue crack

Line method

Point method

Order of stress singularity

Inte

nsity

of s

tress

sing

ular

ity H

Contact pressure P

Contact edge

Axial load σa

Pad

Contact surface

Specimen

33

Fig. 2.17 Calculated stress distributions near the contact edge (σa 100 MPa, Wedge angle 90°)

105

Fig. 2.1820 mm 10 mm 10 mm

. (24~26) Fig. 2.19 Ni-Mo-V S-N (R= -1) Fig. 2.20

rC = 0.011 mm and rC’= 2.13 mm Fig. 2.21

65 σa=200 MPaFig.2.21 2 490 MPa

0.12 mm Fig. 2.19 490 MPa 105

σa=200 MPa 105 Fig. 2.22σa σa

2 Fig. 2.22

(26~31)

S-N

σa

σa

Distance from the adherent edge r (mm)

Stre

ss

(M

Pa)

34

Fig. 2.18 Fretting fatigue test apparatus

103 104 105 106 107 108100

1000

Fig. 2.19 S-N Curve of Ni-Mo-V steel smooth specimen

Estimated cycle to failure

Number of cycle to failure Nf

Stre

ss ra

nge

σa

(M

Pa)

σB = 705 MPa

∆σw0 = 360 MPa

Specimen

Pad Strain gage B

Screw

Press plate Strain gage A

20

10

10

40

35

1 10 10010−12

10−10

10−8

10−6

Fig. 2.20 Crack propagation rate of Ni-Mo-V steel

0.01 0.1 1 10100

1000

Fig. 2.21 Derivation of specific distance in low cycle fatigue region and estimation of low cycle fretting fatigue life fatigue

Crac

k pr

opag

atio

n ra

te d

a/dN

, m/c

ycle

Stress intensity factor range ∆K, MPa·m1/2

da/dN=C(∆K)m

R=0

Stre

ss

σ

(MPa

)

Distance r (mm)

σa = 200 MPa

σB

(KIC)

(∆Kth)

∆σw0

705

360

1000

100

Stress distribution obtained by FEM

0.01 0.1 1 10

36

103 105 106 107 108104

100

500

1000

Number of cycles to failure Nf

Str

ess

am

plit

ude

σ

a(M

pa)

Plane specimen

Fretting (Low cycle)

Fretting(Ultra high cycle)

Experimental

Smooth specimen

Fig. 2.22 Estimated and experimental fretting fatigue S-N Curves

a: Prediction from(30,31) b: Prediction from(30,31)

2.5

SS400 V

(1)

(2) 103 105 V

10 %

(3) 10 %

V

(4)

V

Number of cycles to failure Nf

Stre

ss a

mpl

itude

σ a

(MPa

)

(a)

(b)

37

3

3.1

2 Point method

FEMSS400 SKS93

S-N SS400SKS93

3.2

KI

)(FaK F(ξ) ξ

W ξ = a / W (5 7)

2c o s

2s i n1199.0923.0

2tan2)(

4

F

Δσw0 El Haddad

a0

a ( a + a0 )(10)

)(/ 0Δ aaKthE a 0 Δσw0 a0

2

00

1w

thKa

a a0

a a0

ΔK ΔKth

(3.1)

(3.2)

(3.4)

(3.3)

ΔΔ

38

3.3 FEM

Fig. 3.1 FEM

rC ΔKth

Δσw0

2

21

wo

thc

Kr

σn

FEM rC σPoint method Δσw0 rC

σn σ Δσw0

σw

0w

nw

rc

Distance from crack

Stress distribution Prediction by FEM Magnified by σw0 / σ

σw0

σ

Fig. 3.1 Prediction of fatigue stress by critical distance theory using calculated stress distribution

(3.5)

(3.6)

rC

Distance from crack tip

Stress distribution Prediction by FEM Magnified by

ΔΔ

Δσw0/ σ

Δσw0

σ

Stre

ss

39

3.4

rC

FEM

3.4.1

30 mm 100 mm 5mmΔKth Fig. 3.2

32 mm 2

mm 200 MPa 20 Hz

a28 mm

R: 0 f :

20Hz 2 SS400 SKS931×107 Table 3.1

Fig. 3.2 Single - small -crack specimen

Table 3.1 Mechanical properties of steels used Material SS400 SKS93

Young’s modulus 206 GPa 210 GPa Poisson’s ratio 0.30 0.30

Ultimate tensile strength: σB 448 MPa 543 MPa Fatigue limit: Δσw0 305 MPa 342 MPa

28

40

3.4.2

SS400 SKS93 Fig. 3.3 ○0.1 mm ( KV - 5C) ΔK

□ 0.1 mm 1 mm ( KV - 25B)

Paris mKcdNda / (3.7)

SS400 8MPa·m1/2 6.7 MPa·m1/2

SS400ΔKth 6.7 MPa·m1/2 SKS93 8.1 MPa·m1/2

Table 3.2Δσw0 ΔKth (4) (5)

rC El Haddad a0 Table 3.2

Table 3.2 Critical distance and potential crack length Material SS400 SKS93

Critical distance rC 0.077 mm 0.089 mm Potential crack length a0 0.154 mm 0.179 mm

41

10-4

10-5

10-6

10-7

σ= Const

K- Decreasing procedure

100 101 102

10-4

10-5

10-6

10-7

σ= Const

K- Decreasing procedure

100 101 102

1 2 3 4 5 678910 20 30405060708090100

10−10

10−8

10−6

10−4

100 101 102

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

interval 0.1mm K-decreasing procedure

interval 1mm σ= const

interval 0.1mm σ= const

(a) Material: SS400

(b) Material: SKS93

Fig. 3.3 Fatigue crack growth rate

Stress intensity factor range ΔK (MPa m1/2)

Fatig

ue c

rack

gro

wth

rate

d

a/dN

(mm

/cyc

le)

Stress intensity factor range ΔK (MPa m1/2)

Fatig

ue c

rack

gro

wth

rate

d

a/dN

(m

m/c

ycle

)

Grid interval 0.1 mm, ΔK-decreasing procedure

Grid interval 1 mm, Δσ = Const

Δσ = Const

ΔK-decreasing procedure

Grid interval 0.1 mm, Δσ = Const

10-4

10-5

10-6

10-7

100 101 102

42

3.4.3 FEM

Fig. 3.2 Fig. 3.4FEM

2 8 25 mm 1 0.01 mm

1 Fig. 3.5 a = 0.10 mm( a = 5 mm( ) FEM

(r < 0.02 mm)FEM

0.1 mm

Fig. 3.4 Finite element model with small crack

a

28

120

43

0 0.10

100

200

0 0.02 0.04 0.06 0.08 0.1

200

Distance r (mm)

Stre

ss σ

(MPa

)100

Linear fracture mechanicsFEM

0

(a) a: 0.10 mm , σ: 100 MPa

0 0.10

500

1000

1500Linear fracture mechanicsFEM

500

1000

1500

0 0.02 0.04 0.06 0.08 0.1

Stre

ss σ

(MPa

)

Distance r (mm)

0

(b) a: 5 mm , σ:100 MPa

Fig. 3.5 Stress distribution near crack tip

44

5 10 15 [ 10+6]300

310

320

330

3.4.4

0.10 0.50 1.00 5.00 10.00 mmσn 100 MPa

σ (3.6) σw 3.4.1

1×107

Fig. 3.23 4 SKS93 ,

0.112 mm S-N Fig. 3.6

Fig. 3.6 Experimental results of fatigue limit of cracked specimens (SKS93 Steel, Cracked length 0.112 mm)

σw 310 MPa

El Haddad Fig. 3.7

Table 3.3 Δσw0 / σσw Table 3.2 a0 (3) El Haddad

σE El Haddad

Fig. 3.7 Table 3.3

10 mm Table 3.328 mm 1/3

Fig. 3.7 0.1mm(SS400:305MPa ,SKS93:342

MPa) 0.1 mm (SS400:299MPa,SKS93:329MPa)1 mm

El Haddad 0.1 mm

Stre

ss ra

nge

Δσ n

(M

Pa)

300

330

320

310

106 107 Number of cycle to failure Nf

45

0.1 mm 1 mm

(a) Material : SS400

(b) Material : SKS93

Fig. 3.7 Comparison of prediction methods for crack specimens of steel plate

Fatig

ue li

mit

σ w

(MPa

) Fa

tigue

lim

itσ w

(M

Pa)

Crack length a (mm)

Crack length a (mm)

Fatigue test result Fatigue limit of smooth specimen Critical distance theory El Haddad Linear fracture mechanics

Fatigue test result Fatigue limit of smooth specimen Critical distance theory El Haddad Linear fracture mechanics

46

3.5

SS400 SKS93

(1) 0.1 mm

(2) SS400 SKS93 0.1 1 mm

(3)

El Haddad 0.1 mm

(4)

Table 3.3 Fatigue limit result for each crack length of SS400 and SKS93 steel

Material SS400 SKS93 Crack length a (mm) Δσw0 / σ σw (MPa) σE (MPa) Δσw0 / σ σw (MPa) σE (MPa)

0.10 2.985 299 239 3.290 329 273 0.50 1.586 159 148 1.868 187 175 1.00 1.111 111 111 1.325 133 133 5.00 0.446 45 53 0.500 50 63 10.00 0.204 20 38 0.243 24 45

47

4

SS400 V

(1)

(2) 103 105 V

10 %

(3)

10 % V

(4)

V

S-NSS400 SKS93 El Haddad

(1) 0.1 mm

(2) SS400 SKS93 0.1 1 mm

(3)

El Haddad 0.1 mm

(4)

48

49

1) (2004) 167-170

2) (1995) 19-28

3) (1967)

4) (1984)

5) (2006) 23-26

6) (1995) 149-155

7) Vol. 1, (1983), 32

8) (2006) 88-94, 132-135

9) El Haddad, M.H.,Smith,K.N. and Topper, T. H.: Fatigue Crack Propagation of Short Crack,

Trans. ASME, J. Eng. Mater. Tech., 101, (1979), 42.

10) El Haddad,M.H.,Topper,T.H.and Smith,K.N.:Prediction of non propagating

cracks.Engng.Fract.Mech.,11, (1979), 573.

11) El Haddad,M.H.,Dowling,N.E.,Topper,T.H.and Smith,K.N.:J-Integral application to short fatigue

cracks at notches. Int.J.Fract.,16, (1980) ,15.

12) Shin,C.S. and Smith,K.N.:Fatigue crack growth from sharp notches.Int.J.Fatigue,7, (1985) ,87.

13) David Taylor Geometrical effects in fatigue; a unifying theoretical model International Journal

of Fatigue 21 1999),413.

14) D. Taylor, The Theory of Critical Distances: A New Perspective in Fracture Mechanics. Elsevier,

Oxford, UK (2007).

15)

2005)

16)

, (A ) 54 499 (1988), 597.

17) ,

(A ) 67 661 (2001) ,1486.

18) Nakamura, F., Abe, T., Hattori, T and Yamashita, M.: Fatigue Strength Evaluation Methods

Using Stress Distributions, Key Engineering Materials, 417-418 (2010), 409.

19) Hattori, T., Amiruddin, M., Ishida, T. and Yamashita, M.: Fretting Fatigue Life Estimations

Based on the Critical Distance Stress Theory, Procedia Engineering, 10 (2011), 3134

50

20) Amiruddin, M., Jie, N., Hattori, T. and Yamashita, M.: Fatigue Strength and Life Estimation

Methods Using Critical Distance Stress Theory, Advanced Materials Research,Vols. 694-697

(2013),853.

21) 42, (1976),996.

22) 26 1977 296.

23) 34 1968 371.

24) Hattori T. Sakata H. and Watanabe T. A stress singularity parameter approach for evaluating adhesive and fretting strength ASME Book No. G00485 MD-vol.6 (1988)43.

25) Hattori T. and Nakamura N. Fretting fatigue evaluation using stress singularity parameters at contact edges Fretting Fatigue ESIS Publication 18 (1994), 453.

26) Hattori T. Nakamura M. and Watanabe T. Simulation of fretting fatigue life by using stress singularity parameters and fracture mechanics Tribology International ( 2003) 36 87.

27) Hattori T. et al. Fretting fatigue analysis using fracture mechanics JSME Int. J Ser. l (1988) 31 100.

28) Suresh S. Fatigue of Materials 2nd Edition Cambridge University Press (1998) 469 29) Goryacheva I. G. Rajeev P. T. and Farris T. N. Wear in partial slip contact ASME

J. of Tribology (2001) 123 4,848. 30) Hattori T. Yamashita M. and Nishimura N. Fretting fatigue strength and life estimation

in high cycle region considering the fretting wear process JSME International Journal ( 2005) 48,4,246.

31) Hattori T. Nakamura Nishimura N. and Yamashita M. Fretting fatigue strength estimation considering the fretting wear process Tribology International (2006),39 1100.

51

MUHAMMAD AMIRUDDIN BIN AB WAHAB