83
[Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

Embed Size (px)

Citation preview

Page 1: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 1/83

Topics in Microeconometrics

William Greene

Department of Economics

Stern School of Business

Page 2: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 2/83

8. Random Parameters and Hierarchical Linear Models

Page 3: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 3/83

Page 4: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 4/83

Page 5: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 5/83

Heterogeneous Dynamic Model

i,t i i i,t 1 i it i,t

ii

i

logY logY x

Long run effect of interest is 1

Average (over countries) effect: or 1

Page 6: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 6/83

“Fixed Effects” Approach

i,t i i i,t 1 i it i,t

ii

i

i i i

N Nii 1 i 1 i

i

Ni 1 i

Ni 1

logY logY x

, = 1 1

ˆ ˆ(1) Separate regressions; , ,ˆ

ˆ1 1ˆ ˆ(2) Average estimates = orˆN N1

ˆ(1/ N)ˆ Function of averages: =1 (1/ N)

i

i

N

ii=1

ˆ

In each case, each term i has variance O(1/T)

Each average has variance O(1/N) (1/N)O(1/T)

Expect consistency of estimates of long run effects.

Page 7: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 7/83

A Mixed/Fixed Approach

Ni,t i i 1 i i,t i,t 1 i i,t i,t

i,t

i i i

logy d logy x

d = country specific dummy variable.

Treat and as random, is a 'fixed effect.'

This model can be fit consistently by OLS and

efficiently by GLS.

Page 8: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 8/83

A Mixed Fixed Model Estimator

Ni,t i i 1 i i,t i,t 1 i i,t i,t

i i

Ni,t i i 1 i i,t i,t 1 i i,t i i,t i,t

2 2 2i i,t i,t w i,t

logy d logy x

w

logy d logy x (wx )

Heteroscedastic : Var[wx ]= x

Use two step least squares.

(1) Linear regressi

i,t

i,t-1 i,t

2i,t

2 2w

on of logy on dummy variables, dummy

variables times logy and x .

(2) Regress squares of OLS residuals on x and 1 to

estimate and .

(3) Return to (1) but now use weighted least squares.

Page 9: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 9/83

Baltagi and Griffin’s Gasoline Data

World Gasoline Demand Data, 18 OECD Countries, 19 yearsVariables in the file are

COUNTRY = name of country YEAR = year, 1960-1978LGASPCAR = log of consumption per carLINCOMEP = log of per capita incomeLRPMG = log of real price of gasoline LCARPCAP = log of per capita number of cars

See Baltagi (2001, p. 24) for analysis of these data. The article on which the analysis is based is Baltagi, B. and Griffin, J., "Gasoline Demand in the OECD: An Application of Pooling and Testing Procedures," European Economic Review, 22, 1983, pp. 117-137.  The data were downloaded from the website for Baltagi's text.

Page 10: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 10/83

Baltagi and Griffin’s Gasoline Market

COUNTRY = name of country YEAR = year, 1960-1978LGASPCAR = log of consumption per car yLINCOMEP = log of per capita income zLRPMG = log of real price of gasoline x1LCARPCAP = log of per capita number of cars x2

yit = 1i + 2i zit + 3i x1it + 4i x2it + it.

Page 11: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 11/83

FIXED EFFECTS

Page 12: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 12/83

Parameter Heterogeneity

it i it

it i it

i i

i i

i i

X i i

i i

y c

y

u ,

E[u | ] 0 --> Random effects

E[u | ] 0 --> Fixed effects

E E[u | ] 0.

Var[u | ] not yet defined -

it

it

Unobserved Effects Random C

x β

on

x β

X

X

st

X

a

X

nts

so far, constant.

Page 13: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 13/83

Parameter Heterogeneity

it it

i

i i

X i i

i i

y

E[ | ] zero or nonzero - to be defined

E [E[ | ]] =

Var[ | ] to be defined, constant or variable

it i

i

Generalize to

x β

β β u

u X

u X

Random Sl

0

u X

opes

Page 14: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 14/83

Fixed Effects (Hildreth, Houck, Hsiao, Swamy)

it it

i i

i

i

i i i

i i i i

X i i X i i

i

y , each observation

, T observations

Assume (temporarily) T > K.

E[ | ] =g( ) (conditional mean)

P[ | ] =( -E[ ]) (projection)

E [E[ | ]] = E [P[ | ]] =

Var[ |

it i

i i i

i

x β

y Xβ ε

β β u

u X X

u X X X θ

u X u X 0

u Xi] constant but nonzeroΓ

Page 15: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 15/83

OLS and GLS Are Inconsistent

i i

i

i i i i

i i

i i i i i i

, T observations

, T observations

E[ | ] E[ | ] E[ | ]

i i i

i

i i

i

i

y Xβ ε

β β u

y Xβ Xu ε

y Xβ w

w X X u X ε X 0

Page 16: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 16/83

Estimating the Fixed Effects Model

Ni 1

Estimator: Equation by equation OLS or (F)GLS

1 ˆEstimate ? is consistent inN

1 1 1 1

2 2 2 2

N N N N

i

y X 0 ... 0 β ε

y 0 X ... 0 β ε

... ... ... ... ... ... ...

y 0 0 ... X β ε

β β N for E[ ].iβ

Page 17: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 17/83

Random Effects and Random Parameters

it it

i i

i

i

i i

i i

Random Parameters Model

y , each observation

, T observations

Assume (temporarily) T > K.

E[ | ] =

Var[ | ] constant but nonzero

it i

i i i

i

THE

x β

y Xβ ε

β β u

u X 0

u X Γ

Page 18: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 18/83

Estimating the Random Parameters Model

i i

i

i i i i

i i

i i i i i i

2 2i i i i ,i ,i

2,i

, T observations

, T observations

E[ | ] E[ | ] E[ | ]

Var[ | ] Should vary by i?

,

i i i

i

i i

i

i

y Xβ ε

β β u

y Xβ Xu ε

y Xβ w

w X X u X ε X 0

w X XΓX I <==

Objects of estimation: β, Γ

Second le ivel estimation: β

Page 19: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 19/83

Estimating the Random Parameters Model by OLS

i i

i

i i i i

i i

N 1 Ni 1 i i i 1 i i

N 1 Ni 1 i i i 1 i i

N 1 Ni 1 i i i 1 i i

, T observations

, T observations

= [ ] [ ]

= [ ] [ ]

[ ]= [ ] [ (

i i i

i

i i

i

y Xβ ε

β β u

y Xβ Xu ε

y Xβ w

b XX Xy

β XX Xw

Var b| X XX X XΓ

2 N 1i i 1 i i

2 N 1 N 1 N N 1i 1 i i i 1 i i i 1 i i i i 1 i i

) ][ ]

= [ ] [ ] [ ( ) ( )][ ]

= the usual + the variation due to the random parameters

Robust estimator

E

X I X XX

XX XX XX Γ XX XX

N 1 N N 1i 1 i i i 1 i i i i i 1 i iˆ ˆst.Var[ ] [ ] [ ][ ]b XX Xw w X XX

Page 20: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 20/83

Estimating the Random Parameters Model by GLS

i i

i

i i i i

2i i i i i i ,i

N 1 Ni 1 i i i 1 i i

2,i

, T observations

, T observations

, Var[ | ] = =( )

ˆ [ ] [ ]

ˆFor FGLS, we need and .ˆ

i i i

i

i i

i i

-1 -1i i

y Xβ ε

β β u

y Xβ Xu ε

y Xβ w w X Ω XΓX I

β XΩ X XΩ y

Γ

Page 21: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 21/83

Estimating the RPM

i

1

1

2 1,i

T 22 t 1 it,i

i

i

( ) , = +

= ( )

Var[ | ]= + ( )

(y ) is unbiasedˆ

T K

(but not consistent because T is fixed).

i i i i i i i i i

i i i i i

i i i i

it i

b β X X X w w Xu ε

β u X X Xε

b X Γ X X

x b

Page 22: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 22/83

An Estimator for Γ

2 1,i

X X

2 1X ,i

2 1X ,i

i

E[ | ]

Var[ | ]= + ( )

Var[ ] Var E[ | ] E Var[ | ]

= 0 E [ + ( ) ]

+E [ ( ) ]

1Estimate Var[ ] with

N

i i

i i i i

i i i i i

i i

i i

i

b X β

b X Γ X X

b b X b X

Γ X X

Γ X X

b

N1

2 1 N 2 1X ,i i 1 ,i

N N 2 1i 1 i 1 ,i

( )( )

1EstimateE [ ( ) ] with ( )ˆ

N1 1ˆ= ( )( ) ( )ˆN N

i i

i i i i

i i i i

b b b b '

X X X X

Γ b b b b ' - X X

Page 23: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 23/83

A Positive Definite Estimator for Γ

N N 2 1i 1 i 1 ,i

i

1 1ˆ= ( )( ) - ( )ˆN N

May not be positive definite. What to do?

(1) The second term converges (in theory) to 0 in T. Drop it.

(2) Various Bayesian "shrinkage" estimators,

(3)

i i i iΓ b b b b ' X X

An ML estimator

Page 24: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 24/83

Estimating βi

Ni 1

N 2 1 1 2 1i 1 ,i ,i

2 1 1 1,i

ˆ

{ [ ( ) ]} [ ( ) ]

Best linear unbiased predictor based on GLS is

ˆ ˆ ˆ + ( - ) ( )

{ [ ( ) ] }

GLS i i,OLS

i i i i i

i i GLS i i,OLS i,OLS i GLS i,OLS

-1i i i

β Wb

W Γ X X Γ X X

β Aβ I A b b A β b

A Γ X X Γ

ˆ ˆVar[ | all data]= Var[ ]

ˆVar[ ] Var[ ] [ ( - )]

( - )Var[ ] Var[ ]

-1

i i GLS i

GLS i,OLS i ii i

ii,OLS i i,OLS

β A β A

β b W AA I A

I AW b b

Page 25: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 25/83

OLS and FGLS Estimates+----------------------------------------------------+| Overall OLS results for pooled sample. || Residuals Sum of squares = 14.90436 || Standard error of e = .2099898 || Fit R-squared = .8549355 |+----------------------------------------------------++---------+--------------+----------------+--------+---------+|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |+---------+--------------+----------------+--------+---------+ Constant 2.39132562 .11693429 20.450 .0000 LINCOMEP .88996166 .03580581 24.855 .0000 LRPMG -.89179791 .03031474 -29.418 .0000 LCARPCAP -.76337275 .01860830 -41.023 .0000+------------------------------------------------+| Random Coefficients Model || Residual standard deviation = .3498 || R squared = .5976 || Chi-squared for homogeneity test = 22202.43 || Degrees of freedom = 68 || Probability value for chi-squared= .000000 |+------------------------------------------------++---------+--------------+----------------+--------+---------+|Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] |+---------+--------------+----------------+--------+---------+ CONSTANT 2.40548802 .55014979 4.372 .0000 LINCOMEP .39314902 .11729448 3.352 .0008 LRPMG -.24988767 .04372201 -5.715 .0000 LCARPCAP -.44820927 .05416460 -8.275 .0000

Page 26: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 26/83

Best Linear Unbiased Country Specific Estimates

Page 27: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 27/83

Estimated Price Elasticities

Est imated Country Specific Price E last icit ies

CN TRY

-.40

-.30

-.20

-.10

.00

-.50

2 4 6 8 10 12 14 16 180

EL

AS

T

Page 28: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 28/83

Estimated Γ

Page 29: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 29/83

Two Step Estimation (Saxonhouse)

it i it

i

i

it it

A Fixed Effects Model

y

Secondary Model

Two approaches

(1) Reduced form is a linear model with time constant z

y

(2) Two step

(a) FEM at step 1

it

i

it i

x β

x β zδ

i i i i i

2 1i i

i

i

(b) a (a ) v

1 Var[v ] ( )

T

Use weighted least squares regression of a on

i

ii D i i

i

x XM X x

z

Page 30: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 30/83

A Hierarchical Model

it i it

i i i

i

it i it

Fixed Effects Model

y

Secondary Model

u <======== (No u in Saxonhouse)

Two approaches

(1) Reduced form is an REM with time constant z

y u

(2) Two step

(a) FE

it

i

it i

x β

x β zδ

i i i i i i

2 2 1i i u i

i

M at step 1

(b) a (a ) u v

1 Var[u v ] ( )

T

i

ii D i i

x XM X x

Page 31: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 31/83

Analysis of Fannie Mae

• Fannie Mae• The Funding Advantage• The Pass Through

Passmore, W., Sherlund, S., Burgess, G., “The Effect of Housing Government-Sponsored Enterprises on Mortgage Rates,” 2005, Real Estate Economics

Page 32: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 32/83

Two Step Analysis of Fannie-Mae

0 1 2 3i,s,t s,t s,t s,t i,s,t s,t i,s,t

4 5s,t i,s,t s,t i,s,t s,t i,s,t i,s,t

Fannie Mae's GSE Funding Advantage and Pass Through

RM ( LTV) Small Fees

New MtgCo J

i,s, t individual,state,month

1,036,252 observations in 370 state,months.

RM mortgage

LTV= 3 dummy variables for loan to value

Small = dummy variable for small loan

Fees = dummy variable for whether fees paid up front

New = dummy varia

ble for new home

MtgCo = dummy variable for mortgage company

J = dummy variable for whether this is a JUMBO loan

THIS IS THE COEFFICIENT OF INTEREST.

Page 33: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 33/83

Average of 370 First Step RegressionsSymbol Variable Mean S.D. Coeff S.E.

RM Rate % 7.23 0.79

J Jumbo 0.06 0.23 0.16 0.05

LTV1 75%-80% 0.36 0.48 0.04 0.04

LTV2 81%-90% 0.15 0.35 0.17 0.05

LTV3 >90% 0.22 0.41 0.15 0.04

New New Home

0.17 0.38 0.05 0.04

Small < $100,000

0.27 0.44 0.14 0.04

Fees Fees paid 0.62 0.52 0.06 0.03

MtgCo Mtg. Co. 0.67 0.47 0.12 0.05 R2 = 0.77

Page 34: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 34/83

Second Step Uses 370 Estimates of st

s,t 0

1 s,t

2 s,t

3 s,t

4 s,t

5 s,t

6

GSE Funding Advantage - estimated separately

Risk free cost of credit

Corporate debt spreads - estimated 4 different ways

Prepayment spread

Maturity mismatch risk

A

s,t

7 s,t

8 s,t

9 s,t

10-13 s,t

14-16 s,t

ggregate Demand

Long term interest rate

Market Capacity

Time trend

4 dummy variables for CA, NJ , MD, VA

3 dummy variables for calendar quarters

Page 35: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 35/83

Estimates of β1

Second step based on 370 observations. Corrected for

"heteroscedasticity, autocorrelation, and monthly clustering."

Four estimates based on different estimates of corporate

credit spread:

0.07 (0.11) 0

11 1

21 11 2 3 4

1 1 1 1 1 1 1 1 31 1

41 1

.31 (0.11) 017 (0.10) 0.10 (0.11)

Reconcile the 4 estimates with a minimum distance estimator

ˆ( - )

ˆ( - )ˆˆ ˆ ˆ ˆMinimize [( - ),( - ),( - ),( - )]'ˆ( - )

ˆ( - )

-1Ω

Estimated mortgage rate reduction: About 7 basis points. .07%.

Page 36: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 36/83

RANDOM EFFECTS - CONTINUOUS

Page 37: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 37/83

Continuous Parameter Variation (The Random Parameters Model)

it it

i i

i

i i

i i

i i i

i

y , each observation

, T observations

E[ | ] =

Var[ | ] constant but nonzero

f( | )= g( , ), a density that does

not involve

it i

i i i

i

x β

y Xβ ε

β β u

u X 0

u X Γ

u X u Γ

X

Page 38: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 38/83

OLS and GLS Are Consistent

i i

i

i i i i

i i

i i i i i i

2i i i i

, T observations

, T observations

E[ | ] E[ | ] E[ | ]

Var[ | ]

(Discussed earlier - two step GLS)

i i i

i

i i

i

i

y Xβ ε

β β u

y Xβ Xu ε

y Xβ w

w X X u X ε X 0

w X I XΓX

Page 39: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 39/83

ML Estimation of the RPM

i

i

i,t i,t

T

i1 iT itt 1

it

Sample data generation

y

Individual heterogeneity

Conditional log likelihood

log f(y ,...,y | , , ) log f(y | , , )

Unconditional log likelihood

logL( , ) log f(y |

i,t i

i i

i i it i

x β

β =β u

X β x β

β,Γ

iT

t 1

i

, , )g( | , )d

(1) Using simulated ML or quadrature, maximize to

estimate , .

(2) Using data and estimated structural parameters,

compute E[ | data , , ]

iit i i iβ

i

x β β β Γ β

β,Γ

β β,Γ

Page 40: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 40/83

RP Gasoline Market

Page 41: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 41/83

Parameter Covariance matrix

Page 42: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 42/83

RP vs. Gen1

Page 43: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 43/83

Modeling Parameter Heterogeneity

i,t i,t

i,k i k

Conditional Linear Regression

y

Individual heterogeneity in the means of the parameters

+

E[ | , ]

Heterogeneity in the variances of the parameters

Var[u | data] exp(

i,t i

i i i

i i i

i

x β

β =β Δz u

u X z

h )

Estimation by maximum simulated likelihoodkδ

Page 44: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 44/83

Hierarchical Linear Model

COUNTRY = name of country YEAR = year, 1960-1978LGASPCAR = log of consumption per car yLINCOMEP = log of per capita income zLRPMG = log of real price of gasoline x1LCARPCAP = log of per capita number of cars x2

yit = 1i + 2i x1it + 3i x2it + it. 1i=1+1 zi + u1i

2i=2+2 zi + u2i

3i=3+3 zi + u3i

Page 45: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 45/83

Estimated HLM

Page 46: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 46/83

RP vs. HLM

Page 47: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 47/83

Hierarchical Bayesian Estimation

2i,t i,t i,t

i

Sample data generation: y , ~ N[0, ]

Individual heterogeneity: , u ~N[ ]

What information exists about 'the model?'

p(log )= uni

i,t i

i i

x β

β =β u 0,Γ

Prior densities for structural parameters :0

0 0

form density with (large) parameter A

p( ) = N[ , ], e.g., and (large) v

p( ) = Inverse Wishart[...]

p( )= N[ , ]

p( ) = as above.

0

i

β β Σ 0 I

Γ

Priors for parameters of interest :

β β Γ

Page 48: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 48/83

Estimation of Hierarchical Bayes Models

(1) Analyze 'posteriors' for hyperparameters ,

(2) Analyze posterior for group level parameters,

Estimators are Means and Variances of posterior

distributions.

Algorithm: Generally,

i

β,Γ

β

Gibbs sampling from posteriors

with resort to laws of large numbers

Page 49: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 49/83

A Hierarchical Linear Model

German Health Care DataHsat = β1 + β2AGEit + γi EDUCit + β4 MARRIEDit + εit

γi = α1 + α2FEMALEi + ui

Sample ; all $Setpanel ; Group = id ; Pds = ti $Regress ; For [ti = 7] ; Lhs = newhsat ; Rhs = one,age,educ,married ; RPM = female ; Fcn = educ(n) ; pts = 25 ; halton ; panel ; Parameters$Sample ; 1 – 887 $Create ; betaeduc = beta_i $Dstat ; rhs = betaeduc $Histogram ; Rhs = betaeduc $

Page 50: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 50/83

OLS ResultsOLS Starting values for random parameters model...Ordinary least squares regression ............LHS=NEWHSAT Mean = 6.69641 Standard deviation = 2.26003 Number of observs. = 6209Model size Parameters = 4 Degrees of freedom = 6205Residuals Sum of squares = 29671.89461 Standard error of e = 2.18676Fit R-squared = .06424 Adjusted R-squared = .06378Model test F[ 3, 6205] (prob) = 142.0(.0000)--------+--------------------------------------------------------- | Standard Prob. Mean NEWHSAT| Coefficient Error z z>|Z| of X--------+---------------------------------------------------------Constant| 7.02769*** .22099 31.80 .0000 AGE| -.04882*** .00307 -15.90 .0000 44.3352 MARRIED| .29664*** .07701 3.85 .0001 .84539 EDUC| .14464*** .01331 10.87 .0000 10.9409--------+---------------------------------------------------------

Page 51: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 51/83

Maximum Simulated LikelihoodNormal exit: 27 iterations. Status=0. F= 12584.28------------------------------------------------------------------Random Coefficients LinearRg ModelDependent variable NEWHSATLog likelihood function -12583.74717Estimation based on N = 6209, K = 7Unbalanced panel has 887 individualsLINEAR regression modelSimulation based on 25 Halton draws--------+--------------------------------------------------------- | Standard Prob. Mean NEWHSAT| Coefficient Error z z>|Z| of X--------+--------------------------------------------------------- |Nonrandom parametersConstant| 7.34576*** .15415 47.65 .0000 AGE| -.05878*** .00206 -28.56 .0000 44.3352 MARRIED| .23427*** .05034 4.65 .0000 .84539 |Means for random parameters EDUC| .16580*** .00951 17.43 .0000 10.9409 |Scale parameters for dists. of random parameters EDUC| 1.86831*** .00179 1044.68 .0000 |Heterogeneity in the means of random parameterscEDU_FEM| -.03493*** .00379 -9.21 .0000 |Variance parameter given is sigmaStd.Dev.| 1.58877*** .00954 166.45 .0000--------+---------------------------------------------------------

Page 52: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 52/83

Simulating Conditional Means for Individual Parameters

,,1 1

,

1 1

1

ˆ ˆ( )1 1ˆ ˆ( )ˆ ˆ

ˆ ( | , )ˆ ˆ( )1 1

ˆ ˆ

1 ˆˆ =

i

i

TR it i r iti rr t

i i iTR it i r it

r t

R

ir irr

y

RE

y

R

WeightR

Lw xLw

y XLw x

Posterior estimates of E[parameters(i) | Data(i)]

Page 53: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 53/83

“Individual Coefficients”--> Sample ; 1 - 887 $--> create ; betaeduc = beta_i $--> dstat ; rhs = betaeduc $Descriptive StatisticsAll results based on nonmissing observations.==============================================================================Variable Mean Std.Dev. Minimum Maximum Cases Missing==============================================================================All observations in current sample--------+---------------------------------------------------------------------BETAEDUC| .161184 .132334 -.268006 .506677 887 0

Fre

quency

BETAEDUC

-.268 -.157 -.047 .064 .175 .285 .396 .507

Page 54: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 54/83

A Hierarchical Linear Model

• A hedonic model of house values• Beron, K., Murdoch, J., Thayer, M.,

“Hierarchical Linear Models with Application to Air Pollution in the South Coast Air Basin,” American Journal of Agricultural Economics, 81, 5, 1999.

Page 55: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 55/83

Three Level HLM

ijk

M m mijk jk ijk ijkm 1

mijk

y log of home sale price i, neighborhood j, community k.

y x (linear regression model)

x sq.ft, #baths, lot size, central heat, AC, pool, good view,

age, distance to b

m

qm

Qm q qjk j jk jkq 1

qjk

Sq s qmj j js 1

qmj

each

Random coefficients

N w

N %population poor, race mix, avg age, avg. travel to work,

FBI crime index, school avg. CA achievement test score

E v

E air qu

ality measure, visibility

Page 56: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 56/83

Mixed Model Estimation

• WinBUGS: • MCMC • User specifies the model – constructs the Gibbs Sampler/Metropolis Hastings

• MLWin:• Linear and some nonlinear – logit, Poisson, etc.• Uses MCMC for MLE (noninformative priors)

• SAS: Proc Mixed. • Classical• Uses primarily a kind of GLS/GMM (method of moments algorithm for loglinear models)

• Stata: Classical• Several loglinear models – GLAMM. Mixing done by quadrature.• Maximum simulated likelihood for multinomial choice (Arne Hole, user provided)

• LIMDEP/NLOGIT• Classical• Mixing done by Monte Carlo integration – maximum simulated likelihood• Numerous linear, nonlinear, loglinear models

• Ken Train’s Gauss Code• Monte Carlo integration• Mixed Logit (mixed multinomial logit) model only (but free!)

• Biogeme• Multinomial choice models• Many experimental models (developer’s hobby)

Programs differ on the models fitted, the algorithms, the paradigm, and the extensions provided to the simplest RPM, i = +wi.

Page 57: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 57/83

GEN 2.1 – RANDOM EFFECTS - DISCRETE

Page 58: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 58/83

Heterogeneous Production Model

i,t i i i,t i i,t i,tHealth HEXP EDUC

i country, t=year

Health = health care outcome, e.g., life expectancy

HEXP = health care expenditure

EDUC = education

Parameter heterogeneity:

Discrete? Aids domin

ated vs. QOL dominated

Continuous? Cross cultural heterogeneity

World Health Organization, "The 2000 World Health Report"

Page 59: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 59/83

Parameter Heterogeneity• Fixed and Random Effects Models

• Latent common time invariant “effects”• Heterogeneity in level parameter – constant term –

in the model• General Parameter Heterogeneity in Models

• Discrete: There is more than one time of individual in the population – parameters differ across types. Produces a Latent Class Model

• Continuous; Parameters vary randomly across individuals: Produces a Random Parameters Model or a Mixed Model. (Synonyms)

Page 60: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 60/83

Parameter Heterogeneity

i,t it

it i,t

(1) Regression model

y ε

(2) Conditional probability model

f(y | x , )

(3) Heterogeneity - how are parameters distributed across

individuals?

(a) Discrete - the populatio

i,t i

i

x β

β

n contains a mixture of J

types of individuals.

(b) Continuous. Parameters are part of the stochastic

structure of the population.

Page 61: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 61/83

Discrete Parameter Variation

q ,q

The Latent Class Model

(1) Population is a (finite) mixture of Q types of individuals.

q = 1,...,Q. Q 'classes' differentiated by ( , )

(a) Analyst does not know class memberships. ('latent

β

Q1 Q q=1 q

i,t it i,t q ,q

.')

(b) 'Mixing probabilities' (from the point of view of the

analyst) are ,..., , with 1

(2) Conditional density is

P(y | class q) f(y | x , , )β

Page 62: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 62/83

Example: Mixture of Normals

q q

2

it q it qit

q j qq

Q normal populations each with a mean and standard deviation

For each individual in each class at each period,

y y1 1 1f(y | class q) exp = .

22

Panel data,

T 2

it qTi1 iT t 1

qq

T 2

N Q it qTq t 1i 1 q 1

qq

T observations on each individual i,

y1 1f(y ,...,y | class q) exp

22

Log Likelihood

y1 1logL log exp

22

Page 63: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 63/83

An Extended Latent Class Model

it itx ,x βit it q

q

(1) There are Q classes, unobservable to the analyst

(2) Class specific model: f(y | ,class q) g(y , )

(3) Conditional class probabilities

Common multinomial logit form for prior class

δ

Q

qq=1

qq QJ

qj 1

q

probabilities

to constrain all probabilities to (0,1) and ensure 1;

multinomial logit form for class probabilities;

exp( ) P(class=q| ) , = 0

exp( )

Note, = log( q Q/ ).

Page 64: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 64/83

Log Likelihood for an LC Model

i

x x β

X ,β x βi

i

i,t i,t it i,t q

i

T

i1 i2 i,T q it i,t qt 1

i

Conditional density for each observation is

P(y | ,class q) f(y | , )

Joint conditional density for T observations is

f(y ,y ,...,y | ) f(y | , )

(T may be 1. This is not

iX x βi

i

TQ

i1 i2 i,T q it i,t qq 1 t 1

only a 'panel data' model.)

Maximize this for each class if the classes are known.

They aren't. Unconditional density for individual i is

f(y ,y ,...,y | ) f(y | , )

Log Likelihoo

1β β x βiTN Q

Q 1 Q q it i,t qi 1 q 1 t 1

d

LogL( ,..., ,δ ,...,δ ) log f(y | , )

Page 65: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 65/83

Unmixing a Mixed SampleN[1,1] and N[5,1]

Sample ; 1 – 1000$Calc ; Ran(123457)$Create ; lc1=rnn(1,1) ; lc2=rnn(5,1)$ Create ; class=rnu(0,1)$Create ; if(class<.3)ylc=lc1 ; (else)ylc=lc2$ Kernel ; rhs=ylc $Regress ; lhs=ylc;rhs=one;lcm;pts=2;pds=1$

YLC

.045

.090

.135

.180

.224

.000

-2 0 2 4 6 8 10-4

Kernel dens ity estimate for YLC

De

ns

ity

Page 66: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 66/83

Mixture of Normals+---------------------------------------------+| Latent Class / Panel LinearRg Model || Dependent variable YLC || Number of observations 1000 || Log likelihood function -1960.443 || Info. Criterion: AIC = 3.93089 || LINEAR regression model || Model fit with 2 latent classes. |+---------------------------------------------++--------+--------------+----------------+--------+--------+----------+|Variable| Coefficient | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X|+--------+--------------+----------------+--------+--------+----------++--------+Model parameters for latent class 1 ||Constant| 4.97029*** .04511814 110.162 .0000 ||Sigma | 1.00214*** .03317650 30.206 .0000 |+--------+Model parameters for latent class 2 ||Constant| 1.05522*** .07347646 14.361 .0000 ||Sigma | .95746*** .05456724 17.546 .0000 |+--------+Estimated prior probabilities for class membership ||Class1Pr| .70003*** .01659777 42.176 .0000 ||Class2Pr| .29997*** .01659777 18.073 .0000 |+--------+------------------------------------------------------------+| Note: ***, **, * = Significance at 1%, 5%, 10% level. |+---------------------------------------------------------------------+

Page 67: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 67/83

Estimating Which Class

i

i

q

i

T

i1 i2 i,T it i,t q ,qt 1

i1 i2 i

Prob[class=q]=

for T observations is

P(y ,y ,...,y | class q) f(y | x , , )

membership is

P(y ,y ,...,y

Prior probability

Joint conditional density

β

Joint density for data and class

i

i

i i

i

i

T

,T q it i,t q ,qt 1

i1 i2 i,T i1 i2 i,Ti1 i2 i,T

i1 i2 i,T i1

,class q) f(y | x , , )

P(y ,y ,...,y ,class q) P(y ,y ,...,y ,class q)P(class q| y ,y ,...,y )

P(y ,y ,...,y ) P(y ,y

β

Posterior probability for class, given the data

i

i

i i

J

i2 i,Tj 1

T

q it i,t q ,qt 1i i1 i2 i,T TQ

q it i,t q ,qq 1 t 1

,...,y ,class q)

Use Bayes Theorem to compute the

f(y | x , , )w(q| data) P(class q| y ,y ,...,y )

f(y | x , , )

posterior probability

β

β

Best guess = the class with the largest posterior probability.

Page 68: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 68/83

Posterior for Normal Mixture

i

i

T it qq t 1

q q

iTQ it q

qq 1 t 1q q

iq qQ

iq qq 1

y ˆ1ˆ

ˆ ˆˆ ˆw(q| data) w(q| i)

y ˆ1ˆ

ˆ ˆ

c ˆ =

c ˆ

Page 69: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 69/83

Estimated Posterior Probabilities

Page 70: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 70/83

More Difficult When the Populations are Close Together

Page 71: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 71/83

The Technique Still Works----------------------------------------------------------------------Latent Class / Panel LinearRg ModelDependent variable YLCSample is 1 pds and 1000 individualsLINEAR regression modelModel fit with 2 latent classes.--------+-------------------------------------------------------------Variable| Coefficient Standard Error b/St.Er. P[|Z|>z] Mean of X--------+------------------------------------------------------------- |Model parameters for latent class 1Constant| 2.93611*** .15813 18.568 .0000 Sigma| 1.00326*** .07370 13.613 .0000 |Model parameters for latent class 2Constant| .90156*** .28767 3.134 .0017 Sigma| .86951*** .10808 8.045 .0000 |Estimated prior probabilities for class membershipClass1Pr| .73447*** .09076 8.092 .0000Class2Pr| .26553*** .09076 2.926 .0034--------+-------------------------------------------------------------

Page 72: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 72/83

Estimating E[βi |Xi,yi, β1…, βQ]

q

Q

i qq=1

ˆ(1) Use from the class with the largest estimated probability

(2) Probabilistic

ˆ ˆ = Posterior Prob[class=q|data]i

β

β β

Page 73: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 73/83

How Many Classes?

β(1) Q is not a 'parameter' - can't 'estimate' Q with and

(2) Can't 'test' down or 'up' to Q by comparing

log likelihoods. Degrees of freedom for Q+1

vs. Q classes is not well define

1

2

3

d.

(3) Use AKAIKE IC; AIC = -2 logL + 2#Parameters.

For our mixture of normals problem,

AIC 10827.88

AIC 9954.268

AIC 9958.756

Page 74: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 74/83

Latent Class Regression

it qit

,q ,q

q itq

Assume normally distributed disturbances

y1f(y | class q)

.

it

it

x β

Mixture of normals sets x β = μ

Page 75: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 75/83

Baltagi and Griffin’s Gasoline Data

World Gasoline Demand Data, 18 OECD Countries, 19 yearsVariables in the file are

COUNTRY = name of country YEAR = year, 1960-1978LGASPCAR = log of consumption per carLINCOMEP = log of per capita incomeLRPMG = log of real price of gasoline LCARPCAP = log of per capita number of cars

See Baltagi (2001, p. 24) for analysis of these data. The article on which the analysis is based is Baltagi, B. and Griffin, J., "Gasoline Demand in the OECD: An Application of Pooling and Testing Procedures," European Economic Review, 22, 1983, pp. 117-137.  The data were downloaded from the website for Baltagi's text.

Page 76: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 76/83

3 Class Linear Gasoline Model

Page 77: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 77/83

Estimated Parameters LCM vs. Gen1 RPM

Page 78: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 78/83

An Extended Latent Class Model

it

Class probabilities relate to observable variables (usually

demographic factors such as age and sex).

(1) There are Q classes, unobservable to the analyst

(2) Class specific model: f(y | ,class q) g(itx

it q

qiq qQ

qq 1

y , )

(3) Conditional class probabilities given some information, )

Common multinomial logit form for prior class probabilities

exp( ) P(class=q| , ) , =

exp( )

it

i

ii

i

,x β

z

zδz δ δ 0

Page 79: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 79/83

LC Poisson Regression for Doctor Visits

Page 80: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 80/83

Heckman and Singer’s RE Model• Random Effects Model• Random Constants with Discrete Distribution

it it q

q

(1) There are Q classes, unobservable to the analyst

(2) Class specific model: f(y | ,class q) g(y , )

(3) Conditional class probabilities

Common multinomial logit form for prior clas

it itx ,x ,β

Q

qq=1

qq QJ

qj 1

s probabilities

to constrain all probabilities to (0,1) and ensure 1;

multinomial logit form for class probabilities;

exp( ) P(class=q| ) , = 0

exp( )δ

Page 81: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 81/83

3 Class Heckman-Singer Form

Page 82: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 82/83

The EM Algorithm

i

i,q

i,q

TN Q

c i,q i,t i,ti 1 q 1 t 1

Latent Class is a ' ' model

d 1 if individual i is a member of class q

If d were observed, the complete data log likelihood would be

logL log d f(y | data ,class q)

missing data

(Only one of the Q terms would be nonzero.)

Expectation - Maximization algorithm has two steps

(1) Expectation Step: Form the 'Expected log likelihood'

given the data and a prior guess of the parameters.

(2) Maximize the expected log likelihood to obtain a new

guess for the model parameters.

(E.g., http://crow.ee.washington.edu/people/bulyko/papers/em.pdf)

Page 83: [Topic 8-Random Parameters] 1/83 Topics in Microeconometrics William Greene Department of Economics Stern School of Business

[Topic 8-Random Parameters] 83/83

Implementing EM for LC Models

, β β β β

β

β

0 0 0 0 0 0 0 0q 1 2 Q q 1 2 Q

q

q

q

Given initial guesses , ,..., , ,...,

E.g., use 1/Q for each and the MLE of from a one class

model. (Must perturb each one slightly, as if all are equal

and all are

0β δ

β

β

0

q

q iq it

the same, the model will satisfy the FOC.)

ˆ ˆˆ(1) Compute F(q|i) = posterior class probabilities, using ,

Reestimate each using a weighted log likelihood

ˆ Maximize wrt F log f(y |

itx β

δ

β

iN T

qi=1 t=1

q

Nq i=1

, )

(2) Reestimate by reestimating

ˆ =(1/N) F(q|i) using old and new ˆ ˆ

Now, return to step 1.

Iterate until convergence.