Tools for Teachers - Shodor · Web viewTitle Tools for Teachers Author Linda Schmalbeck Last modified by schmalbeck Created Date 10/13/2006 2:08:00 AM Company NCSSM Other titles Tools

Embed Size (px)

Citation preview

Tools for Teachers

Tools for Teachers

in

Prepared by the Shodor Education Foundation with support from:

Table of Contents

Purpose . 3

Draft lesson plans by Topic

- Global Warming . 4

- Stratospheric Ozone .. 12

- Soil Erosion . 22

- Shoreline Dynamics .. 27

- Continental Ice Melt 32

- Smog /Ozone Simulation .34

National Science Digital Library . 35

Useful Web Links...39

Purpose

In June 2006 North Carolina earth and environmental science teachers gathered at a workshop hosted by the shodor education foundation.

Their goal was produce inquiry lesson plans that would be of immediate value to both new teachers and more seasoned teachers.

The lesson plans were to include, as much as possible, resources from the National Science Digital Library (NSDL) and computational science tools from Shodors Computational Science Education Reference Desk (CSERD).

This is a summary of the draft lesson plans that were produced along with a list of links and other information that those attending the workshops found to be particularly useful.

Please use these lessons, change them and improve them. Send the changes to us at: [email protected] or [email protected] or [email protected]

Let us know if you find the NSDL and other resources useful.

Our thanks to the following teachers who carefully and thoughtfully put together the lesson plans in this document:

Crystal Bennet

Gail Boyarsky

Beverly Cea

Denis Dubay

Carrie Jones

Greg Mitchell

Daniel Smith

Lesson Plan Understanding Global Warming Using a Model

Target student audience:

High school (grades 9-12) biology and earth/environmental science students.

Learning Outcomes:

1. Students investigate the factors contributing to global warming by using a computational model. Students will manipulate and compare variables that contribute to changes in earths temperature.

2. Students will explain the effect that those variables have on global temperature changes.

3. Students will create a realistic model for global climate change as well as a sustainable model for the biosphere. .

Teacher Planning

Time required: 2-3, 50-minute class periods

Students will work in pairs (ideally)

Materials/Resources:

Student handout (attached below)

Technology Resources:

Computers with high-speed internet connections (enough for groups of two is ideal)

Website URL: http://zebu.uoregon.edu/nsf/gh.html

Pre-Activities

Pre-Activities will depend on how much the teacher wants students to know about the greenhouse effect prior to using the model.

a K-W-L chart http://www.eduplace.com/graphicorganizer/pdf/kwl.pdf to establish your students prior knowledge

research/reading about the greenhouse effect and global climate change http://www.usgcrp.gov/usgcrp/Library/nationalassessment/overview.htm

Predicted climate change in the Southeast

http://www.usgcrp.gov/usgcrp/Library/nationalassessment/overviewsoutheast.htm

basic vocabulary for understanding to the model.

- population growth

- CO2 coupling

- CH4 coupling

- lag time

- temperature coupling

- polar meltdown threshold

North Carolina Curriculum Alignment

Biology Competency Goal 5: The learner will develop an understanding of the ecological relationships among organisms.

Objective 5.03: Assess human population and its impact on local ecosystems and global environments:

Historic and potential changes in population.

Factors associated with those changes.

Climate change.

Resource use.

Sustainable practices/stewardship.

Earth/Environmental Science Competency Goal 5: The learner will build an understanding of the dynamics and composition of the atmosphere and its local and global processes influencing climate and air quality.

Objective 5.03: Analyze global atmospheric changes including changes in CO2, CH4, and stratospheric O3 and the consequences of these changes:

Climate change.

Changes in weather patterns.

Increasing ultraviolet radiation.

Sea level changes.

Pre-requisite Concepts:

Graphing

Very general chemistry background

Links:

http://yale.edu/ynhti/curriculum/units/2005/4/05.04.09.x.html

Procedure

1. Go to http://zebu.uoregon.edu/nsf/gh.html --read the instructions and provide definitions for the basic vocabulary used in the model

2. Play with the model to get a sense of how it works

3. Complete the Handout attached at the end of this lesson

4. The teacher should circulate throughout the room, helping students and asking leading questions

Student HandoutGlobal Warming Model

1. Set all of the sliders EXCEPT the Population Growth slider to their lowest values. Run the model. Using the Population Growth slider, choose a realistic population growth rate. What growth rate did you choose? __________

Why do you think this is a good rate?

What additional data did you need to decide upon this rate?

1. Keep the Population Growth Slider at the value you decided in Question#1. Keep the other sliders at their lowest levels.

2. Press the Population button (4 times). Draw the curve below and explain what it reveals.

Explain what it means:

Press the CO2 CH4 button (4 times). Draw the curve below and explain what it reveals.

Explain what it means.

Press the Temperature button (4 times). Draw the curve below and explain what it reveals.

Explain what it means.

Now that youve got an estimate for population growth rate, you need to figure out which Greenhouse gascarbon dioxide or methanehas a larger impact on global warming.

Which has a larger impact?

(circle one)

a. carbon dioxide

b. methane

Explain how you know:

Now explain why one gas has a larger effect than another gas(this will involve considering why/how each gas is produced)

4. Now explain what Lag Time is and the effect that Lag Time has on global temperature change. Give at least two examples of data you collected on Lag Time using the model.

Explanation of Lag Time:

Examples of data collected regarding Lag Time:

5. Find a realistic y-axis maximum and minimum for each of the following variables:

a) Population

y-axis min. = _____

y-axis max. = _____

Why are these appropriate? (find data to support these choices)

b) CO2/CH4

y-axis min. = _____

y-axis max. = _____

Why are these appropriate? (find data to support these choices)

c) Temperature changey-axis min. = _____

y-axis max. = _____

Why are these appropriate? (find data to support these choices)

5. Now create a realistic model for the next 200 years. You must justify the values you choose for each variable. Show the variables you have selected in the table on the next page.

DATA FOR REALISTIC MODEL

Variable

What value you picked

Why you picked it (likely will require outside reading/ internet source)

Population

Variable

What value you picked

Why you picked it (likely will require outside reading/ internet source)

CO2 coupling

CH4 coupling

Lag Time

Temp( GH* gas

Polar Threshold

* GH = Green House

What happened with the global population? (give data)

What happened with global temperature? (give data)

What happened with CO2 levels? (give data)

What happened with CH4 levels? (give data)

What happened with the polar ice caps? Did they melt?

8. Now develop a realistic and sustainable model to get us through the next 300 years without the polar ice caps melting. Choose your variables carefully. For example, at the end of 300 years, the polar ice caps should not have melted! Justify your choices for the variables in the table below.

REALISTIC AND SUSTAINABLE MODEL

Variable

What value you picked

Why you picked it (likely will require outside reading/ internet source)

Population

CO2 coupling

Variable

What value you picked

Why you picked it (likely will require outside reading/ internet source)

CH4 coupling

Lag Time

Temp( GH gas

Polar Threshold

8. What did your model show about global warming during the next 300 years?

What happened with the global population? (give data)

What happened with global temperature? (give data)

What happened with CO2 levels? (give data)

What happened with CH4 levels? (give data)

9. Write a page on the following:

Which of the variables in this model should politicians and policymakers focus their energy on in during the next 20 years? Why?

Ozone: The Good, The Bad, and the Ugly

Learning Objectives:

to learn about the properties of ozone in the troposphere and stratosphere and to make observations about changes in the ozone layer over time.

Standards:

5.03 Analyze global atmospheric changes included changes in carbon dioxide, methane and stratospheric ozone and the consequences of these changes.

Content Description:

Analyze changes in atmospheric composition and predict potential changes in the future.

Strand:

Science and Technology

Provide opportunities for students to utilize technology to collect and analyze data in laboratory settings

Safety Precautions: None

Time: Approximately 3 days

Science Concepts:

ozone structure and formation,

ozone layer depletion (stratospheric)

harmful troposphere ozone

Prerequisite knowledge:

The day before class go to http://www.atm.ch.cam.ac.uk/tour/atmosphere.html and go over the layers of the atmosphere. It is important that students are familiar with temperature and pressure changes in each layer.

Materials:

Computer, PC ready monitor or projector with computer (or Smart-Board)

Computer software

Excel

Graphical Analysis or graph paper

ruler

gumdrops

toothpicks

colored pencils

Day One

Essential Question: What is ozone and how does it affect us?

Making models of ozone:

Ozone comes from the Greek word ozein

which means to smell. You can smell ozone

sometimes before a thunderstorm.

1. Obtain three gumdrops of the same color and two toothpicks. Using the gumdrops and toothpicks follow your teachers instructions to build a molecule of ozone. Write on your paper the equations for the formation of this molecule:

O2 + _____ _____ + ________

O + O2 _____

If you had 5 million ozone molecules and lined them up

side by side, they would not even be the width of a human hair.

2. Use your book, or the Internet to answer the following questions:

Where is the ozone layer?

Why is the ozone layer important?

3. Go to http://ozone.gi.alaska.edu/formed.htm and show how ozone is made.

4. Why do you think that you smell ozone before a thunderstorm?

Day Two: Research

Essential question: Where is the hole in the ozone layer and how does it change?

Go to http://www.epa.gov/ozone/science/hole/index.html.

Answer the following questions

1. Why is the word hole a misnomer? In what units is it measured?

2. How is this thinning different from global ozone depletion?

3. Using colored pencils, make a drawing of the Southern hemisphere and of Antarctica and color the hole purple.

4. Go to http://www.epa.gov/ozone/science/hole/size.html

What happens to the area of ozone hole during the year? Refer to the last graph for your answer.

5. Go to http://www.epa.gov/ozone/science/hole/size.html#areatime. Either view the existing graph or have the students make their own graphs from the data (either by hand or with a graphing program such as Microsoft Excel.)

6. Go to http://www.epa.gov/ozone/science/hole/sizedata.html#altprof and copy data.

Make a graph to show how ozone varies with altitude over the South Pole.

(NOTE: here is how to do this using Excel:

1. Highlight all of the data on the web page.

2. Copy all of the data that you have highlighted

3. Open up a TEXT EDITOR such as NotePad (Windows), WordPad (Windows), or TextEdit (Macintosh)

4. Paste the data into the text editor.

5. Save the file on your desktop.

6. Open up Microsoft Excel.

7. Go to File ( Open.

8. Open the data file. You will probably need to click on file type All Files.

9. You will now be in the data import wizard. You should be able to hit Finish, and the data will be in Excel format in five columns.

10. Graph the data as desired! Line plots will work the best.)

Questions:

1. How does the hole vary with season?

2. Can this vary with the melting and freezing of ice in Antarctica?

Day 3:Going Further

1. Review the information provided at:

http://ozone.gi.alaska.edu/levels.htm (ozone depletion)

2. Obtain 3 red gumdrops (ozone molecule), one green gumdrop (carbon) two orange (chlorine) and two yellow (fluorine), and toothpicks.

Follow your teachers directions to make a chlorofluorocarbon. Use the gumdrop model to show how chlorofluorocarbons break apart the ozone molecule.

Equations: Use your models to demonstrate this phenomenon.

CF2Cl2 + UV => CF2Cl + Cl

Cl + O3 => ClO + O2

ClO + O => O2 + Cl

Teacher Notes

Background Information

Scientist Prepared questions and answers about stratospheric ozone: http://www.unep.org/ozone/pdf/qa.pdf

Students often, quite reasonably, confuse the issues related to ground level ozone pollution that we all breathe and chemical smog with the question of the depletion of the stratospheric ozone layer, the so-called ozone hole. This Website referenced below has a useful discussion of the differences between the two very different environmental problems.

http://earthobservatory.nasa.gov/Library/OzoneWeBreathe/ozone_we_breathe.html

Day One

Making models is designed to do in the classroom with discussion. Students make models of ozone and CFCs and talk about layers of the atmosphere.

1. O2 + __hv___ __O___+ ____O____ The UV light must be about 240 nm.

O + O2 O3S

3. stratosphere, it protects us from harmful UV radiation.

Day two:

Students go to the computer lab and study data collected from NOAA and EPA websites and graph this data. The graphs may be done in Excel or with graph paper.

http://www.epa.gov/ozone/science/hole/size.html

Ozone is a relatively unstable molecule found in Earth's atmosphere. It is made up of three atoms of oxygen. Although it represents only a tiny fraction of the atmosphere, ozone is crucial for life on Earth. Depending on where ozone resides, it can protect or harm life on Earth. In the Earth's stratosphere (about 15 miles up), ozone acts as a shield to protect the Earth's surface from the Sun's harmful ultraviolet radiation. Without this shield, we would be more susceptible to skin cancer, cataracts, and impaired immune systems. Closer to Earth, however, in the air we breathe, ozone is a harmful pollutant that causes damage to lung tissue and plants.

The amounts of "good" and "bad" ozone in the atmosphere depend on a balance between processes that create ozone and those that destroy it. An upset in the ozone balance can have serious consequences for life on Earth. Scientists have found evidence that changes are occurring in ozone levels: the "bad" ozone (smog) is increasing in the air we breathe, and the "good" ozone is decreasing in our protective ozone shield. Human production of chlorine-containing chemicals such as chlorofluorocarbons (CFCs) has created an additional ozone-destroying force. This model describes processes that regulate "good" ozone levels.

Ozone depletion will result in increased UV radiation reaching the earth, particularly the biologically damaging UV-B. Consequences of this include:

Higher incidence of cataracts and skin cancer. A 1% rise in UV radiation is estimated to produce a 2-3% increase in the frequency of skin cancer.

Immune system suppression in both humans and animals, which could result in an increase in the spread of infectious diseases.

Inhibition of photosynthesis, and thus plant growth, which could reduce world food production.

Damage to the marine ecosystem. Phytoplankton and zooplankton, which are vulnerable to UV radiation, form the base of the marine food web. In addition, phytoplankton play an important role in the uptake of carbon dioxide; a reduction in their numbers could exacerbate the greenhouse effect

History

In 1973, two scientists from the University of California at Irvine, Mario Molina and F. Sherwood Rowland, first discovered that man-made substances called chlorofluorocarbons (CFCs) could play a major role in the destruction of stratospheric ozone. Their findings were published in the journal Nature in June 1974. Since that time there has been much controversy surrounding the subject of ozone depletion. Researchers have struggled to understand the nature and severity of the problem through numerous scientific studies. Nations from all over the world have come together and agreed to establish international industrial regulations in hope of protecting the ozone layer.

Ozone depletion control started in the early 1970s, when the United States, along with a handful of other Western countries, expressed concern over emissions from supersonic transport (SST) aircraft and aerosol spray cans. Environmental groups organize opposition to the development of the SST and to the extensive use of aerosols. Public response led to a sharp drop in the sales of aerosol products. The U.S. Congress, prodded by government studies supporting the CFC ozone depletion theory and its links to skin cancer, approved the Toxic Substances Control Act of 1976, which gave the Environmental Protection Agency (EPA) authority to regulate CFCs. In 1978, the United States became the first country to ban the nonessential use of CFCs in aerosols. However, the EPA ruled that other uses of CFCs, such as refrigeration, were essential and lacked available substitutes.

Ozone depletion emerged as a major international issue in the 1980s. This occurred primarily as a result of initiatives by the United Nations Environmental Program and actions of the international scientific and environmental communities.

A United Nations Environment Program initiative to protect the ozone layer was signed in Vienna in 1985, and a protocol outlining proposed protective actions followed. The Vienna Convention of 1985 embodied an international environmental consensus that ozone depletion was a serious environmental problem, without requiring specific steps to reduce CFC emissions.

The Montreal Protocol, signed in September 1987, was a benchmark treaty calling for a 50% reduction in CFC production by 2000, and an eventual complete phase-out of ozone-depleting chemicals. The United States ratified the Montreal Protocol in 1988. A total of 161 nations have since become parties to the treaty.

The 1990 London Amendments to the Protocol state that production of CFCs, CCl4 , and halons will be completely halted by the year 2000. The 1992 Copenhagen Agreement accelerated the phase-out schedule by four years.

Ozone Timeline

DATE

EVENT

1973

Rowland and Molina first discover that chlorofluorocarbons (CFCs) can destroy stratospheric ozone.

1974

First government hearings are held on the CFC-ozone theory.

1975

The Natural Resources Defense Council sues the Consumer Product Safety Commission for a ban on CFCs used in aerosol spray cans. The lawsuit is rejected due to insufficient evidence that CFCs harm the ozone layer.

The state of Oregon passes legislation prohibiting the use of CFC propellants in aerosols.

An aerosol manufacturer, SC Johnson Wax announces its voluntary decision to eliminate CFC propellants from all its aerosol products.

1976

The National Academy of Sciences releases a report verifying the 1976 Rowland-Molina hypothesis, but recommends postponing government action.

1977

The United Nations Environmental Programme holds the first international meeting to discuss ozone depletion.

1978

The United States bans CFCs used in aerosols.

Total Ozone Mapping Spectrometer (TOMS) is launched aboard the NIMBUS-spacecraft.

1984

Ozone loss of 40% is detected over Antarctica during austral spring.

1985

Satellite images show existence of an Antarctic ozone hole. The Vienna Convention, calling for additional research, is signed.

1986

International negotiations resume in Geneva. United States requests global CFC reductions of 95% over the next 10 years.

1987

Montreal Protocol, specifying CFC reductions of 50% by 2000, is signed.

Antarctic studies find chlorine to be the primary cause of ozone depletion.

1988

Ozone losses of 1.7 to 3% are measured over the Northern Hemisphere.

1990 International delegates meet in London to strengthen the Montreal Protocol and agree to a complete phase-out of CFCs by 2000.

1991

Upper Atmospheric Research Satellite (UARS) is launched. Meteor-3 TOMS (Total Ozone Mapping Spectrometer) is launched.

Mt. Pinatubo erupts, increasing natural levels of atmospheric chlorine.

Airborne Arctic Stratospheric Expedition (AASE I) studies northern vortex. Record levels of ClO, 1.5 parts per billion, are measured over Bangor, Maine. Ozone depletion rates of up to 20% are found in the Northern Hemisphere. Maximum losses of 40 to 45% discovered over Russia.

1992

Parties to the Montreal Protocol meet in Copenhagen and agree to a 75% reduction in CFCs by 1994 and overall phase-out by January of 1996. The production grace period, to supply CFCs for essential purposes and the needs of developing countries, is extended to 2006.

1994

The Meteor-3 TOMS fails on December 27.

1995

Professors Paul Crutzen, Mario Molina, and F. Sherwood Rowland receive the Nobel Prize in Chemistry for their research on ozone depleting chemicals.

2000

NASA reports Antarctic ozone "hole" is three times larger than the entire land mass of the United States, the largest such area ever observed.

Data and table taken from http://www.globalchange.umich.edu/globalchange1/current/labs/samson/ozone/lab14_new.html

How do Chlorofluorocarbons Affect Ozone Levels?

The production and destruction of ozone in the stratosphere are nearly in balance, thus we say ozone is in a steady state. The steady state means that for every ozone molecule that is destroyed, one is produced. This steady state is imbalanced by chlorine chemistry that increases the loss rate of ozone and leads to a lower steady state level of ozone. Most of the chlorine present in the stratosphere is the result of chlorofluorocarbons (CFC's) produced by humans. CFC's were used heavily as a coolant in refrigerators and air conditioners, as a propellant in aerosol cans, and other uses from the 1940's to the 1980's. The production of CFC's was banned in developed countries in 1995. CFC's were considered safe because CFC's are inert or non-reactive. While it is true that CFC's are inert in the troposphere, they are not inert in the stratosphere. In the presence of high energy UV light in the upper stratosphere, the carbon-chlorine bond is broken. This produces a free chlorine atom (Cl) that reacts with an ozone molecule (O3) to form chlorine monoxide (ClO). The chlorine monoxide then reacts with an oxygen atom (O) to form an oxygen molecule (O2) leaving the chlorine atom free once again to destroy another ozone molecule. A chlorine atom can remain in the stratosphere for many years and destroy many ozone molecules. One chlorine atom can destroy up to 100,000 ozone molecules. The steady state, or the balance between production and loss of ozone, has been disrupted by the presence of chlorine in the stratosphere. The reaction is shown below.

CF2Cl2* + UV => CF2Cl + Cl

Cl + O3 => ClO + O2

ClO + O => O2 + Cl

References and Useful Websites

http://www.globalchange.umich.edu/globalchange1/current/labs/samson/ozone/lab14_new.html

http://ozone.gi.alaska.edu/levels.htm

http://www.nas.nasa.gov/About/Education/Ozone/chemistry.html

http://www.atmosphere.mpg.de/enid/1z2.html

Conducting Scientific Inquiry with a Computer Model of Soil Erosion

Learning Objectives:

By the end of the lesson, students should be able to:

1) Explain factors that control soil erosion.

2) Discuss the importance and usefulness of soil erosion models to land management decisions.

Standards (NC ScoS for Earth/Environmental Science):

Objective 1.02: Design and conduct scientific investigations to answer questions related to earth and environmental science.

Objective 4.01: Evaluate erosion and depositional processes, especially the effect of human

choices on the rate of erosion.

Prior Learning:

Students should have some familiarity with soil characteristics and the processes of

weathering, erosion and deposition.

This activity works well during a unit on soils or agriculture.

Skills: Hypothesis Formation/Experimental Design, Using Computational Models

Safety Precautions: Ensure that students dont shock themselves plugging in the computers. This

activity does not require safety goggles, gloves, or other specialized safety equipment.

Materials:

Computers with Internet access. Preferably students will work in groups of 2 or 3. If your technology resources do not permit this, this can be adapted as a class activity.

Paper and writing instruments.

Time Requirement: This activity is designed for one to one-and-a-half 45 minute class periods. The amount of time necessary depends on how quickly your students work and how quickly the class proceeds through the discussion. Ideally you will spend 15 minutes reviewing soil content and discussing hypotheses (steps 1 through 5 below), students will spend 20 to 30 minutes working with the WEPP model, and the class will spend 15 to 25 minutes discussing results.

Procedure:

1) As a warm up, students will review soil knowledge using the handout provided below.

2) Review the soil questions as a class.

3) Have the students go to the following website for background information on soil erosion: http://topsoil.nserl.purdue.edu/nserlweb/weppmain/overview/intro.html

4) In pairs or groups of three, have the students form general hypotheses about controls on soil erosion.

5) Discuss the hypotheses as a class. Have the students select one hypothesis to test first.

6) Have the students use the Water Erosion Prediction Project (WEPP) Web-Based Computer Model (http://milford.nserl.purdue.edu/wepp/weppV1.html) to test their hypotheses. If you feel it is necessary for your students, guide them through the process of designing an experiment for the WEPP model. Student groups that work quickly can test more than one hypothesis.

7) For the first 15-20 minutes of the next day of class, discuss the students experimental results.

Teacher Notes:

This activity works best with students who are familiar with hypothesis formation and the use of the scientific method. Be sure to circulate throughout the classroom during the activity to address individual student questions. The WEPP model can be complex at first glancebe sure to help the students focus on the relevant data piece by piece. It is helpful to post the handout to the internet so that the students can easily access the websites. For more advanced students, you can delete the table from the handout and allow them to take control of the process.

Name __________________________ Period _____

Investigating Soil Erosion with Computer-Based Models

Warm-up: Answer the following questions.

1) What is soil? What specific materials make up soil?

2) What is erosion? What are the agents of erosion?

3) List at least two factors that control soil erosion.

Background Information:

4) When instructed, go to the following website for some background information on soil erosion:

http://topsoil.nserl.purdue.edu/nserlweb/weppmain/overview/intro.html

5) With your lab group, discuss possible factors that would increase or decrease soil erosion. Write down at least two hypotheses about factors that control soil erosion. We will be discussing these as a class, so be ready to defend your reasoning.

Using the WEPP Model:

The Water Erosion Prediction Project at Purdue University has constructed a computer model for soil erosion over time in agricultural fields. The model focuses on water erosion of soil in fields and accepts numerous variables as input.

STEP 1: Play around with the WEPP model to get familiar with its inputs and outputs. The website for the WEPP model is: http://milford.nserl.purdue.edu/wepp/weppV1.html. Select the Basic Hillslope Profile simulation.

STEP 2: Make a specific, testable hypothesis that you know you can use with the WEPP model. Remember that you should only test ONE variable at a time. All other variables should be kept constant.

STEP 3: Using the WEPP model, test your hypothesis. Use the table format below to help you

keep track of data. For additional runs of the simulation, make a table of your own.

Simulation Number

1

2

3

4

Independent and Controlled Variables

State

Climate Station

Field Area (calculate)

Slope Shape

Steepness

Soil

Management

Simulation Years

Dependent Variable

Average Annual Soil Loss (tons/acre/year)

Analysis (complete for homework if needed):

Graph:

On the axes below, plot your dependent variable (average annual soil loss in tons/acre/year) as a function of your independent variable (whatever you chose to investigate). Be sure to label and scale you axes.

Analysis Questions:

6) Was your hypothesis supported or refuted? Explain.

7) What can you conclude from your experiments with the WEPP model?

8) Would you expect a real field to behave exactly like the WEPP model? Why or why not?

9) Imagine that you manage a farm. Reflecting on what you learned from the WEPP model, what would you do with the land on your farm? Explain.

Lesson Plan Shoreline Erosion

Course: Earth/Environmental Science 9-12

Objectives: Goal 4 The learner will build an understanding of the hydrosphere and its interactions and influences on the lithosphere, the atmosphere, and environmental quality.

Materials: Computers with Internet access,

Quicktime installed on computers,

LCD projector/laptop, index cards.

Websites:

The works of waves video

http://www3.interscience.wiley.com:8100/legacy/college/strahler/0471238007/animations/ch19_animations/animation1.html

EnviroSci Inquiry: Welcome to Coastal Explorations

http://www.leo.lehigh.edu/envirosci/geology/coast/

Anticipatory Set/Essential Questions/Focus:

1) How is coastal erosion influenced by human impact?

2) Who is responsible for repairing coastal erosion?

3) How does coastal erosion occur and what are its basic processes?

Teacher Input:

1) Review key terms associated with coastal erosion from their text.

2) Highlight some environmental problems associated with key examples, such as Louisiana

3) Explain some causes of erosional processes (example: slow waves vs. hurricanes)

Guided Practice:

1) Show Quicktime video: The works of waves

2) On completion, use the following questions as a guide

How are ocean waves generated?

Why do swells form?

Why do waves lose energy as they approach the shore?

What wave formula is associated with wave height?

How does swash differ from backwash?

Why arent materials from swash returned to their original position?

How is longshore drift formed? How are spits formed?

Independent (or as an extension of Guided) Practice:

1. How fast can a shoreline change?:

Shoreline residents have identified shoreline and bluff erosion as a critical problem along some parts of the Great Lakes. The rate of shore erosion is affected by the kind of land and rock materials, shoreline shape, current patterns, storm directions, and the use of shore protection structures.

In this study, ArcView is used to compare the shoreline shape in five aerial photographs of Painesville (Ohio) Township Park from 1954-1999. The objectives are to:

1. Recognize shoreline features on aerial photographs.

2. Visualize changes in a shoreline over time.

3. Observe the effects of shoreline devices on rates of erosion.

NOTE: Requires ArcView (GIS/GPS) Software

http://hcgl.eng.ohio-state.edu/~cenr797/module5.html

2. Comparing Coastlines:

Using the EnviroSci website, http://www.leo.lehigh.edu/envirosci/geology/coast/

students will work independently to complete the following:

Part A: California Coast

1) Sketch a map of the California Coast and label the major cities.

2) For each area on the map, name one interesting piece of information:

17 Mile Drive, Alcatracz, Ano Nuevo, Carmel, Half-Moon Bay, Monterey, Pescadero, Rocaway Beach, San Fransisco, Santa Barbara, Santa Barbara Harbor, Arroyo Buro Beach County Park, Santa Barbara Channel, Santa Cruz Island, Goletta Beach County Park, Isla Vista Beach, El Pescador, Mailbu, Point Dume Beach, Malibu Bluffs County Park, La Jolla, Scripps, Sunset Beach, Torrey Pines

Part B: New Jersey Coast

1) Sketch a map of the New Jersey Coast and label the major cities.

2) For each area on the map, name one interesting piece of information:

Avon by the Sea/Belmar, Barnegat Lighthouse, Holgate, IMCS Rutgers, North Sea

Bright, Sandy Hook, Atlantic City, Corson Inlet, Townsend Inlet, Seven Mile Beach,

Wildwood, Cape May

Questions to Answer:

1) How does the California coastal geology differ from that of New Jersey?

2) What are the similarities and differences of coastal environmental problems each faces?

3) How are these problems similar to those coastal problems faced by the people of North Carolina? http://hcgl.eng.ohio-state.edu/~cenr797/module5.html

4) Click on Environmental Issues at the top. Explain the problems faced by the people of Shell Island.

5) If you were an adult living on the coastal waters of CA or NJ, in which area of the U.S. would you prefer to live and why? Consider the issues you would face as an adult in this decision.

Closure: Restate and summarize the objective, homework, etc. If time permits, use a ticket to leave and have students summarize on an index card 3 things they learned.

Learning Objective:

Students will discover the difference between the effects of melting sea ice and glacial (continental) ice on sea level.

NCSCOS: 1.02

4.03

5.03

Content: Climate change

Polar Ice Caps & Glaciers

Sea Level Changes Over Time

Skills:

Experimental Design

Measurement

Data Collection & Analysis

Making Predictions

Communicating Findings

Strands:Nature of Scientific Knowledge

Science As Inquiry

Science in Personal and Social Perspectives

Safety Precautions: None

Materials: 100, 250, & 400 mL Beakers

Funnels

Plastic tubing

Graduated Cylinders

Water

Ice Cubes

Plastic Bags

Procedures:

1.) Obtain equipment.

2.) (Teacher Prompt) Discuss as a group the difference between sea ice and glacial (continental) ice.

3.) Hypothesize the effects of melting polar ice caps (both glacial and sea ice) on sea levels.

4.) Students will construct a physical model showing these effects.

5.) Students observe the effect of solid ice melt volume on the volume of water.

6.) (Communicate Findings) Record, measure; collect all data in a student generated data sheet (as a group or individually).

7.) (Communicate Findings) Identify testable hypothesis and variables in final data report.

Teacher Notes:

1.) Students should receive preliminary data/information as a pre-lab discussion, whole-class discussion, warm-up, etc.

2.) After reviewing differences between sea ice and glacial ice, direct students toward generating a TESTABLE hypothesis.

3.) While monitoring students, make sure their set-ups have appropriate comparison groups. You can ask them to identify the independent and dependent variables.

4.) Suggestion for the simplest set-up:

NOTE: Water levels in 3 beakers should be at the same height

Students will measure changes in height of water in beaker over time as ice melts and record results.

ICE CUBE

ICE CUBE IN Water

(continental ice) (floating sea ice)

Water

Water

NOTE: THIS IS ONLY A SUGGESTION FOR STUDENTS WHO ARE HAVING DIFFICULTY. KEEP IN MIND THAT ALL STUDENTS SHOULD BE ABLE TO EXPLORE THEIR IDEAS. THE BASIS OF INQUIRY IS SCIENCE THROUGH DISCOVERY!!

5.) A slightly more complicated set up and detailed instructions for a lab activity (see video of lab activity) to explore this question can be found at: http://oceandrilling.coe.tamu.edu/curriculum/Sea_Level/Ice_Volume/activity.html

Teachers note at : http://oceandrilling.coe.tamu.edu/curriculum/Sea_Level/Ice_Volume/teachers_notes.html

Associated worksheet is attached.

Recommended Websites (for teacher or student use):

www.cnn.com/TECH/science/9902/03/antarctic.ice.sheet/ (article & animation)

http://oceandrilling.coe.tamu.edu/curriculum/Sea_Level/Ice_Volume/activity.html

http://chooseclimate.org/jcm/jcm4/

http://nsidc.org/cryosphere/

http://www.csmonitor.com/2004/1118/p15s02-sten.html

http://www.gsfc.nasa.gov/topstory/20020530glaciers.html

Follow-Up Questions:

1.) Which type of melted ice has more significant effect on the sea levels? Explain your answer.

2.) What other properties of seawater would be affected by the meltwater? (ex. Salinity, density, temperature, etc)

3.) What different environmental factors could be causing melting of the ice in the activity?

4.) How has the melting of the ice affected the water level in the activity?

5.) What are other factors that contribute to sea level changes, other than melting ice caps?

This is a sample of possible student data output. The lesson plan calls for students to create their own data output format.

Melting Ice Record Sheet

Record your observations of "sea level" change in the tables below. As soon as your teacher says you are ready to begin, take a measurement of the water level and amount of ice in each set up in the "start" column. You will be recording measurements on both set-ups every five minutes over a 30-minute period.

A. Sea Ice

Start 5 min 10 min 15 min 20 min 25 min 30 min

Water level

Amount of ice

B. Continental Ice

Start 5 min 10 min 15 min 20 min 25 min 30 min

Water level

Amount of ice

QUESTIONS:

A. Sea Ice

1. Did the water level change as the sea ice melted?

2. How can you explain this?

B. Continental Ice

1. Did the water level change as the continental ice melted?

2. How can you explain this?

C. Comparing Sea and Continental Ice Melts

1. Suggest some reasons why the melting of the two different ice types has different effects on the sea level.

2. Did this experiment support your original hypothesis? Why or why not?

SMOG OZONE SIMULATION

Advanced Placement Environmental Science

OBJECTIVES

Examine the influence of climate and chemical factors on the production of smog ozone

in an urban setting.

Investigate the effects of population size and the nature of industrializa tion on the

production of smog ozone.

INSTRUCTIONS and PRODUCTS

1. Navigate to the Smog City web site ( http://www.smogcity.com ). There are several sources

for the information you will need to answer the questions b elow.

In addition to the buttons down the left side of the home page, when you "Run Smog City",

there is also a HELP button in the upper left part of the animation screen.

Use all of these sources to answer the following questions:

A. What are the chemical precursors necessary for the production of ozone in the

troposphere?

B. What are the environmental conditions conducive to the production of ozone in the

troposphere?

C. What are common sources of volatile organic compounds? Which variable(s) i n the

simulation are the most important sources of volatile organic compounds?

D. List the sources of nitrogen oxides. Which variable(s) in the simulation are the most

important sources of nitrogen oxides?

E. List the default levels for each of the nine variables that influence ozone levels.

F. What city served as the basis for this simulation?

G. When does each "run" of the simulation begin, and when does it end?

H. How many different chemical reactions among how many different chemical

compounds doe s the model use?

2. Run the Smog City simulation. Describe what happens to ozone levels using all the

default settings. When does the model begin, when does it end, and what happens to

ozone during the simulation?

3. BEFORE changing any of the variables, generate a hypothesis that predicts what will

happen to ozone levels (peak level and pattern of increase) as you change the value of

each variable above and below its default setting. Create a table of your nine hypotheses

similar to the sample below (NO TE: leave room below each variable to describe what

actually happened when you tested each hypothesis):

VARIABLE CHANGE EFFECT ON PEAK OZONE LEVEL AND PATTERN

OF OZONE CHANGES

Temperature increased (state your hypothesis here, i.e., what relative changes

to ozone do you expect)

decreased (state your hypothesis here)

Test results temp.

increase

(describe simulation results here)

temp.

decrease

(describe simulation results here)

Now run the simulation, changing one variable at a time, leaving all the other variables at

their default settings. Record the results in your table.

4. EVALUATE your results. For each variable, describe whether or not your hypothesis

was supported by the simulation test results, and summarize what you now know about

the effect of that variable on ozone levels in the troposphere surrounding an urban area.

A. Which emissions (cars and trucks, off road, industry, or consumer products) has the

greater impact on ozone levels?

B. Describe the effects of population level on emissi on levels (up or down).

National Science Digital Library for Teachers

http://nsdl.org/resources_for/k12_teachers/index.php

Useful Web Links

General

NC Standard Course of Study (LearnNC)

National Standards

National Science Digital Library (NSDL)

Wikipedia

VenSim Systems Dynamics software (free)

Gnuplot scientific visualization software (open source)

NetLogo Agent-modeling software (free)

Bob G's Gnuplot scientific visualization book and resources

SimQuest

AP Digital Library

Computational Science Education Reference Desk (CSERD)

Open source software for WINDOWS-BASED machines

General environmental science

Shodor EPA Air Quality Model online

Gaussian Plume Java Applet

Curriculum unit for Gaussian Plume Java Applet

Troubled Waters Lesson Plan (Neuse River)

General chemistry

North Carolina High School Computational Chemistry Server

WebElements Periodic Table

Molecular properties estimator (drug chemistry)

NIST WebBook

ChemSense Animator

Chemistry at Purdue (animations)

NCSSM Digital Library

Image resource

TIGER Chemistry resources at NCSSM

What is Photoelectron spectroscopy?

Chemistry Thesaurus (downloadable database resource)

Chemogenesis Webbook

The Pharmacology Education Program (PEP)

General Earth Science

Lesson Plan Library

Digital Library for Earth System Education (DLESE)

DLESE Teaching Box Site

Meteorology

USA Today Weather page

Unisys Weather

Jeff Haby's WX Education resources

U Wyoming Weather Data (incl. atmospheric soundings)

Current Jet Stream information

Weather Station Symbols (printable)

Smog City (ozone model)

Online Meteorology Course Materials, University of Illinois

Weather Wise (WXWise)

SouthEast region MM5 Meteorology model (WRAL's "NCWeatherScope")

General astronomy

Stellarium Planetarium software

Heavens Above

Mathmatics

Project Interactivate - Mathematics

PAGE

1

_1222190343.doc

SMOG OZONE SIMULATION

Advanced Placement Environmental Science

OBJECTIVES

Examine the influence of climate and chemical factors on the production of smog ozone in an urban setting.

Investigate the effects of population size and the nature of industrialization on the production of smog ozone.

INSTRUCTIONS and PRODUCTS

1.Navigate to the Smog City web site (http://www.smogcity.com). There are several sources for the information you will need to answer the questions below.

In addition to the buttons down the left side of the home page, when you "Run Smog City", there is also a HELP button in the upper left part of the animation screen.

Use all of these sources to answer the following questions:

A.What are the chemical precursors necessary for the production of ozone in the troposphere?

B.What are the environmental conditions conducive to the production of ozone in the troposphere?

C.What are common sources of volatile organic compounds? Which variable(s) in the simulation are the most important sources of volatile organic compounds?

D.List the sources of nitrogen oxides. Which variable(s) in the simulation are the most important sources of nitrogen oxides?

E.List the default levels for each of the nine variables that influence ozone levels.

F.What city served as the basis for this simulation?

G.When does each "run" of the simulation begin, and when does it end?

H.How many different chemical reactions among how many different chemical compounds does the model use?

2.Run the Smog City simulation. Describe what happens to ozone levels using all the default settings. When does the model begin, when does it end, and what happens to ozone during the simulation?

3.BEFORE changing any of the variables, generate a hypothesis that predicts what will happen to ozone levels (peak level and pattern of increase) as you change the value of each variable above and below its default setting. Create a table of your nine hypotheses similar to the sample below (NOTE: leave room below each variable to describe what actually happened when you tested each hypothesis):

VARIABLE

CHANGE

EFFECT ON PEAK OZONE LEVEL AND PATTERN OF OZONE CHANGES

Temperature

increased

(state your hypothesis here, i.e., what relative changes to ozone do you expect)

decreased

(state your hypothesis here)

Test results

temp. increase

(describe simulation results here)

temp. decrease

(describe simulation results here)

Now run the simulation, changing one variable at a time, leaving all the other variables at their default settings. Record the results in your table.

4.EVALUATE your results. For each variable, describe whether or not your hypothesis was supported by the simulation test results, and summarize what you now know about the effect of that variable on ozone levels in the troposphere surrounding an urban area.

A.Which emissions (cars and trucks, off road, industry, or consumer products) has the greater impact on ozone levels?

B.Describe the effects of population level on emission levels (up or down).

C.Explain how population level affects emission levels.