13
Code_Aster, Salome-Meca course material GNU FDL licence (http://www.gnu.org/copyleft/fdl.html) Damping

Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

Code_Aster, Salome-Meca course materialGNU FDL licence (http://www.gnu.org/copyleft/fdl.html)

Damping

Page 2: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

2 - Code_Aster and Salome-Meca course material GNU FDL Licence

Outline

Damping in dynamic analysis

Types of modeling

Getting started with Code_Aster for dynamic analysis

Modal calculation with damping

Solving the quadratic problem : principles

Methods and algorithms implemented in Code_Aster

Page 3: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

3 - Code_Aster and Salome-Meca course material GNU FDL Licence

Damping : theoretical issues

Damping : energy dissipation within the different materials of the

structure, in the connections between structural elements, and

with the surrounding medium.

Two simple models in Code_Aster

viscous damping : the dissipated energy is proportional to the speed of

movement ;

hysteretic damping : the dissipated energy is proportional to the

displacement & such that the damping force is of opposite sign to the

speed.

Variables to characterize damping

Loss rate :

Reduced damping :

max2 p

cyclepard

πE

E=η

2

=

Page 4: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

4 - Code_Aster and Salome-Meca course material GNU FDL Licence

Viscous damping : modelling principles

Viscous damping : time or frequency definition

Rayleigh damping

Defined in the material properties DEFI_MATERIAU

Or easy to implement with the command COMB_MATR_ASSE

Useful for validating algorithms

Successfully introduced for transient analysis by modal recombination

Does not represent heterogeneity of the structure relative to the damping

Depends heavily on the identification of the coefficients

Non physical model for dissipation, but required for some regulatory studies

f=uk+uc+um

,

Mβ+Kα=C

Page 5: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

5 - Code_Aster and Salome-Meca course material GNU FDL Licence

Viscous damping : identification of coefficients

Damping proportional inertia characteristics

Widely used for direct transient resolution

can be identified with the experimental reduced damping of the

normal mode which contributes most to the response

Higher modes are very little damped and low frequency modes are very

damped

Damping proportional to stiffness characteristics

Widely used for direct transient resolution

can be identified with the experimental reduced damping of the

normal mode which contributes most to the response

Higher modes are very damped and low frequency modes are very little

damped

Full proportional damping

are identified from two independent modes of frequencies

In the interval , the variation of the reduced damping remains low

and outside modes will be over-damped

i ,0

i

0, i

j

ii ,

, ji ,

ji ,

Page 6: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

6 - Code_Aster and Salome-Meca course material GNU FDL Licence

Viscous damping

Global dampingCoefficients are defined with the material properties in DEFI_MATERIAU

AMOR_ALPHA and AMOR_BETA

Use in harmonic and transient analysis, physical or reduced bases

DYNA_VIBRA with the keyword MATR_AMOR

Modal reduced damping

DYNA_VIBRA(BASE_CALCUL=‘GENE’ with the keyword AMOR_REDUIT

COMB_SISM_MODAL with the keyword AMOR_REDUIT

Localized or non-proportional damping

Discrete dampers are introduced with AFFE_CARA_ELEM

Material damping coefficients defined in DEFI_MATERIAU with AMOR_ALPHA

and AMOR_BETA affected material by material in the model

ielemielem a=c

ielemiielemiielem mβ+kα=c

Page 7: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

7 - Code_Aster and Salome-Meca course material GNU FDL Licence

Hysteretic (or structural) damping : principles

Valid only in frequential approach – noncausal model

is a constant

Representation of the dissipation suitable for metallic

materials

Used to deal with harmonic responses of structures with

viscoelastic materials

The coefficient is determined from a test with cyclic

harmonic loading

K(1+j)

m

f u

fujkum 12

sincos

0

0* jE

j

0

0* eE

tj0e=

tj0e=

tanE

E= with 1=

2

11

* jEE

Page 8: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

8 - Code_Aster and Salome-Meca course material GNU FDL Licence

Hysteretic dampingUsed for harmonic analysis only DYNA_VIBRA(TYPE_CALCUL=‘HARM’) keyword MATR_RIGI

Global or homogeneous damping, identical on the whole model

The damping coefficient is defined with DEFI_MATERIAU, keyword AMOR_HYST

The complex global matrix is built within ASSEMBLAGE

Localized or non-proportional dampingDiscrete stiffness elements are defined with AFFE_CARA_ELEM, option AMOR_HYST

Material damping is defined with DEFI_MATERIAU, keyword AMOR_HYST

Transient analysiscalculation of eigenmodes and damping coefficient ( quadratic CALC_MODES)

and resolution on a real modal basis with identified modal damping coefficients (DYNA_VIBRA(TYPE_CALCUL=‘TRANS’,BASE_CALCUL=’GENE’)

Kjη+=Kc 1

idiscretidiscretidiscret

c kjη+=k 1

ielemielemielem

c kjη+=k 1

Page 9: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

9 - Code_Aster and Salome-Meca course material GNU FDL Licence

Solving the quadratic problem

Initial quadratic problem : finding l & F such as

Linear form :

Usual algorithm for normal modes

Meaning of eigenvalues

i is the pulsation i is the damping of mode i

0CMK F ll2

00K

KC

K0

0M

KM

F

F

ll

quadquad

21 iiiii j l i

* T C i

i * T

M i

= 2 Re l i i

* T K i

i * T

M i

= l i 2

Page 10: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

10 - Code_Aster and Salome-Meca course material GNU FDL Licence

Some theory

Spectral transform => different strategies

Shift & Invert with complex shift

For high damping : real arithmetic

For low damping : imaginary arithmetic

More generally : complex approach

uuMMKuMuK

A

ll

11

quadquadquadquad

ll

11

2

1Re A

ll

11

2

1Im

jA

l

1A

Page 11: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

11 - Code_Aster and Salome-Meca course material GNU FDL Licence

In Code_Aster

Power iteration methods (inverse methods) in CALC_MODESOnly for a couple of frequencies

Subspace iteration methods in CALC_MODESMETHODE=‘TRI_DIAG’

Real approach

shift = 0 => OPTION = ‘PLUS_PETITE’ or ‘CENTRE’

Non-zero shift => OPTION=‘CENTRE’

Imaginary approach

Non-zero shift => OPTION=‘CENTRE’

METHODE=‘SORENSEN’

Real approach

shift = 0 => OPTION = ‘PLUS_PETITE’ or ‘CENTRE’

Non-zero shift => OPTION=‘CENTRE’

Imaginary approach

Non-zero shift => OPTION=‘CENTRE’

Complex approach

Non-zero shift => OPTION=‘CENTRE’

Decomposition method in the complex space METHOD=‘QZ’Very robust

Only for small problems : computes all the modes !

Nota Bene : No OPTION=‘BANDE’ and no verifications on the number of eigenvalues

Page 12: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

12 - Code_Aster and Salome-Meca course material GNU FDL Licence

In three steps with modal reduction

Problem to solve : lc,Fc such as

First step : normal modes without damping l,F such as

Second step : modal reduction by projection

Third step : quadratic problem on a reduced basis

Only for low damping

Far more robust & effective methoduse METHOD=‘QZ’ for the third step

Always use PROFIL=‘PLEIN’ for numbering (and assembly)Default option in NUME_DDL and ASSEMBLAGE commands

0CMK F ccc ll2

0MK F 2l

FFFFFF CCMMKKt

g

t

g

t

g

00K

KC

K0

0M

F

F

g

gc

g

gg

g

g

c

ll

Page 13: Titre de la présentation - Code_Aster · Z mu k 1 jK2 u f K M M H V cos sin 0 E* 0 j M H V H V j 0 E* 0 e j t = 0 e V V Z H H j Zt M = 0 e K K tanM E E = 1 with = 2 1 1 E* E j. 8

13 - Code_Aster and Salome-Meca course material GNU FDL Licence

End of presentation

Is something missing or unclear in this document?

Or feeling happy to have read such a clear tutorial?

Please, we welcome any feedbacks about Code_Aster training materials.

Do not hesitate to share with us your comments on the Code_Aster forum

dedicated thread.