12
TNPSC – MATHS IMPORTANT FORMULAS S.No Name of the figure (ngah; ) Figure (glk; ) Area (Sq. Units) gug;gsT (r.myF) Perimetre (P) Rw;wsT 1. Triangle Kf;Nfhzk; 1 2 x b x h AB + BC + CA 2. Right triangle Nrq;Nfhz Kf;Nfhzk; 1 2 x b x h (base + height + hypotenuse) 3. Equilateral triangle rkgf;f Kf;Nfhzk; 3 4 a 2 where ( 3 = 1.732) AB + BC + CA= 3A; Altitude , h = 3 2 a units 4. Isosceles triangle ,U rkgf;f Kf;Nfhzk; h x 2 2 a h 2a + 2 2 2 a h 5. Scalene triangle (mrkgf;f Kf;Nfhzk; ) ( )( )( ) ss a s b s c Where a = 2 a b c AB + BC + CA = (a + b + c) 6. Quadrilateral (ehw;fuk;) 1 2 x d x (h 1 + h 2 ) AB + BC + CD + DA 7. Parallelogram (,izfuk;) b x h 2 x (a + b)

TNPSC MATHS IMPORTANT FORMULASappolosupport.com/wp-content/uploads/2019/08/IMPORTANT... · 2019. 8. 30. · (rha;rJuk;) 1 2 x d1 x d2 where d1, d2 are diagonals (%iytpl;lk;) 4a 11

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • TNPSC – MATHS IMPORTANT FORMULAS

    S.No Name of the figure (ngah;)

    Figure (glk;)

    Area (Sq. Units) gug;gsT (r.myF)

    Perimetre (P) Rw;wsT

    1. Triangle Kf;Nfhzk;

    1

    2 x b x h AB + BC + CA

    2. Right triangle Nrq;Nfhz Kf;Nfhzk;

    1

    2 x b x h

    (base + height + hypotenuse)

    3.

    Equilateral triangle rkgf;f

    Kf;Nfhzk;

    3

    4 a2 where

    ( 3 = 1.732)

    AB + BC + CA= 3A; Altitude ,

    h = 3

    2a units

    4.

    Isosceles triangle

    ,U rkgf;f Kf;Nfhzk;

    h x 2 2a h 2a + 2 2 2a h

    5.

    Scalene triangle

    (mrkgf;f Kf;Nfhzk;)

    ( )( )( )s s a s b s c

    Where a = 2

    a b c

    AB + BC + CA = (a + b + c)

    6. Quadrilateral

    (ehw;fuk;)

    1

    2 x d x (h1 + h2) AB + BC + CD + DA

    7. Parallelogram (,izfuk;)

    b x h 2 x (a + b)

  • 8. Rectangle (nrt;tfk;)

    l x b 2 x (l + b)

    9. Trapezium

    (rhptfk;)

    1

    2 x h x (a + b) AB + BC + CD + DA

    10. Rhombus (rha;rJuk;)

    1

    2 x d1 x d2 where

    d1, d2 are diagonals

    (%iytpl;lk;)

    4a

    11. Square

    a2 4a

    Square (%iytpl;lk;) (d) (Diagonal length) = 2a

    No.

    Name of the figure

    figure Surface

    area tisgug;G

    Total surface area

    Volume

    1. Right circular

    cylinder(Neh;tl;l jpz;k cUis)

    2πrh 2πr(h + r) πr2h

    2.

    Right circular hollow

    cylinder(Neh;tl;l cs;sPlw;w cUis)

    2πh(R + r) 2π(R + r) (R – r + h)

    πR2h – πr2h =

    πh(R2 – r2) = πh(R + r)(R – r)

    3. Right circular cone (Neh;tl;l jpzkf; $k;G)

    πrl πr(l + r) 21

    3r h

    4. Frustum of a

    cone (,ilf;fz;lk;)

    ---------

    -------- 2 21 ( )

    3h R r Rr

  • 5. Solid sphere

    (jpz;kf;Nfhsk;)

    4πr2 ______ 34

    3r

    6. Hollow Sphere

    (cs;sPlw;w Nfhsk;)

    -------

    ______ 3 34 ( )

    3R r

    7.

    Solid hemisphere

    (jpz;k miuf;Nfhsk;)

    2πr2 3πr2

    32

    3r

    8.

    Hollow Hemisphere (cs;sPlw;w

    miuf;Nfhsk;)

    2π(R2 + r2) 2π(R2 + r2) + π(R2 - r2) =

    π(3R2 + r2)

    gad;gLj;jg;gl;l cNyhfj;jpd;

    fd msT = 3 32 (

    3R r )

    9. tl;lf;Nfhzg;gFjp $k;ghf khw;wg;gLfpwJ

    tisgug;G = tl;lf;Nfhzg;gFjpapd; gug;G

    2

    360rl r

    tpy;ypd; ePsk;( l ) = $k;gpd; mbr;Rw;wsT(2πr)

    10. Volume of water flows out through a pipe = (Cross section area x Speed x Time) Foha; topNa ghAk; jz;zPh; fd msT = (FWf;F ntl;Lg; gug;G X Ntfk; X Neuk;)

    11.

    No. of new solids obtained by recasting = Volumeof thesolid whichismelted

    Volumeof onesolid whichismade

    cUf;fp jahhpf;fg;gLk; Gjpa fd cUtq;fspd; vz;zpf;if

    = ; ; ; ; ;

    ; ; ; ; ;

    cUffggll fd cUtjjpd fdmsT

    cUthffggll xU fd cUtjjpd fdmsT

    12. Conversions: 1 m3 = 1000 litres, 1 d.m3 = 1 litre, 1000 cm3 = 1 litre, 1000 litres = 1 kl 1 kP3 = 1000yp> 1nlrp kP3 = 1yp> 1000 nr.kP3 = 1yp> 1000yp = 1 fp.yp

  • CUBE (fdr;rJuq;fs;)

    CUBIOD (fdr; nrt;tfk;)

    tl;lf;Nfhzg;gFjpapd; tpy;ypd; ePsk; xU tl;lf;Nfhzg;gFjpapd; ikaf;Nfhzk; kw;Wk; Muk; r vdpy;>

    tpy;ypd; ePsk; 2360

    l r

    myFfshFk;.

    tl;lf;Nfhzg;gFjpapd; gug;gsT xU tl;lf;Nfhzg;gFjpapd; ikaf;Nfhzk; kw;Wk; Muk; r vdpy;>

    tl;lf;Nfhzg;gFjpapd; gug;gsT 2360

    r

    rJu myFfshFk;.

    tl;lf;Nfhzg;gFjpapd; gug;gsT = 2

    lr rJu myFfs;

    tl;lf;Nfhzg;gFjpapd; Rw;wsT tpy;ypd; ePsk; l, tl;lf;Nfhzg;gFjpapd; Muk; r vdpy;> mjd; Rw;wsT

    P=l + 2r myFfs;.

    Length of Arc If is the central angle and r is the radius of a sector, then its arc length

    is given by 2360

    l r

    units.

    Area of a Sector If is the central angle and r is the radius of a sector, then the area of

    the sector is 2360

    r

    square units.

    Area of sector = 2

    lr square units.

    Key concept:

    Volume of a cube (fd msT )= 3a cubic units The Total surface area of a cube (T.S.A) (nkhj;jg;gug;G)

    = 26a square units. The Lateral surface area of a cube (L.S.A) (gf;fg;gug;G)

    = 24a square units. diagonal = 3a

    Volume of a cuboid (fd msT )= l b h cubic units

    The Total surface area of a cuboid (nkhj;jg; gug;G) = 2( )lb bh lh sq.units.

    The Lateral surface area of a cuboid (gf;fg;gug;G) = 2( )l b h sq.units.

  • 2 2 ( )( )a b a b a b 2 2 2( ) 2a b a b ab

    2 2 2( ) 2a b a b ab 2 2( ) ( ) 4a b a b ab

    3 3 2 2( ) ( )( )a b a b a ab b 3 3 2 2( ) ( )( )a b a b a ab b

    3 3 3 2 2 3 3( ) 3 3 3 ( )a b a b a b ab a b ab a b 3 3 3 2 2 3 3( ) 3 3 3 ( )a b a b a b ab a b ab a b

    2 2 2 2( ) 2( )a b c a b c ab bc ca 3 3 3 2 2 23 ( )( ) a b c abc a b c a b c ab bc ca

    If a + b + c = 0 then 3 3 3 3 a b c abc

    2( )( ) ( )x a x b x a b x ab 3 2( )( )( ) ( ) ( )x a x b x c x a b c x ab bc ca x abc

    n(n+1)1 + 2 + 3 + ...... + n =

    2

    2

    2 Last Number+11 3 5 ........ (2 1)2

    n n

    2 2 2 2 ( 1)(2 1)1 2 3 ......6

    n n nn

    2 2 2 2 (2 1)(2 1)1 3 5 ...... (2 1)3

    n n nn

    2

    3 3 3 31

    1 2 3 .......2

    n nn

    2 2 2 2 -n(n+1)1 2 3 4 ......... up to 'n' terms =2

    2 1

    2 4 6 ....... 2 2 1 2 3 ..... 12

    n nn n n n

    Logarithms Rule i) Product rule:ngUf;fy; tpjp: loga (mn) = loga m + loga n

    ii) Quotient rule:tFj;jy; tpjp: loga m

    n

    = loga m - loga n.

    iii) Power rule: gb tpjp: loga mn = nloga m. iv) loga 1 = 0. & v) loga a = 1

    Perimeter of a Sector If l is the arc length and r is the radius of a sector, then its perimeter P

    is given by the formula P=l + 2r units.

  • APPRECIATION AND DEPRECIATION [cah;T kw;Wk; tPo;r;rp] kf;fs; njhif cah;T> thfdq;fspd; kjpg;gPL Nghd;w gioa nghUl;fspd; tpiy

    eph;zaj;jpid fPNo Fwpg;gpl;l tpjpiag; gad;gLj;jpf; fhzyhk;.

    The growth or Appreciation (A): After ‘n’ years

    kf;fs; njhif tsh;r;rp (m) tpiyNaw;wk; n Mz;LfSf;F gpwF 1100

    nr

    A p

    After ‘n’ years Depreciation tPo;r;rp 1100

    nr

    D p

    The growth or Appreciation (A): Before ‘n’ years or ‘n’ years ago

    kf;fs; njhif tsh;r;rp (m) tpiyNaw;wk; n Mz;LfSf;F Kd;G

    1100

    n

    pA

    r

    Before ‘n’ years or ‘n’ years ago Depreciation tPo;r;rp n Mz;LfSf;F Kd;

    1100

    n

    pD

    r

    Arithmetic Progression (A.P.) [$l;Lj;njhlh; ] General form of an A.P. is a, a + d, a + 2d …with first term a, and

    Common Difference = d

    The general term or the nth term of an A.P. is tn = a + (n – 1) d →

    1l a

    nd

    Sum to n terms of an A.P / Sn = 2 ( 1)2

    na n d

    Sn = 2

    n [a + a + (n-1)d] or Sn = 2

    n [a + l]

    Where l = tn = a + (n – 1) d = last term

    GEOMETRIC PROGRESSION[ngUf;Fj;njhlh; thpir]

    ngUf;Fj;njhlh; thpirapd; nghJ tbtk; a, ar, ar2, ar3, … a ≠ 0 ngUf;Fj;njhlh; thpirapd; n - Mk; cWg;G tn = arn-1 Sum of n terms of a G.P[xU ngUf;Fj;njhlhpd; n cWg;Gfspd; $Ljy;]

    Sn = ( 1)

    1

    na r

    r

    The sum of infinite geometric series[Kbtwh ngUf;Fj;njhlh; njhFg;gpd; $Ljy;]

    S= 1

    a

    r

  • MATHS FORMULAS

    For the system of equations

    1 1 1

    2 2 2

    0

    0

    a x b y C

    a x b y c

    where 2 2 2 21 1 2 20, 0a b a b

    If 1 2 1 2 0a b b a or 1 1

    2 2

    a b

    a b then the system of equations has a unique solution

    If 1 1 12 2 2

    a b c

    a b c then the system of equations has infinitely many solutions

    If 1 1 12 2 2

    a b c

    a b c then the system of equations has no solution

    1 1 1

    2 2 2

    0

    0

    a x b y C

    a x b y c

    ,q;F 2 2 2 21 1 2 20, 0a b a b Mfpa rkd;ghLfspd; njhFg;gpw;F

    1 2 1 2 0a b b a mjhtJ 1 1

    2 2

    a b

    a b vdpy; xNunahU jPh;T (unique solution) cz;L

    1 1 1

    2 2 2

    a b c

    a b c vdpy; Kbtpyp vz;zpf;ifapy; jPh;Tfs; (infinitely many solutions)

    cz;L

    1 1 1

    2 2 2

    a b c

    a b c vdpy; jPh;T VJkpy;iy (no solution)

    The Basic relationship between the zeros and the coefficients of 2( )p x ax bx c

    sum of zeros: 2

    b coefficient of xa

    a coefficient of x

    product of zeros 2

    tanc cons t terma

    a coefficient of x

    2( )p x ax bx c -d; nfOf;fSf;Fk;> g+r;rpaq;fSf;Fk; ,ilNaahd mbg;gilj; njhFg;G

    G+r;rpaq;fspd; $Ljy;> 2

    b xa

    a x

    d; nfO

    d; nfO

    G+r;rpaq;fspd; ngUf;fw;gyd;

    2

    ca

    a x

    khwpyp cWg; G

    d; nfO

    Nature of roots of a quadratic equation

    The roots of the equation 2 0ax bx c are given by 2 4

    2

    b b acx

    a

    If 2 4 0b ac we get two distinct real roots 2 4

    2

    b b acx

    a

    ; &

    2 4

    2

    b b acx

    a

    If 2 4 0b ac , then the equation has two equal roots 2

    bx

    a

    If 2 4 0b ac , then 2 4b ac is not a real number. Therefore there is no real root

  • for the given quadratic equation.

    ,Ugbr; rkd;ghl;bd; %yq;fspd; jd;ik

    2 0ax bx c vDk; ,Ugbr; rkd;ghl;bd; %yq;fs; 2 4

    2

    b b acx

    a

    vd mwpNthk;

    2 4 0b ac vdpy; ,U ntt;Ntwhd nka;naz; %yq;fs; cs;sd. mitfs;>

    2 4

    2

    b b acx

    a

    kw;Wk;

    2 4

    2

    b b acx

    a

    2 4 0b ac vdpy; rkd;ghl;bw;F ,U rkkhd nka;naz; %yq;fs; cs;sd. rk

    %yk; 2

    bx

    a

    MFk;

    2 4 0b ac vdpy; 2 4b ac xU nka;naz; my;y. Mifahy;> ,Ugbr; rkd;ghl;bw;F nka;naz; %yq;fs; ,y;iy

    Therefore, if ,a are the roots of

    2 0ax bx c then

    the sum of the roots b

    aa

    the product of roots, c

    aa

    2 0ax bx c -d; %yq;fs; ,a vdpy;

    %yq;fspd; $Ljy;> b

    aa

    %yq;fspd; ngUf;fw;gyd;> c

    aa

    Area of a quadrilateral ehw;fuj;jpd; gug;G

    1 2 2 3 3 4 4 1 2 1 3 2 4 3 1 4

    1{( ) ( )}

    2x y x y x y x y x y x y x y x y sq.units / r. myFfs;

    The distance between 1 1 2 2( , ), ( , )P x y Q x y is 2 2

    2 1 2 1( ) ( )x x y y

    1 1 2 2( , ), ( , )P x y Q x y Mfpa Gs;spfSf;F ,ilNaAs;s njhiyT 2 2

    2 1 2 1( ) ( )x x y y

    Area of Triangle Kf;Nfhzj;jpy; gug;G If 1 1 2 2( , ), ( , )A x y B x y and 3 3( , )C x y are the vertices of a ABC then the area of the

    ABC is 1 2 3 2 3 1 3 1 2

    1{ ( ) ( ) ( )}

    2x y y x y y x y y sq.units

    1 1 2 2( , ), ( , )A x y B x y kw;Wk; 3 3( , )C x y Mfpatw;iw Kidfshff; nfhz;l ABC -d;

    gug;G 1 2 3 2 3 1 3 1 2

    1{ ( ) ( ) ( )}

    2x y y x y y x y y r. myFfs;

  • Equation of straight lines (Neh;f;Nfhl;bd; rkd;ghLfs;) Straight Line Equation

    x – axis y = 0

    y – axis x = 0

    Parallel to x - axis y = k

    Parallel to y – axis x = k

    Parallel to ax + by + c = 0 ax + by + k = 0

    Perpendicular to ax + by + c = 0 bx – ay + k = 0

    Given Equation

    Passing through the origin y mx

    Slope m, y-intercept c y mx c

    Slope m a point 1 1( , )x y 1 1( )y y m x x

    Passing through two points 1 1 2 2( , ), ( , )x y x y 1 12 1 2 1

    y y x x

    y y x x

    x- intercept a and y-intercept b 1

    x y

    a b

    Neh;f;Nfhl;bd; rkd;ghLfs;

    Neh;f;NfhL rkd;ghL x – mr;R y = 0 y – mr;R x = 0

    x – mr;rpw;F ,iz y = k

    y – mr;rpw;F ,iz x = k ax + by + c = 0 f;F ,iz ax + by + k = 0 ax + by + c = 0 f;F nrq;Fj;J bx – ay + k = 0

    nfhLf;fg;gl;lit rkd;ghL Mjp topr; nry;Yk; Neh;f;NfhL y mx

    rha;T m kw;Wk; y-ntl;Lj;Jz;L c y mx c

    rha;T m kw;Wk; xUGs;sp 1 1( , )x y 1 1( )y y m x x

    1 1 2 2( , ), ( , )x y x y Mfpa ,U Gs;spfs; topr; nry;Yk; Neh;f;NfhL

    1 1

    2 1 2 1

    y y x x

    y y x x

    x- ntl;Lj;Jz;L a kw;Wk; y-ntl;Lj;Jz;L b 1

    x y

    a b

    ,g;nghOJ (x1, y1) kw;Wk; (x2, y2) Mfpa ,UGs;spfis ,izf;Fk; Nfhl;Lj;Jz;bid m : n vd;w nfhLf;fg;gl;l tpfpjj;jpy; cl;Gwkhfg; gphpf;Fk; Gs;spapd; Maj;njhiyTj; J}uq;fisf; fhz;Nghk;.

    To find the coordinates of the point which divides internally the line segment joining two given points (x1, y1) and (x2, y2) in the given ratio m : n

    2 1 2 1,mx nx my ny

    m n m n

  • AB I ntspg;Gwkhf m : n (m > n) vd;fpw tpfpjj;jpy; gphpf;Fk; Gs;sp D ,d; Maj;njhiyTj;J}uk;

    Hence the point which divides AB externally in the ratio m : n (m > n) is given by

    2 1 2 1,mx nx my ny

    m n m n

    Middle Point Formula (or) Mid – Point Formula ikag;Gs;sp #j;jpuk; my;yJ eLg;Gs;sp #j;jpuk;

    1 2 1 2,2 2

    x x y y

    1 1 2 2( , ),( , )x y x y kw;Wk; 3 3( , )x y Mfpa cr;rpg; Gs;spfisf; nfhz;l Kf;Nfhzj;jpd; eLf;Nfhl;L ikak; fhz;Nghk;.

    xU Kf;Nfhzj;jpw;F %d;W eLf;NfhLfs; cz;L. mit G vd;fpw Gs;spapy; re;jpf;Fk;. me;jg;Gs;sp, xU Kf;Nfhzj;jpd; eLf;Nfhl;L ikak; (Centroid) vdg;gLk;.

    We are now able to find the coordinates of the centroid of the triangle whose vertices are the given points 1 1 2 2( , ),( , )x y x y and 3 3( , )x y .

    There are three medians of a triangle and they are concurrent at a point G, called the centroid of the triangle.

    1 2 3 1 2 3,3 3

    x x x y y y

    LCM & HCF

    LCM of fractions = min

    LCM of numerotors

    HCF of deno ators

    njhFjpapYs;s vz; fspd; kP.rp.k

    gpd; d vz; fspd; k.P rp.kgFjpapYs;s vz; fspd; kP.ng.t

    =

    HCF of fractions = min

    HCF of numerotors

    LCMof deno ators

    njhFjpapYs;s vz; fspd; kP.ng.tgpd; d vz; fspd; k.P ng.t

    gFjpapYs;s vz; fspd; kP.rp.k=

    First number second number = LCM x HCF ,uz;L vz;fspd; ngUf;fw;gyd; = LCM x HCF

  • STATISTICS Range and Coefficient of Range

    Range (tPr;R) = L – S

    Coefficient of Range (tPr;R nfO) = L SL S

    Quartiles deviation (Q.D.)and Coefficient of Quartile deviation

    Quartiles deviation (fhy;khd tpyf;fk;) = 3 12

    Q Q

    Coefficient of Quartile deviation (fhy;khd tpyf;ff;nfO) 3 13 1

    Q Q

    Q Q

    Mean deviation and Coefficient of Mean deviation

    Mean deviation (ruhrhp tpyf;fk;) = Dn

    Coefficient (ruhrhp tpyf;ff;nfO) = Median or Mode

    Mean deviation

    Mean or

    RATIO AND PROPORTION In a Proportion: Product of Extremes = Product of Means (tpfpjrkj;jpy;

  • Standard deviation (jpl;ltpyf;fk;)

    n

    2d= d = x - x

    Variance (khWghL) = 2

    Remarks: It is quite interesting to note the following: The S.D. of any n successive terms of an A.P. with common difference d is,

    2 1

    12

    nd

    Thus,

    S.D. i, i+1, i+2, ….., i+n is 2 1

    12

    n

    , i

    S.D. of any n consecutive even integers, is given by 2 1

    2 ,12

    nn

    S.D. of any n consecutive odd integers, is given by 2 1

    2 ,12

    nn

    Mutually exclusive events: (xd;iwnahd;W tpyf;Fk; epfo;r;rpfs;) ( ) ( ) ( )P A B P A P B

    Not Mutually exclusive events: (xd;iwnahd;W tpyf;fh epfo;r;rpfs;) ( ) ( ) ( ) ( )P A B P A P B P A B

    Dimensional Diagrams [tpsf;fg; glq;fspd; tiffs;;] One-dimensional diagrams [xU ghpkhd tpsf;fg; glq;fs;] Line Diagram [Nfhl;L tpsf;fg;glk;] Simple Diagram [rhjhuz gl;il tpsf;fg;glk;] Multiple Bar Diagram [gy; mq;fg; gl;il tpsf;fg;glk;] Sub-divided Bar Diagram [$W gl;il tpsf;fg;glk; (gFjp gl;il)] Percentage Bar Diagram [rjtPj gl;il tpsf;fg; glk;]

    Two-dimensional diagrams [,U ghpkhd tpsf;fg;g glq;fs;] Rectangles [nrt;tfq;fs;] Squares [rJuq;fs;] Pie-diagrams [tl;l tpsf;fg; glq;fs;]

    Three-dimensional diagrams [Kg;ghpkhd tpsf;fg; glq;fs;] Cubes, Cylinders, Spheres, Prisms, Pyramids, etc…,

    Graphs: [tiuglq;fs;] Histogram [guty; nrt;tfg; glk;] – To find Mode Frequency Polygon [epfo;ntz; gy Nfhz tbtk;] Frequency Curve [epfo;ntz; tisNfhL] Ogive [tsh; epfo; tistiufs; (xift;)] - To find Median Lorenz Curve [yhud;]; tistiu] – Study about dispersion(Variability)