90
Today’s Outline - February 17, 2014 C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 1 / 12

Today’s Outline - February 17, 2014csrri.iit.edu/~segre/phys406/14S/lecture_09.pdfToday’s Outline - February 17, 2014 Hydrogen molecule ion Problem 7.14 Problem 7.15 Midterm Exam

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Today’s Outline - February 17, 2014

    • Hydrogen molecule ion

    • Problem 7.14

    • Problem 7.15

    Midterm Exam #1Monday, February 24, 2014Covers through HW #04

    Tutoring sessions:Thursday & Friday, 12:00–13:45, 121 E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 1 / 12

  • Today’s Outline - February 17, 2014

    • Hydrogen molecule ion

    • Problem 7.14

    • Problem 7.15

    Midterm Exam #1Monday, February 24, 2014Covers through HW #04

    Tutoring sessions:Thursday & Friday, 12:00–13:45, 121 E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 1 / 12

  • Today’s Outline - February 17, 2014

    • Hydrogen molecule ion

    • Problem 7.14

    • Problem 7.15

    Midterm Exam #1Monday, February 24, 2014Covers through HW #04

    Tutoring sessions:Thursday & Friday, 12:00–13:45, 121 E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 1 / 12

  • Today’s Outline - February 17, 2014

    • Hydrogen molecule ion

    • Problem 7.14

    • Problem 7.15

    Midterm Exam #1Monday, February 24, 2014Covers through HW #04

    Tutoring sessions:Thursday & Friday, 12:00–13:45, 121 E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 1 / 12

  • Today’s Outline - February 17, 2014

    • Hydrogen molecule ion

    • Problem 7.14

    • Problem 7.15

    Midterm Exam #1Monday, February 24, 2014Covers through HW #04

    Tutoring sessions:Thursday & Friday, 12:00–13:45, 121 E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 1 / 12

  • Today’s Outline - February 17, 2014

    • Hydrogen molecule ion

    • Problem 7.14

    • Problem 7.15

    Midterm Exam #1Monday, February 24, 2014Covers through HW #04

    Tutoring sessions:Thursday & Friday, 12:00–13:45, 121 E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 1 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )

    The trial solution is a linear combination of atomic orbitals centered abouteach of the protons which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons

    which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons

    which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)]

    =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons

    which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]

    1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]

    1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]

    = |A|2[

    1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1

    + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]

    = 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1 + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]

    = 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion trial function

    The Hamiltonian for the hydrogen molecule ion has two protons and oneelectron. The vectors between the electron and the individual protons arelabeled as ~r1 and ~r2.

    H = − ~2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )The trial solution is a linear combination of atomic orbitals centered abouteach of the protons which must be normalized first to get A.

    ψ ≡ A [ψ0(r1) + ψ0(r2)] =A√πa3

    [e−r1/a + e−r2/a

    ]1 =

    ∫|ψ|2d3~r

    = |A|2[∫|ψ0(r1)|2d3~r +

    ∫|ψ0(r2)|2d3~r + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= |A|2

    [1 + 1 + 2

    ∫ψ0(r1)ψ0(r2)d

    3~r

    ]= 2|A|2 [1 + I ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 2 / 12

  • Hydrogen molecule ion normalization

    I =1

    πa3

    ∫e−(r1+r2)/ar2 sin θ dr dθ dφ

    R

    r2

    r1θ

    z

    y

    x

    2

    1

    The ideal coordinate system for this integral isto align the vector between the protons alongthe z-axis which gives

    r1 ≡ r , r2 =√

    r2 + R2 − 2rR cos θ

    The φ integration gives 2π

    I =2π

    πa3

    ∫ ∞0

    ∫ π0

    e−r/ae−√r2+R2−2rR cos θ/ar2 sin θ dr dθ

    Let’s look at the θ integral first...

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 3 / 12

  • Hydrogen molecule ion normalization

    I =1

    πa3

    ∫e−(r1+r2)/ar2 sin θ dr dθ dφ

    R

    r2

    r1θ

    z

    y

    x

    2

    1

    The ideal coordinate system for this integral isto align the vector between the protons alongthe z-axis which gives

    r1 ≡ r , r2 =√

    r2 + R2 − 2rR cos θ

    The φ integration gives 2π

    I =2π

    πa3

    ∫ ∞0

    ∫ π0

    e−r/ae−√r2+R2−2rR cos θ/ar2 sin θ dr dθ

    Let’s look at the θ integral first...

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 3 / 12

  • Hydrogen molecule ion normalization

    I =1

    πa3

    ∫e−(r1+r2)/ar2 sin θ dr dθ dφ

    R

    r2

    r1θ

    z

    y

    x

    2

    1

    The ideal coordinate system for this integral isto align the vector between the protons alongthe z-axis which gives

    r1 ≡ r ,

    r2 =√

    r2 + R2 − 2rR cos θ

    The φ integration gives 2π

    I =2π

    πa3

    ∫ ∞0

    ∫ π0

    e−r/ae−√r2+R2−2rR cos θ/ar2 sin θ dr dθ

    Let’s look at the θ integral first...

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 3 / 12

  • Hydrogen molecule ion normalization

    I =1

    πa3

    ∫e−(r1+r2)/ar2 sin θ dr dθ dφ

    R

    r2

    r1θ

    z

    y

    x

    2

    1

    The ideal coordinate system for this integral isto align the vector between the protons alongthe z-axis which gives

    r1 ≡ r , r2 =√

    r2 + R2 − 2rR cos θ

    The φ integration gives 2π

    I =2π

    πa3

    ∫ ∞0

    ∫ π0

    e−r/ae−√r2+R2−2rR cos θ/ar2 sin θ dr dθ

    Let’s look at the θ integral first...

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 3 / 12

  • Hydrogen molecule ion normalization

    I =1

    πa3

    ∫e−(r1+r2)/ar2 sin θ dr dθ dφ

    R

    r2

    r1θ

    z

    y

    x

    2

    1

    The ideal coordinate system for this integral isto align the vector between the protons alongthe z-axis which gives

    r1 ≡ r , r2 =√

    r2 + R2 − 2rR cos θ

    The φ integration gives 2π

    I =2π

    πa3

    ∫ ∞0

    ∫ π0

    e−r/ae−√r2+R2−2rR cos θ/ar2 sin θ dr dθ

    Let’s look at the θ integral first...

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 3 / 12

  • Hydrogen molecule ion normalization

    I =1

    πa3

    ∫e−(r1+r2)/ar2 sin θ dr dθ dφ

    R

    r2

    r1θ

    z

    y

    x

    2

    1

    The ideal coordinate system for this integral isto align the vector between the protons alongthe z-axis which gives

    r1 ≡ r , r2 =√

    r2 + R2 − 2rR cos θ

    The φ integration gives 2π

    I =2π

    πa3

    ∫ ∞0

    ∫ π0

    e−r/ae−√r2+R2−2rR cos θ/ar2 sin θ dr dθ

    Let’s look at the θ integral first...

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 3 / 12

  • Hydrogen molecule ion normalization

    I =1

    πa3

    ∫e−(r1+r2)/ar2 sin θ dr dθ dφ

    R

    r2

    r1θ

    z

    y

    x

    2

    1

    The ideal coordinate system for this integral isto align the vector between the protons alongthe z-axis which gives

    r1 ≡ r , r2 =√

    r2 + R2 − 2rR cos θ

    The φ integration gives 2π

    I =2π

    πa3

    ∫ ∞0

    ∫ π0

    e−r/ae−√r2+R2−2rR cos θ/ar2 sin θ dr dθ

    Let’s look at the θ integral first...

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 3 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy

    = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ

    =1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a

    − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy

    = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ

    =1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a

    − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy

    = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ

    =1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a

    − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ

    =1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a

    − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ =

    1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a

    − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ =

    1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]

    =a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a

    − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ =

    1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]

    =a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a

    − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ =

    1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a

    − ae−(r+R)/a + ae−|r−R|/a

    ]

    = − arR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ =

    1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a − ae−(r+R)/a + ae−|r−R|/a

    ]

    = − arR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ =

    1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]

    The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ =

    1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • The overlap integral

    The θ integral can be simplified byusing the substitution

    y ≡√r2 + R2 − 2rR cos θ

    d(y2) = 2y dy = 2rR sin θ dθ

    Iθ =

    ∫ π0

    e−√r2+R2−2rR cos θ/a sin θ dθ =

    1

    rR

    ∫ r+R|r−R|

    ye−y/a dy

    =1

    rR

    [−aye−y/a

    ∣∣∣r+R|r−R|

    + a

    ∫ r+R|r−R|

    e−y/a dy

    ]=

    a

    rR

    [−(r + R)e−(r+R)/a + |r − R|e−|r−R|/a − ae−(r+R)/a + ae−|r−R|/a

    ]= − a

    rR

    [(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]The overlap integral thus becomes

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 4 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {

    e−R/a∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }= − 2

    Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {

    e−R/a∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }

    = − 2Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }

    = − 2Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr

    − eR/a∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }

    = − 2Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }

    = − 2Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }= − 2

    Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }

    = − 2Ra2

    e−R/a[

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }= − 2

    Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }

    = − 2Ra2

    e−R/a[

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }= − 2

    Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }

    = − 2Ra2

    e−R/a[

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }= − 2

    Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [

    a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }= − 2

    Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [a3

    4+

    a2R

    4+

    a3

    4

    −R3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }= − 2

    Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • More integration...

    I = − 2Ra2

    ∫ ∞0

    r[(r + R + a)e−(r+R)/a − (|r − R|+ a)e−|r−R|/a

    ]e−r/a dr

    = − 2Ra2

    {e−R/a

    ∫ ∞0

    [r2 + r(R + a)

    ]e−2r/a dr

    −e−R/a∫ R0

    [r(R + a)− r2

    ]dr − eR/a

    ∫ ∞R

    [r2 − r(R − a)

    ]e−2r/a dr

    }= − 2

    Ra2

    {e−R/a

    [−2a

    3

    8− a

    2

    4(R + a)

    ]e−2r/a

    ∣∣∣∣∞0

    −e−R/a[r2

    2(R + a)− r

    3

    3

    ∣∣∣∣R0

    − eR/a[−a

    2r2 − 2a

    2

    4r − 2a

    3

    8+

    a

    2r(R − a) + a

    2

    4(R − a)

    ]e−2r/a

    ∣∣∣∣∞R

    }= − 2

    Ra2e−R/a

    [a3

    4+

    a2R

    4+

    a3

    4−R

    3

    2− aR

    2

    2+

    R3

    3

    −aR2

    2− a

    2R

    2− a

    3

    4+

    aR2

    2− a

    2R

    2+

    a2R

    4− a

    3

    4

    ]C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 5 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]|A|2 = 1

    2(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )= E1ψ0(r1) + E1ψ0(r2)− A

    e2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]

    = e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]|A|2 = 1

    2(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )= E1ψ0(r1) + E1ψ0(r2)− A

    e2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]

    |A|2 = 12(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )= E1ψ0(r1) + E1ψ0(r2)− A

    e2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]

    |A|2 = 12(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )= E1ψ0(r1) + E1ψ0(r2)− A

    e2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]|A|2 = 1

    2(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )= E1ψ0(r1) + E1ψ0(r2)− A

    e2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]|A|2 = 1

    2(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )= E1ψ0(r1) + E1ψ0(r2)− A

    e2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]|A|2 = 1

    2(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )= E1ψ0(r1) + E1ψ0(r2)− A

    e2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]|A|2 = 1

    2(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )

    = E1ψ0(r1) + E1ψ0(r2)− Ae2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]|A|2 = 1

    2(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )

    = E1ψ0(r1) + E1ψ0(r2)− Ae2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Normalization, finally!

    Gathering all the like terms

    and the normalization con-stant is expressed in terms ofthe overlap integral

    Now to calculate the expec-tation value of the Hamilto-nian

    I =2

    Ra2e−R/a

    [a2R

    2+

    aR2

    2+

    R3

    6

    ]= e−R/a

    [1 +

    (R

    a

    )+

    1

    3

    (R

    a

    )2]|A|2 = 1

    2(1 + I )

    Hψ =

    [− ~

    2

    2m∇2 − e

    2

    4π�0

    (1

    r1+

    1

    r2

    )]A [ψ0(r1) + ψ0(r2)]

    = − ~2

    2m∇2Aψ0(r1)−

    ~2

    2m∇2Aψ0(r2)

    − A e2

    4π�0

    (1

    r1ψ0(r1) +

    1

    r1ψ0(r2) +

    1

    r2ψ0(r1) +

    1

    r2ψ0(r2)

    )= E1ψ0(r1) + E1ψ0(r2)− A

    e2

    4π�0

    [1

    r1ψ0(r2) +

    1

    r2ψ0(r1)

    ]C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 6 / 12

  • Expectation value of H

    〈H〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]

    The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 7 / 12

  • Expectation value of H

    〈H〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 7 / 12

  • Expectation value of H

    〈H〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 7 / 12

  • Expectation value of H

    〈H〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 7 / 12

  • Expectation value of H

    〈H〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 7 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    = a

    〈ψ0(r2)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    = a1

    πa3

    ∫e−2r2/a

    1

    r1d3r =

    1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉 = a 1πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉

    = a1

    πa3

    ∫e−2r2/a

    1

    r1d3r =

    1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉 = a 1πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉= a

    1

    πa3

    ∫e−2r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉 = a 1πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉= a

    1

    πa3

    ∫e−2r2/a

    1

    r1d3r =

    1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉 = a 1πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉= a

    1

    πa3

    ∫e−2r2/a

    1

    r1d3r =

    1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉 = a 1πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉= a

    1

    πa3

    ∫e−2r2/a

    1

    r1d3r =

    1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    = a1

    πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉= a

    1

    πa3

    ∫e−2r2/a

    1

    r1d3r =

    1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉 = a 1πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉= a

    1

    πa3

    ∫e−2r2/a

    1

    r1d3r =

    1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉 = a 1πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Direct & exchange integrals

    D = a

    〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉 = a〈ψ0(r2) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉= a

    1

    πa3

    ∫e−2r2/a

    1

    r1d3r =

    1

    πa2

    ∫r e−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r

    [∫ π0

    e−2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    X =

    〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉 = a 1πa3

    ∫e−r1/ae−r2/a

    1

    r1d3r

    =1

    πa2

    ∫r e−r/ae−

    2a

    √r2+R2−2rR cos θ sin θ dr dθ dφ

    =2π

    πa2

    ∫ ∞0

    r e−r/a[∫ π

    0e−

    2a

    √r2+R2−2rR cos θ sin θ dθ

    ]dr

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 8 / 12

  • Expectation value of H

    〈Hψ〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 9 / 12

  • Expectation value of H

    〈Hψ〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 9 / 12

  • Expectation value of H

    〈Hψ〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 9 / 12

  • Expectation value of H

    〈Hψ〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 9 / 12

  • Expectation value of H

    〈Hψ〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 9 / 12

  • Expectation value of H

    〈Hψ〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 9 / 12

  • Expectation value of H

    〈Hψ〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R

    = −2aRE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 9 / 12

  • Expectation value of H

    〈Hψ〉 = E1 − 2|A|2e2

    4π�0

    [〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉+〈ψ0(r1) ∣∣∣∣ 1r1

    ∣∣∣∣ψ0(r2)〉]The second term is called thedirect integral

    and the third term is the ex-change integral

    The final expression for theexpectation value of theHamiltonian becomes

    We also have to include theproton-proton repulsion en-ergy

    D ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r2∣∣∣∣ψ0(r1)〉

    =a

    R−(

    1 +a

    R

    )e−2R/a

    X ≡ a〈ψ0(r1)

    ∣∣∣∣ 1r1∣∣∣∣ψ0(r2)〉

    =

    (1 +

    R

    a

    )e−R/a

    〈H〉 =[

    1 + 2D + X

    1 + I

    ]E1

    Vpp =e2

    4π�0

    1

    R= −2a

    RE1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 9 / 12

  • Energy upper bound

    〈H〉 =

    1 + 2 aR − (1 + aR ) e−2R/a + (1 + Ra ) e−R/a1 + e−R/a

    [1 +

    (Ra

    )+ 13

    (Ra

    )2] − 2aRE1

    Substituting x ≡ R/a, the total expectation value becomes

    F (x) =〈H〉−E1

    = −1 + 2x

    {(1− 23x

    2)e−x + (1 + x)e−2x

    1 + (1 + x + 13x2)e−x

    }

    This can be plotted andthe equilbrium distance andbinding energy extracted

    Req = 2.4a = 1.3Å → 1.06Å

    Ebind = 1.8eV → 2.8eV

    A stable molecule with theelectron shared between thetwo protons.

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 1 2 3 4 5 6

    F(x

    )

    x

    Req

    E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 10 / 12

  • Energy upper bound

    〈H〉 =

    1 + 2 aR − (1 + aR ) e−2R/a + (1 + Ra ) e−R/a1 + e−R/a

    [1 +

    (Ra

    )+ 13

    (Ra

    )2] − 2aRE1

    Substituting x ≡ R/a, the total expectation value becomes

    F (x) =〈H〉−E1

    = −1 + 2x

    {(1− 23x

    2)e−x + (1 + x)e−2x

    1 + (1 + x + 13x2)e−x

    }

    This can be plotted andthe equilbrium distance andbinding energy extracted

    Req = 2.4a = 1.3Å → 1.06Å

    Ebind = 1.8eV → 2.8eV

    A stable molecule with theelectron shared between thetwo protons.

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 1 2 3 4 5 6

    F(x

    )

    x

    Req

    E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 10 / 12

  • Energy upper bound

    〈H〉 =

    1 + 2 aR − (1 + aR ) e−2R/a + (1 + Ra ) e−R/a1 + e−R/a

    [1 +

    (Ra

    )+ 13

    (Ra

    )2] − 2aRE1

    Substituting x ≡ R/a, the total expectation value becomes

    F (x) =〈H〉−E1

    = −1 + 2x

    {(1− 23x

    2)e−x + (1 + x)e−2x

    1 + (1 + x + 13x2)e−x

    }This can be plotted andthe equilbrium distance andbinding energy extracted

    Req = 2.4a = 1.3Å → 1.06Å

    Ebind = 1.8eV → 2.8eV

    A stable molecule with theelectron shared between thetwo protons.

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 1 2 3 4 5 6

    F(x

    )

    x

    Req

    E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 10 / 12

  • Energy upper bound

    〈H〉 =

    1 + 2 aR − (1 + aR ) e−2R/a + (1 + Ra ) e−R/a1 + e−R/a

    [1 +

    (Ra

    )+ 13

    (Ra

    )2] − 2aRE1

    Substituting x ≡ R/a, the total expectation value becomes

    F (x) =〈H〉−E1

    = −1 + 2x

    {(1− 23x

    2)e−x + (1 + x)e−2x

    1 + (1 + x + 13x2)e−x

    }

    This can be plotted andthe equilbrium distance andbinding energy extracted

    Req = 2.4a = 1.3Å → 1.06Å

    Ebind = 1.8eV → 2.8eV

    A stable molecule with theelectron shared between thetwo protons.

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 1 2 3 4 5 6

    F(x

    )

    x

    Req

    E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 10 / 12

  • Energy upper bound

    〈H〉 =

    1 + 2 aR − (1 + aR ) e−2R/a + (1 + Ra ) e−R/a1 + e−R/a

    [1 +

    (Ra

    )+ 13

    (Ra

    )2] − 2aRE1

    Substituting x ≡ R/a, the total expectation value becomes

    F (x) =〈H〉−E1

    = −1 + 2x

    {(1− 23x

    2)e−x + (1 + x)e−2x

    1 + (1 + x + 13x2)e−x

    }This can be plotted andthe equilbrium distance andbinding energy extracted

    Req = 2.4a = 1.3Å → 1.06Å

    Ebind = 1.8eV → 2.8eV

    A stable molecule with theelectron shared between thetwo protons.

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 1 2 3 4 5 6

    F(x

    )

    x

    Req

    E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 10 / 12

  • Energy upper bound

    〈H〉 =

    1 + 2 aR − (1 + aR ) e−2R/a + (1 + Ra ) e−R/a1 + e−R/a

    [1 +

    (Ra

    )+ 13

    (Ra

    )2] − 2aRE1

    Substituting x ≡ R/a, the total expectation value becomes

    F (x) =〈H〉−E1

    = −1 + 2x

    {(1− 23x

    2)e−x + (1 + x)e−2x

    1 + (1 + x + 13x2)e−x

    }This can be plotted andthe equilbrium distance andbinding energy extracted

    Req = 2.4a = 1.3Å → 1.06Å

    Ebind = 1.8eV → 2.8eV

    A stable molecule with theelectron shared between thetwo protons.

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 1 2 3 4 5 6

    F(x

    )

    x

    Req

    E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 10 / 12

  • Energy upper bound

    〈H〉 =

    1 + 2 aR − (1 + aR ) e−2R/a + (1 + Ra ) e−R/a1 + e−R/a

    [1 +

    (Ra

    )+ 13

    (Ra

    )2] − 2aRE1

    Substituting x ≡ R/a, the total expectation value becomes

    F (x) =〈H〉−E1

    = −1 + 2x

    {(1− 23x

    2)e−x + (1 + x)e−2x

    1 + (1 + x + 13x2)e−x

    }This can be plotted andthe equilbrium distance andbinding energy extracted

    Req = 2.4a = 1.3Å → 1.06Å

    Ebind = 1.8eV → 2.8eV

    A stable molecule with theelectron shared between thetwo protons.

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 1 2 3 4 5 6

    F(x

    )

    x

    Req

    E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 10 / 12

  • Energy upper bound

    〈H〉 =

    1 + 2 aR − (1 + aR ) e−2R/a + (1 + Ra ) e−R/a1 + e−R/a

    [1 +

    (Ra

    )+ 13

    (Ra

    )2] − 2aRE1

    Substituting x ≡ R/a, the total expectation value becomes

    F (x) =〈H〉−E1

    = −1 + 2x

    {(1− 23x

    2)e−x + (1 + x)e−2x

    1 + (1 + x + 13x2)e−x

    }This can be plotted andthe equilbrium distance andbinding energy extracted

    Req = 2.4a = 1.3Å → 1.06Å

    Ebind = 1.8eV → 2.8eV

    A stable molecule with theelectron shared between thetwo protons.

    -1.2

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0 1 2 3 4 5 6

    F(x

    )

    x

    Req

    E1

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 10 / 12

  • Problem 7.14

    If the photon had a nonzero mass (mγ 6= 0), the Coulomb potential wouldbe replaced with the Yukawa potential,

    V (~r) = − e2

    4π�0

    e−µr

    r

    where µ = mγc/~. Estimate the binding energy of a “hydrogen” atomwith this potential. Assume µa� 1.

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 11 / 12

  • Problem 7.15

    Suppose you are given a quantum system whose Hamiltonian H0 admitsjust two eigenstates, ψa (with energy Ea) and ψb (with energy Eb). Theyare orthogonal, normalized and non-degenerate (assume Ea < Eb). Nowturn on a perturbation H ′, with the following matrix elements:〈

    H ′〉

    =

    (0 hh 0

    ), h = constant

    a. Find the exact eigenvalues of the perturbing Hamiltonian.

    b. Estimate the energies of the perturbed system using second-orderperturbation theory.

    c. Estimate the ground state energy of the pertirbed system using thevariational principle with a trial wavefuction of the form

    ψ = (cosφ)ψa + (sinφ)ψb

    where φ is an adjustable parameter.

    d. Compare the answers to the sections above.

    C. Segre (IIT) PHYS 406 - Spring 2014 February 17, 2014 12 / 12

    PreambleToday's Outline - February 17, 2014

    Variational MethodHydrogen molecule ion trial functionHydrogen molecule ion normalizationThe overlap integralMore integration...Normalization, finally!Expectation value of HDirect & exchange integralsExpectation value of HEnergy upper boundProblem 7.14Problem 7.15