157
Today’s Outline - November 30, 2017 C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 1 / 16

Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Today’s Outline - November 30, 2017

• Final exam information

• Review problems from:

• Chapter 4• Chapter 5

Please fill out course evaluation (38% so far)

Final Exam:Tuesday, December 5, 2017

14:00 – 16:00, 212 Stuart Building

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 1 / 16

Page 2: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Today’s Outline - November 30, 2017

• Final exam information

• Review problems from:

• Chapter 4• Chapter 5

Please fill out course evaluation (38% so far)

Final Exam:Tuesday, December 5, 2017

14:00 – 16:00, 212 Stuart Building

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 1 / 16

Page 3: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Today’s Outline - November 30, 2017

• Final exam information

• Review problems from:

• Chapter 4• Chapter 5

Please fill out course evaluation (38% so far)

Final Exam:Tuesday, December 5, 2017

14:00 – 16:00, 212 Stuart Building

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 1 / 16

Page 4: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Today’s Outline - November 30, 2017

• Final exam information

• Review problems from:• Chapter 4

• Chapter 5

Please fill out course evaluation (38% so far)

Final Exam:Tuesday, December 5, 2017

14:00 – 16:00, 212 Stuart Building

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 1 / 16

Page 5: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Today’s Outline - November 30, 2017

• Final exam information

• Review problems from:• Chapter 4• Chapter 5

Please fill out course evaluation (38% so far)

Final Exam:Tuesday, December 5, 2017

14:00 – 16:00, 212 Stuart Building

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 1 / 16

Page 6: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Today’s Outline - November 30, 2017

• Final exam information

• Review problems from:• Chapter 4• Chapter 5

Please fill out course evaluation (38% so far)

Final Exam:Tuesday, December 5, 2017

14:00 – 16:00, 212 Stuart Building

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 1 / 16

Page 7: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Today’s Outline - November 30, 2017

• Final exam information

• Review problems from:• Chapter 4• Chapter 5

Please fill out course evaluation (38% so far)

Final Exam:Tuesday, December 5, 2017

14:00 – 16:00, 212 Stuart Building

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 1 / 16

Page 8: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7

(a) From the definition of the Neumann functions

nl(x) ≡ −(−x)l(

1

x

d

dx

)l cos x

x

construct n1(x) and n2(x).

(b) Expand the sines and cosines to obtain approximate formulas for n1(x)and n2(x), valid when x � 1. Confirm that they blow up at the origin.

(a) Start with n1

n1(x) = −(−x)1

x

d

dx

(cos x

x

)= −cos x

x2− sin x

x

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 2 / 16

Page 9: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7

(a) From the definition of the Neumann functions

nl(x) ≡ −(−x)l(

1

x

d

dx

)l cos x

x

construct n1(x) and n2(x).

(b) Expand the sines and cosines to obtain approximate formulas for n1(x)and n2(x), valid when x � 1. Confirm that they blow up at the origin.

(a) Start with n1

n1(x) = −(−x)1

x

d

dx

(cos x

x

)= −cos x

x2− sin x

x

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 2 / 16

Page 10: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7

(a) From the definition of the Neumann functions

nl(x) ≡ −(−x)l(

1

x

d

dx

)l cos x

x

construct n1(x) and n2(x).

(b) Expand the sines and cosines to obtain approximate formulas for n1(x)and n2(x), valid when x � 1. Confirm that they blow up at the origin.

(a) Start with n1

n1(x) = −(−x)1

x

d

dx

(cos x

x

)

= −cos x

x2− sin x

x

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 2 / 16

Page 11: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7

(a) From the definition of the Neumann functions

nl(x) ≡ −(−x)l(

1

x

d

dx

)l cos x

x

construct n1(x) and n2(x).

(b) Expand the sines and cosines to obtain approximate formulas for n1(x)and n2(x), valid when x � 1. Confirm that they blow up at the origin.

(a) Start with n1

n1(x) = −(−x)1

x

d

dx

(cos x

x

)= −cos x

x2− sin x

x

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 2 / 16

Page 12: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x

= −x2(

1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 13: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]

= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 14: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)

= xd

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 15: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)

= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 16: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)

=cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 17: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3

= −(

3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 18: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 19: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 20: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1

≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 21: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2

−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 22: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 23: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x

≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 24: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3

−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 25: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 4.7 (cont.)

n2(x) = −(−x)2(

1

x

d

dx

)2 cos x

x= −x2

(1

x

d

dx

)[1

x

d

dx

(cos x

x

)]= −x d

dx

(1

x

−x sin x − cos x

x2

)= x

d

dx

(sin x

x2+

cos x

x3

)= x

(x2 cos x − 2x sin x

x4+−x3 sin x − 3x2 cos x

x6

)=

cos x

x− 2

sin x

x2− sin x

x2− 3

cos x

x3= −

(3

x3− 1

x

)cos x − 3

x2sin x

(b) as x becomes small, we can replace sin x ≈ x and cos x ≈ 1

n1(x) ≈ − 1

x2− 1 ≈ − 1

x2−→∞

n2(x) = − 3

x3+

1

x− 3

x≈ − 3

x3−→∞

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 3 / 16

Page 26: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 27: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ

andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 28: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ

andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 29: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 30: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 31: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 32: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω

= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 33: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 34: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 35: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h

=nω

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 36: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

=n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 37: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3

Chlorine has two naturally occurring isotopes, 35Cl and 37Cl. Show thatthe vibrational spectrum of HCl should consist of closely spaced doublets,with a splitting given by ∆ν = 7.51× 10−4ν, where ν is the frequency ofthe emitted photon.

Consider the vibrational system ofthe HCl molecule as a harmonic os-cillator with a reduced mass µ andspring constant k , resulting in anangular frequency of vibration ω

this harmonic oscillator can maketransitions between states of differ-ing quantum number ni → nf

the frequency of the photon emit-ted by these transitions is thus

µ =mHmCl

mH + mCl

ω =

√k

µ

Ep = (ni + 12)~ω − (nf + 1

2)~ω= (ni − nf )~ω= n~ω n ≡ ni − nf

ν =Ep

h=

2π=

n

√k

µ

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 4 / 16

Page 38: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ=

1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 39: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣

=

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ=

1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 40: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣

=1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ=

1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 41: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ

=1

∆µ

µ=

1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 42: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ

=1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 43: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ

=1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl

= −(

1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 44: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ

=1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)

=µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 45: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ

=1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 46: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ=

1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 47: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ=

1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν

≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 48: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ=

1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

= 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 49: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.3 (cont.)

Because there are two isotopes, there will be two slightly differentoscillation frequencies for the molecule, resulting in small differences in theemitted photon frequencies, separated by an amount dν

∆ν =

∣∣∣∣∣ ddµ(

n

√k

µ

)∆µ

∣∣∣∣∣ =

∣∣∣∣ n2π√k(− 1

2µ3/2

)∆µ

∣∣∣∣=

1

2

n

√k

µ

∆µ

µ=

1

∆µ

µ=

1

2νµ∆mCl

m2Cl

∆µ =d

mCl

(1

mH+

1

mCl

)−1∆mCl = −

(1

mH+

1

mCl

)−2(−∆mCl

m2Cl

)=

µ2

m2Cl

∆mCl

∆ν =1

2

µ∆mCl

m2Cl

ν ≈ 1

2

(0.973 · 2

362

)ν = 7.51× 10−4ν

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 5 / 16

Page 50: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20

Suppose we use delta function wells, instead of spikes. Analyze this case,constructing the analog to Figure 5.6. This requires no new calculation,for the positive energy solutions (except that β is now negative; useβ = −1.5 for the graph), but you do need to work out the negative energysolutions (let κ ≡

√−2mE/~ and z ≡ −κa, for E < 0). How many states

are there in the first allowed band?

This is identical to the Dirac Combproblem of last semester exceptthat the potential is composed ofnegative-going delta functions andso α→ −α

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

This problem has two different solutions, one with E > 0 and the otherwith E < 0. The E > 0 solution is identical to the problem solved lastsemester and we will discuss it first.

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 6 / 16

Page 51: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20

Suppose we use delta function wells, instead of spikes. Analyze this case,constructing the analog to Figure 5.6. This requires no new calculation,for the positive energy solutions (except that β is now negative; useβ = −1.5 for the graph), but you do need to work out the negative energysolutions (let κ ≡

√−2mE/~ and z ≡ −κa, for E < 0). How many states

are there in the first allowed band?

This is identical to the Dirac Combproblem of last semester exceptthat the potential is composed ofnegative-going delta functions andso α→ −α

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

This problem has two different solutions, one with E > 0 and the otherwith E < 0. The E > 0 solution is identical to the problem solved lastsemester and we will discuss it first.

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 6 / 16

Page 52: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20

Suppose we use delta function wells, instead of spikes. Analyze this case,constructing the analog to Figure 5.6. This requires no new calculation,for the positive energy solutions (except that β is now negative; useβ = −1.5 for the graph), but you do need to work out the negative energysolutions (let κ ≡

√−2mE/~ and z ≡ −κa, for E < 0). How many states

are there in the first allowed band?

This is identical to the Dirac Combproblem of last semester exceptthat the potential is composed ofnegative-going delta functions andso α→ −α

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

This problem has two different solutions, one with E > 0 and the otherwith E < 0. The E > 0 solution is identical to the problem solved lastsemester and we will discuss it first.

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 6 / 16

Page 53: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20

Suppose we use delta function wells, instead of spikes. Analyze this case,constructing the analog to Figure 5.6. This requires no new calculation,for the positive energy solutions (except that β is now negative; useβ = −1.5 for the graph), but you do need to work out the negative energysolutions (let κ ≡

√−2mE/~ and z ≡ −κa, for E < 0). How many states

are there in the first allowed band?

This is identical to the Dirac Combproblem of last semester exceptthat the potential is composed ofnegative-going delta functions andso α→ −α

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

This problem has two different solutions, one with E > 0 and the otherwith E < 0. The E > 0 solution is identical to the problem solved lastsemester and we will discuss it first.

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 6 / 16

Page 54: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na)

= e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 55: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na)

= e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 56: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 57: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 58: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions

, where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 59: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions

, where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 60: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 61: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 62: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 63: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 64: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 65: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

Solve the Dirac comb potential us-ing Bloch’s theorem and periodicboundary conditions by solving overa single unit

the potential can be written as asum of delta functions , where αis the “strength” of the potentialsand N is the number of repeatingperiods

in the region 0 < x < a we definek =√

2mE/~ and have

letting z ≡ ka and β = −mαa/~2we get the solution

cos(Ka) = cos(z) + βsin(z)

z

x

-3a 0-2a-4a -a 2a 4a3aa

. . .. . .

ψ(x) = ψ(x + Na) = e iNKaψ(x)

K =2πn

Na, (n = 0,±1,±2, . . . )

V (x) = −αN−1∑j=0

δ(x − ja)

d2ψ

dx2= −k2ψ

the only difference is the sign of βand this justs shifts the energies ofthe bands a bit

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 7 / 16

Page 66: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

cos(Ka) = cos(z) + βsin(z)

z

The original solution with β = 1.5has bands where the right hand sideis between −1 and +1 and so hasvalues concident with the left side

when we set β = −1.5, the bandsshift to slightly lower values of zand, more importantly, there is nogap at z = 0

this emphasizes the fact that theremust be solutions for z < 0 andthus E < 0

-1

0

+1

0 π 2π 3π 4π

f(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 8 / 16

Page 67: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

cos(Ka) = cos(z) + βsin(z)

z

The original solution with β = 1.5has bands where the right hand sideis between −1 and +1 and so hasvalues concident with the left side

when we set β = −1.5, the bandsshift to slightly lower values of zand, more importantly, there is nogap at z = 0

this emphasizes the fact that theremust be solutions for z < 0 andthus E < 0

-1

0

+1

0 π 2π 3π 4π

f(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 8 / 16

Page 68: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

cos(Ka) = cos(z) + βsin(z)

z

The original solution with β = 1.5has bands where the right hand sideis between −1 and +1 and so hasvalues concident with the left side

when we set β = −1.5, the bandsshift to slightly lower values of zand, more importantly, there is nogap at z = 0

this emphasizes the fact that theremust be solutions for z < 0 andthus E < 0

-1

0

+1

0 π 2π 3π 4π

f(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 8 / 16

Page 69: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E > 0 solution

cos(Ka) = cos(z) + βsin(z)

z

The original solution with β = 1.5has bands where the right hand sideis between −1 and +1 and so hasvalues concident with the left side

when we set β = −1.5, the bandsshift to slightly lower values of zand, more importantly, there is nogap at z = 0

this emphasizes the fact that theremust be solutions for z < 0 andthus E < 0

-1

0

+1

0 π 2π 3π 4π

f(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 8 / 16

Page 70: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B

= e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 71: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B

= e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 72: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B

= e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 73: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B

= e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 74: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0

and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B

= e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 75: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0

and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B

= e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 76: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0

and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 77: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 78: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA

− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 79: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)]

= −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 80: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 81: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation

, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 82: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation

, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

]

[e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 83: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

]

[e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 84: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 85: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]

− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 86: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa)

= −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 87: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

In the region 0 < x < a we defineκ =√−2mE/~ and have

d2ψ

dx2= κ2ψ

ψ(x)= A sinh(κx) + B cosh(κx), (0 < x < a)

ψ(x)= e−iKa [A sinhκ(x + a) + B coshκ(x + a)], (−a < x < 0)

apply continuity of the wavefunction at x = 0 and, because of thediscontinuity in the derivative

rearranging the conti-nuity equation, substi-tuting for A in thed-erivative equation, andcancelling B

B = e−iKa [A sinh(κa) + B cosh(κa)]

κA− e−iKaκ [A cosh(κa) + B sinh(κa)] = −B 2mα

~2

A sinh(κa) = B[e iKa − cosh(κa)

][e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 9 / 16

Page 88: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa

− cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 89: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa

− cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 90: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa

− cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 91: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa

− cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 92: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)

− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 93: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa)

+ e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 94: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)

− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 95: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 96: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa

− 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 97: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa)

+ e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 98: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 99: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa) + e−iKa

= 2 cos(Ka)

− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 100: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa) + e−iKa

= 2 cos(Ka)− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 101: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa) + e−iKa

= 2 cos(Ka)− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 102: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa) + e−iKa

= 2 cos(Ka)− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 103: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa) + e−iKa

= 2 cos(Ka)− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) =

cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 104: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa) + e−iKa

= 2 cos(Ka)− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) = cosh(z)

+ βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 105: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

[e iKa − cosh(κa)]

sinh(κa)

[κ− e−iKaκ cosh(κa)

]− e−iKaκ sinh(κa) = −2mα

~2

− 2mα

~2κsinh(κa) = [e iKa − cosh(κa)][1− e−iKa cosh(κa)]− e−iKa sinh2(κa)

= e iKa − cosh(κa)− cosh(κa) + e−iKa cosh2(κa)− e−iKa sinh2(κa)

= e iKa − 2 cosh(κa) + e−iKa

= 2 cos(Ka)− 2 cosh(κa)

cos(Ka) = cosh(κa)− mα

~2κsinh(κa)

letting z ≡ κa and β = −mαa/~2we have a solution for E < 0 andthus z < 0

cos(Ka) = cosh(z) + βsinh(z)

z

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 10 / 16

Page 106: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

Thus for β = −1.5 the complete solution for all z is given by

cos(Ka) =

{cosh(z) + β sinh(z)/z , z < 0

cos(z) + β sin(z)/z , z > 0

-1

0

+1

-π 0 π 2π 3π 4π

f(z)

z

and the bands still exist,are continuous, and ex-tend to negative z

because Ka = 2π/Na,with n = 0, 1, 2 . . .N − 1,each of the grey boxes hasN discrete states and thusthere must be exactly Nstates in each band

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 11 / 16

Page 107: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

Thus for β = −1.5 the complete solution for all z is given by

cos(Ka) =

{cosh(z) + β sinh(z)/z , z < 0

cos(z) + β sin(z)/z , z > 0

-1

0

+1

-π 0 π 2π 3π 4π

f(z)

z

and the bands still exist,are continuous, and ex-tend to negative z

because Ka = 2π/Na,with n = 0, 1, 2 . . .N − 1,each of the grey boxes hasN discrete states and thusthere must be exactly Nstates in each band

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 11 / 16

Page 108: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

Thus for β = −1.5 the complete solution for all z is given by

cos(Ka) =

{cosh(z) + β sinh(z)/z , z < 0

cos(z) + β sin(z)/z , z > 0

-1

0

+1

-π 0 π 2π 3π 4π

f(z)

z

and the bands still exist,are continuous, and ex-tend to negative z

because Ka = 2π/Na,with n = 0, 1, 2 . . .N − 1,each of the grey boxes hasN discrete states and thusthere must be exactly Nstates in each band

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 11 / 16

Page 109: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

Thus for β = −1.5 the complete solution for all z is given by

cos(Ka) =

{cosh(z) + β sinh(z)/z , z < 0

cos(z) + β sin(z)/z , z > 0

-1

0

+1

-π 0 π 2π 3π 4π

f(z)

z

and the bands still exist,are continuous, and ex-tend to negative z

because Ka = 2π/Na,with n = 0, 1, 2 . . .N − 1,each of the grey boxes hasN discrete states and thusthere must be exactly Nstates in each band

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 11 / 16

Page 110: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.20 - E < 0 solution

Thus for β = −1.5 the complete solution for all z is given by

cos(Ka) =

{cosh(z) + β sinh(z)/z , z < 0

cos(z) + β sin(z)/z , z > 0

-1

0

+1

-π 0 π 2π 3π 4π

f(z)

z

and the bands still exist,are continuous, and ex-tend to negative z

because Ka = 2π/Na,with n = 0, 1, 2 . . .N − 1,each of the grey boxes hasN discrete states and thusthere must be exactly Nstates in each band

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 11 / 16

Page 111: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22

(a) Construct the completely antiymmetric wave function ψ(xA, xB , xC )for three identical fermions, one in state ψ5, one in state ψ7 and onein state ψ17

(b) Construct the completely symmetric wave function ψ(xA, xB , xC ) forthree identical bosons, (i) if all three are in state ψ11, (ii) if two are instate ψ1 and one in state ψ19, and (iii) if one is in state ψ5, one instate ψ7 and one in state ψ17

(a) Start with the Slater determinant

ψ =det

∣∣∣∣∣∣ψ5(xA) ψ7(xA) ψ17(xA)ψ5(xB) ψ7(xB) ψ17(xB)ψ5(xC ) ψ7(xC ) ψ17(xC )

∣∣∣∣∣∣=

√16

[

ψ5(xA)ψ7(xB)ψ17(xC )− ψ5(xA)ψ7(xC )ψ17(xB)

− ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC )− ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 12 / 16

Page 112: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22

(a) Construct the completely antiymmetric wave function ψ(xA, xB , xC )for three identical fermions, one in state ψ5, one in state ψ7 and onein state ψ17

(b) Construct the completely symmetric wave function ψ(xA, xB , xC ) forthree identical bosons, (i) if all three are in state ψ11, (ii) if two are instate ψ1 and one in state ψ19, and (iii) if one is in state ψ5, one instate ψ7 and one in state ψ17

(a) Start with the Slater determinant

ψ =det

∣∣∣∣∣∣ψ5(xA) ψ7(xA) ψ17(xA)ψ5(xB) ψ7(xB) ψ17(xB)ψ5(xC ) ψ7(xC ) ψ17(xC )

∣∣∣∣∣∣=

√16

[

ψ5(xA)ψ7(xB)ψ17(xC )− ψ5(xA)ψ7(xC )ψ17(xB)

− ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC )− ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 12 / 16

Page 113: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22

(a) Construct the completely antiymmetric wave function ψ(xA, xB , xC )for three identical fermions, one in state ψ5, one in state ψ7 and onein state ψ17

(b) Construct the completely symmetric wave function ψ(xA, xB , xC ) forthree identical bosons, (i) if all three are in state ψ11, (ii) if two are instate ψ1 and one in state ψ19, and (iii) if one is in state ψ5, one instate ψ7 and one in state ψ17

(a) Start with the Slater determinant

ψ =det

∣∣∣∣∣∣ψ5(xA) ψ7(xA) ψ17(xA)ψ5(xB) ψ7(xB) ψ17(xB)ψ5(xC ) ψ7(xC ) ψ17(xC )

∣∣∣∣∣∣

=

√16

[

ψ5(xA)ψ7(xB)ψ17(xC )− ψ5(xA)ψ7(xC )ψ17(xB)

− ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC )− ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 12 / 16

Page 114: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22

(a) Construct the completely antiymmetric wave function ψ(xA, xB , xC )for three identical fermions, one in state ψ5, one in state ψ7 and onein state ψ17

(b) Construct the completely symmetric wave function ψ(xA, xB , xC ) forthree identical bosons, (i) if all three are in state ψ11, (ii) if two are instate ψ1 and one in state ψ19, and (iii) if one is in state ψ5, one instate ψ7 and one in state ψ17

(a) Start with the Slater determinant

ψ =det

∣∣∣∣∣∣ψ5(xA) ψ7(xA) ψ17(xA)ψ5(xB) ψ7(xB) ψ17(xB)ψ5(xC ) ψ7(xC ) ψ17(xC )

∣∣∣∣∣∣=

√16

[

ψ5(xA)ψ7(xB)ψ17(xC )− ψ5(xA)ψ7(xC )ψ17(xB)

− ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC )− ψ17(xA)ψ7(xB)ψ5(xC )

]C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 12 / 16

Page 115: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22

(a) Construct the completely antiymmetric wave function ψ(xA, xB , xC )for three identical fermions, one in state ψ5, one in state ψ7 and onein state ψ17

(b) Construct the completely symmetric wave function ψ(xA, xB , xC ) forthree identical bosons, (i) if all three are in state ψ11, (ii) if two are instate ψ1 and one in state ψ19, and (iii) if one is in state ψ5, one instate ψ7 and one in state ψ17

(a) Start with the Slater determinant

ψ =det

∣∣∣∣∣∣ψ5(xA) ψ7(xA) ψ17(xA)ψ5(xB) ψ7(xB) ψ17(xB)ψ5(xC ) ψ7(xC ) ψ17(xC )

∣∣∣∣∣∣=

√16

[ψ5(xA)ψ7(xB)ψ17(xC )− ψ5(xA)ψ7(xC )ψ17(xB)

− ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC )− ψ17(xA)ψ7(xB)ψ5(xC )

]C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 12 / 16

Page 116: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22

(a) Construct the completely antiymmetric wave function ψ(xA, xB , xC )for three identical fermions, one in state ψ5, one in state ψ7 and onein state ψ17

(b) Construct the completely symmetric wave function ψ(xA, xB , xC ) forthree identical bosons, (i) if all three are in state ψ11, (ii) if two are instate ψ1 and one in state ψ19, and (iii) if one is in state ψ5, one instate ψ7 and one in state ψ17

(a) Start with the Slater determinant

ψ =det

∣∣∣∣∣∣ψ5(xA) ψ7(xA) ψ17(xA)ψ5(xB) ψ7(xB) ψ17(xB)ψ5(xC ) ψ7(xC ) ψ17(xC )

∣∣∣∣∣∣=

√16

[ψ5(xA)ψ7(xB)ψ17(xC )− ψ5(xA)ψ7(xC )ψ17(xB)

− ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC )− ψ17(xA)ψ7(xB)ψ5(xC )

]C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 12 / 16

Page 117: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22

(a) Construct the completely antiymmetric wave function ψ(xA, xB , xC )for three identical fermions, one in state ψ5, one in state ψ7 and onein state ψ17

(b) Construct the completely symmetric wave function ψ(xA, xB , xC ) forthree identical bosons, (i) if all three are in state ψ11, (ii) if two are instate ψ1 and one in state ψ19, and (iii) if one is in state ψ5, one instate ψ7 and one in state ψ17

(a) Start with the Slater determinant

ψ =det

∣∣∣∣∣∣ψ5(xA) ψ7(xA) ψ17(xA)ψ5(xB) ψ7(xB) ψ17(xB)ψ5(xC ) ψ7(xC ) ψ17(xC )

∣∣∣∣∣∣=

√16

[ψ5(xA)ψ7(xB)ψ17(xC )− ψ5(xA)ψ7(xC )ψ17(xB)

− ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC )− ψ17(xA)ψ7(xB)ψ5(xC )]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 12 / 16

Page 118: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22

(a) Construct the completely antiymmetric wave function ψ(xA, xB , xC )for three identical fermions, one in state ψ5, one in state ψ7 and onein state ψ17

(b) Construct the completely symmetric wave function ψ(xA, xB , xC ) forthree identical bosons, (i) if all three are in state ψ11, (ii) if two are instate ψ1 and one in state ψ19, and (iii) if one is in state ψ5, one instate ψ7 and one in state ψ17

(a) Start with the Slater determinant

ψ =det

∣∣∣∣∣∣ψ5(xA) ψ7(xA) ψ17(xA)ψ5(xB) ψ7(xB) ψ17(xB)ψ5(xC ) ψ7(xC ) ψ17(xC )

∣∣∣∣∣∣=√

16

[ψ5(xA)ψ7(xB)ψ17(xC )− ψ5(xA)ψ7(xC )ψ17(xB)

− ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC )− ψ17(xA)ψ7(xB)ψ5(xC )]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 12 / 16

Page 119: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =

√13

[

ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )

]ψiii =

√16

[

ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 120: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =

√13

[

ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )

]ψiii =

√16

[

ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 121: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =

√13

[

ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )

]

ψiii =

√16

[

ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 122: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =

√13

[ψ1(xA)ψ1(xB)ψ19(xC )

+ ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )

]

ψiii =

√16

[

ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 123: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =

√13

[ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )

]

ψiii =

√16

[

ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 124: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =

√13

[ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )]

ψiii =

√16

[

ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 125: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =√

13

[ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )]

ψiii =

√16

[

ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 126: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =√

13

[ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )]

ψiii =

√16

[

ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 127: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =√

13

[ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )]

ψiii =

√16

[ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 128: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =√

13

[ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )]

ψiii =

√16

[ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )

]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 129: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =√

13

[ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )]

ψiii =

√16

[ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 130: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.22 (cont.)

(b)

ψi = ψ11(xA)ψ11(xB)ψ11(xC )

ψii =√

13

[ψ1(xA)ψ1(xB)ψ19(xC ) + ψ1(xA)ψ19(xB)ψ1(xC )

+ ψ19(xA)ψ1(xB)ψ1(xC )]

ψiii =√

16

[ψ5(xA)ψ7(xB)ψ17(xC ) + ψ5(xA)ψ7(xC )ψ17(xB)

+ ψ7(xA)ψ5(xB)ψ17(xC ) + ψ7(xA)ψ17(xB)ψ5(xC )

+ ψ17(xA)ψ5(xB)ψ7(xC ) + ψ17(xA)ψ7(xB)ψ5(xC )]

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 13 / 16

Page 131: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24

Check the following equations for the example in Section 5.4.1 where threeparticles are in a one-dimensional infinite square well withn2A + n2B + n2C = 363.

Q(N1,N2,N3, . . . ) = N!∞∏n=1

dNnn

Nn!

Q(N1,N2,N3, . . . ) =∞∏n=1

dn!

Nn!(dn − NN)!

Q(N1,N2,N3, . . . ) =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!

The three equations are for distinguishable particles, fermions and bosonsand there are 4 possible configurations, which will be treated for each case

in all cases, N = 3 and dn = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 14 / 16

Page 132: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24

Check the following equations for the example in Section 5.4.1 where threeparticles are in a one-dimensional infinite square well withn2A + n2B + n2C = 363.

Q(N1,N2,N3, . . . ) = N!∞∏n=1

dNnn

Nn!

Q(N1,N2,N3, . . . ) =∞∏n=1

dn!

Nn!(dn − NN)!

Q(N1,N2,N3, . . . ) =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!

The three equations are for distinguishable particles, fermions and bosonsand there are 4 possible configurations, which will be treated for each case

in all cases, N = 3 and dn = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 14 / 16

Page 133: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24

Check the following equations for the example in Section 5.4.1 where threeparticles are in a one-dimensional infinite square well withn2A + n2B + n2C = 363.

Q(N1,N2,N3, . . . ) = N!∞∏n=1

dNnn

Nn!

Q(N1,N2,N3, . . . ) =∞∏n=1

dn!

Nn!(dn − NN)!

Q(N1,N2,N3, . . . ) =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!

The three equations are for distinguishable particles, fermions and bosonsand there are 4 possible configurations, which will be treated for each case

in all cases, N = 3 and dn = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 14 / 16

Page 134: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!

= 6∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 135: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 136: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 137: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3

Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 138: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 139: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2

Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 140: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 141: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1

Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 142: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 143: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1

Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 144: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - distinguishable case

Q = N!∞∏n=1

dNnn

Nn!= 6

∞∏n=1

1

Nn!

since most terms have Nn = 0, which result in values of 1, only the termswith Nn 6= 1 are enumerated

N11 = 3 Q = 6× 13! = 1

N5 = 1; N13 = 2 Q = 6× 11! ×

12! = 3

N1 = 2; N19 = 1 Q = 6× 12! ×

11! = 3

N5 = N7 = N17 = 1 Q = 6× 11! ×

11!

11! = 6

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 15 / 16

Page 145: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!

=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 146: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 147: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3

Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 148: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 149: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2

Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 150: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 151: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1

Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 152: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 153: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1

Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 154: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 155: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!

= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 156: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1

C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16

Page 157: Today’s Outline - November 30, 2017phys.iit.edu/~segre/phys405/17F/lecture_27.pdfToday’s Outline - November 30, 2017 Final exam information Review problems from: Chapter 4 Chapter

Problem 5.24 - fermion & boson cases

Q =∞∏n=1

dn!

Nn!(dn − Nn)!=∞∏n=1

1

Nn!(1− Nn)!

N11 = 3 Q = 13! ×

1(−2)! = 0

N5 = 1; N13 = 2 Q = 11!0! ×

12!(−1)! = 0

N1 = 2; N19 = 1 Q = 12!(−1)! ×

11!0! = 0

N5 = N7 = N17 = 1 Q = 11!0! ×

11!0!

11!0! = 1

Q =∞∏n=1

(Nn + dn − 1)!

Nn!(dn − 1)!= 1

All four cases give Q = 1C. Segre (IIT) PHYS 405 - Fall 2017 November 30, 2017 16 / 16