73
1 Weather Weather Lecture 12 Ionosphere Robert R. Meier School of Computational Sciences George Mason University [email protected] CSI 769 22 November 2005

Topics in Space Weather Lecture 12

Embed Size (px)

DESCRIPTION

Topics in Space Weather Lecture 12. Ionosphere. Robert R. Meier School of Computational Sciences George Mason University [email protected] CSI 769 22 November 2005. Topics. Photoionization & Photoelectrons Photoionization & Chapman Layer Ionospheric Layers F-Region E-Region D-Region - PowerPoint PPT Presentation

Citation preview

1

Topics in Space WeatherTopics in Space Weather

Lecture 12

Topics in Space WeatherTopics in Space Weather

Lecture 12

Ionosphere

Robert R. Meier

School of Computational SciencesGeorge Mason University

[email protected]

CSI 76922 November 2005

2

Topics

• Photoionization & Photoelectrons• Photoionization & Chapman Layer• Ionospheric Layers

– F-Region– E-Region– D-Region

• Ionospheric Regions– Equatorial– Midlatitudes– High Latitudes

3

4

Photoionization and Photoelectrons

• Important source of–Secondary ionization–Dayglow emissions

• Heat source for plasmasphere• Conjugate photoelectrons important• Concepts analogous to auroral electron precipitation

5

Photoionization

Processes– O + h ( 91.0 nm) O+ + e– O2 + h ( 102.8 nm) O2

+ + e– N2 + h ( 79.6 nm) N2

+ + e

Ionization Energies

Species Dissociation

(Å)

Dissociation

(eV)

Ionization

(Å)

Ionization

(eV)

O

O2

N2

2423.7

1270.4

5.11

9.76

910.44

1027.8

796

13.62

12.06

15.57

6

Photoelectron Energy

• Example: Ionization of O by solar He+ emission at 30.4 nm– Photon energy: Es (eV)= hs = hc/s

= 12397/304 = 40.78 eV

• Ionization into ground state of O+

– Ionization potential is 13.62 eV– Excess energy:

E = Es - EIP = 40.78 – 13.62 = 27.16 eV

– What happens to excess energy?

Kinetic energy of photoelectron

S = SunPE = photoelectronIP = ionization potential

7

Photoelectrons, cont.

What about ionization into excited states of ions?

• O(4S): 13.62 eV– Ground state of ion

• O(4P): 28.49 eV– First allowed state

He+ Photon can ionize into 4P state:28.49 eV < E30.4 = 40.78 eV

• Kinetic energy of photoelectron:40.78 – 28.49 = 12.29 eV

Ground state of atom From Rees, Phys. Chem. Upper Atmos.

8

Photoelectrons, cont.

• Photoelectrons produced when O+ is in the ground state have sufficient energy to ionize O– EPE = 28.49 eV > 13.62 eV (ionization potential

of O)– Note that if O+ is in the 4P state, the excess

energy is 12.29 eV• Not sufficient to ionize N2 or O, but is for O2

• Therefore photoelectrons are an important source of secondary ionization– ~25% at higher altitudes– More at lower altitudes where X-rays can

produce very energetic photoelectrons

9

Photoelectrons, cont.

Full computation of photoelectron flux requires solution of Boltzmann transport equation– Production

• Photoionization into ground and excited states of N2+,

O2+,O+,N+

• Secondary ionization by energetic photoelectrons

• Doubly ionized species not significant

– Loss• Elastic scattering

– Scattering by neutrals

• Coulomb collisions

• Inelastic scattering– Ionization – Excitation of electronic, vibrational, rotational states– Dissociation

– Transport

10

Photoelectrons, cont.

Dominant Energy Losses:

EPE > 50 eV: ionization and excitation of atoms and molecules

EPE ~ 20 eV: excitation of atoms and molecules

EPE < 5 eV: excitation of vibrational states of N2

EPE < 2 eV: coulomb collisions with ambient electrons

11

Photoelectrons, cont.

• Full solutions of Boltzmann equation– Mantas [Plan. Space Sci, 23, 337, 1975]– Oran and Strickland [Plan. Space Sci.,

26, 1161, 1978]– Link [J. Geophys. Res., 97, 159, 1992]

• Simpler approach– Richards and Torr [J. Geophys. Res., 90,

2877, 1985]

12

Photoelectron Flux

• Following Richards and Torr, ignore– Transport– Coulomb collisions– Cascade of high energy photoelectrons to

lower energy photoelectrons

– EPE < 20 eV

– O2

• Simple Production = Loss gives insight into photoelectron flux spectrum

13

Photoelectron Flux

• Production

qN2(z,E) = nN2(z) Fs(z,E()) (E) dE

nN2(z) I(E) exp(- eff(z,E))

Similar expression for O

• LossLN2 = (z,E) N2(E) nN2(z)

= photoelectron flux (PE cm-2s-2 eV-1)

N2 = total energy loss cross section for e*+N2 collisions

14

Photoelectron Flux

Production = Loss or qtotal = Ltotal

nN2(z) IN2(E) exp(- eff(z,E)) + nO(z) IO(E) exp(- eff(z,E))

= (z,E) N2(E) nN2(z) + (z,E) O(E) nO(z)

Solving for :

eff eff

2 2

2 2

2

eff

2 2

N N O O

N N O O

N

OO O

NO N

O

n (z)I (z,E)e n (z)I (z,E)e(z,E) =

(E)n (z) (E)n (z)

IR

II ne R

nR

15

Photoelectron Flux, cont.

If

then

and the photoelectron flux – altitude dependence is from the effective

attenuation of the solar flux

– energy dependence is from the production frequency and energy loss cross section ratio

– is independent of composition

2 2N N

O O

I σ≈

I σ

eff (z)O

O

I (E)(z,E) = e

(E)

16

Photoelectron Flux, cont.

Simple and full PE flux calculations

Some differences < 20 eV and > 50 eV

Richards and Torr [1983]

17

Photoelectron Flux, cont.

Simple and full PE flux calculations

Compare with AE-E PE measurements

Richards and Torr [1983]

18

Altitude Dependence of Photoelectron Flux

Full PE flux calculations

Note small change in energy shape with altitude

- Supports Richards and Torr simple concepts

19

Photoelectron Energy Distribution Function

Thermal Electrons

Photoelectrons

Structure dueTo He+ 30.4 nm

20

Photoionization and Photoionization and the Classic Chapman the Classic Chapman

IonosphereIonosphere

21

Photoionization

• Example:O + h O+ + e*, …

• Photoionization Frequency

j(z) = Fs(z,) () d (# s-1)

Fs(z,) = Fs(,) e-(z,)(photon cm-2 s-1 nm-1)

() = photoionization cross section

no(z) = O number density

22

Photoionization Rate

• q(z) = no(z) j(z) (# cm-3 s-1)– no(z) = O number density

• Assume single constituent, isothermal atmosphere, photoionized by a single wavelength emission:

n(z) = no(z) = no(zo) e-(z-zo)/H

q(z) = no(zo) e-(z-zo)/H Fs(,) e-(z,)

23

Photoionization Rate cont.

o

z zooH

o

z zoo H

o

z z

Ho

z

z-z- n(z )HeH

o s

z zn(z )He

H

o s

(z) n(z ')dz ' n(z )He

q(z) = n(z ) e F ( ) e

q(z) = n(z ) F ( ) e

Peak in layer occurs when

Working through, this occurs at

)Mdq(z

0dz

M oz z

HM o(z ) 1 n(z )He

24

Photoionization Rate cont.

Substituting and rearranging terms leads to:

For Sun at zenith, s

z zM

M Hz z1 e

HMq(z) = q(z ) e

z zM

M Hs

z z1 sec e

HMq(z) = q(z ) e

25

Recombination

• Radiative Recombination O+ + e O + h

• Recombination Coefficient= 1.2 x 10-12 (1000/T)1/2 cm-3 s-1

• Electron loss rateL(z) = nO+(z) ne(z) = ne

2(z)

26

Chapman Layer

Production = Loss (Steady-state: dne/dt =q-L = 0)

q(z) = L(z) = ne2(z)

Solving for the electron densityne(z) = [q(z) / ]1/2

or

z zMM H

sz z1

1 sec e2 H

e e Mn (z) = n (z ) e s = 8060

40

0

27

Ionospheric LayersIonospheric Layers• D-Region• E - region• F1 – Region• F2 – Region• Plasmasphere

28

29

Ionospheric Layers Similar to Chapman Layers

F2

F1

E

Total ne

30

D-Region

• Ugly ion chemistry• See:

– Turunen, E., H. Matveinen, J. Tolvanen, and H. Ranta, D-region ion chemistry model, in STEP Handbook of Ionospheric Models, R. W. Schunk (ed.), pp. 1-25, 1996.

– Torkar, K. M., and M. Friedrich, Tests of an ion-chemical model of the D- and lower E-region, J. Atm. Terr. Phys., 45, 369-385, 1983.

• Tens of species—some models have more• Few measurements

– Requires rockets

31

D-Region Chemical Scheme

From Torkar, K. M., and M. Friedrich, 1983

32

Example Comparison of D-region Observations and Model

From Torkar, K. M., and M. Friedrich, 1983

33

E-region

• Production--photoionizationO2 + h O2

+ + e j = photoionzation rate

N2 + h N2+ + e

O + h O+ + e (smaller)

• Chemistry– N2

+ + O NO+ + N or O+ + N2

– O+ + N2 NO+ + N

• Loss—Dissociative Recombination– NO+ + e N + O

– O2+ + e O + O kO2+ = recombination rate

• Net Result:– Major ions in E region are O2

+ and NO+

– To first order, diffusion & dynamics slow compared with photochemistry

34

Electron Density in Lower Part of E-Region

• O2+ is dominant ion

• Ignore dynamics, diffusion

2 22 2 2

e

2O e O eO O O

dn (z)Pr oduction Loss

dt

j(z)n (z) k n (z)n (z) j(z)n (z) k n (z)

35

Electron Density in Lower Part of E-Region, cont.

In steady state,

2

z zMM H

s

2

2e O

z z11 sec e

2 HOe e M

n (z) j(z)n (z)

or

j(z)n (z)n (z) n (z ) e

36

Recombination Rates and Electron Lifetimes

Lower E-Region• O2

+ + e O + O kO2+ = 1.9 x 10-7 (Te/300)-0.5 cm3s-1

• nO2+ ~ 105 cm-3 & Te ~ Tn = 300K at ~ 110 km• Rate = kO2+ nO2+ = 0.019 s-1

• Lifetime = 1/Rate = 53 s

Upper E-Region• NO+ + e N + O kNO+ ~ 4.2 x 10-7 (Te/300)-0.85 cm3s-1

• nNO+ ~ 105 cm-3 & Te ~ Tn = 587K at ~ 140 km• Rate = kNO+ nNO+ = 0.024 s-1

• Lifetime = 1/Rate = 42 s

37

F1-Region

• Similar to E-region

• Must include O+, the dominant ion

• Diffusion begins to be important

38

F2 Peak Region - Assume photochemical equilibrium - Ignore transport and diffusion

2 2

+O

+ + +2 2 2 N ,O

O +hν O +e j

O + N ,O NO ,O + N,O k

O+ balance yields:

jO nO = kN2 nN2 + kO2 nO2

2 2 2

O O OeO

N N N

j n nn n

k n n

F2-region ion chemistry rates

Ignoring O2 in the upper ionosphere yields:

39

Important Result when Chemistry Dominates: ne nO/nN2

• Problem: As z increases, nN2 decreases much more rapidly than nO

– Therefore ne exponentially as z increases

• Solution– Transport becomes faster at high altitudes– Also at other times when electrodynamics

become important

40

Recombination Rates and Electron Lifetimes in F-Region

• Production: O + h O+ + e– Rate = j = 2 – 6 x 10-7 s-1

– Lifetime = 5 – 1.6 x 106 s ( 58 - 19 days)

• Intermediate step: O+ + N2 NO+ + N– (or O2)– Rate for N2: kN2 nN2 = 10-12cm3s-1 5.5x108cm-3 = 5.5 x 10-4 s-1

– Lifetime = 1800 s

• Loss: NO+ + e N + O– ne ~ 106 cm-3 & Te ~ 1800K at ~ 250 km– Rate = kNO+ ne = 0.129 s-1

– Lifetime = 1/Rate = 7.8 s

• Loss: O+ + e O– ne ~ 106 cm-3 & Te ~ 1400K at ~ 250 km– Rate = kO+ ne = 1.2x10-12 (1000/T)0.5 x ne s-1 = 1 x 10-6s– Lifetime = 1/Rate = 106 s = 11 days

41

Simplified Ambipolar Diffusion

• Electrons diffuse more rapidly than ions (initially)

• Slight charge separation produced strong electric field

• Ions “feel” electric field (E) and are pulled along by electrons to ensure charge neutrality

42

Ambipolar Diffusion, cont.

• Again, diffusive equilibrium– net diffusion velocity is zero– Ignore ion chemistry

• Assume plasma flow parallel to magnetic field lines – taken to be vertical (upper mid to high

latitudes)

• Assume single ion species– Same as neutral species– Note: can be generalized to multiple ions

43

Ambipolar Diffusion, cont.

• Force on ions and electrons:Fi = eE (upward pull)

Fe = - eE (downward pull)

• Force balance for ions and electrons in slab of area, A:Ions: dpi A = - ni mi g Adz + ni eE Adz

Electrons: dpe A = - ne me g Adz - ne eE Adz

44

Ambipolar Diffusion, cont.

or

and

ii i

ee e

dp=-n mg-eE

dzdp

=-n mg+eEdz

i e

ei i e

with n = n

solving electron pressure equation for

dpn eE = - - nm g

dz

45

Ambipolar Diffusion, cont.

i i i e

e i

nkT and nkT

1

T H

e eii i i e i i

i ei i

i e

i i i

i

dp dpdp=-nmg-nmg- -nmg-

substitutingintoionpressu

dz dz dzd p +p

=-nmgdz

p p

d

reequatio

n nmg=-

d

n

z k T

:

Since

Gombosi, Equation 10.48

46

Ambipolar Diffusion, cont.

• If Te = Ti = Tn, then(Assuming mi=mn)

• Thus the ion scale height is twice the neutral scale height

• The ion density profile is then:

• More complete physics requires numerical solutions of differential equations

ni n

i

2kTH = =2H

mg

o

n

z-z

2Hi i on (z) = n (z ) e

47

F-region Diffusion Times

• Plasma Diffusion time: D = Hi

2 / Din

– Din ~ 1x1019 / nn (Banks and Kockarts, Aeronomy)

• Chemical lifetime: C = (kN2 nN2)-1

(from slide 24)

CD

Atmosphere: from Homework 1

Diffusion is faster above 280 km and chemistry is, belowSee Section 7.5 of Tascione

48

Plasmasphere

• Top of ionosphere

• Strong interactions with magnetosphere, esp. during geomagnetic storms

• Consider simple processes only– More complicated interactions

with magnetosphere

Add fig 10.7 from Gombosi

49

• Photochemical equilibrium– Near resonant charge exchange

O+(4S) + H(2S) O(3P) + H+ E

E = EIP(O) - EIP(H) = 13.618 - 13.598 = 0.02 eV

• Source and sink of H+

• Assuming photochemical equilibrium

• As altitude increases, H/O increases, and H+ becomes the dominant ion

Plasmasphere, cont.

i

n

TT

n(On(H

n(On(H

)

)

)

)

Gombosi, 10.6

50

Plasmasphere, cont.

• He+ is second most populous ion– Tracks He+

• Can image plasmasphere by observing resonant scattering of solar He+ 30.4 nm emission line

He+(2S)+ h30.4 He+ (2P)

He+(2S)+ h30.4

From IMAGE SatelliteSun

51

Ionospheric RegionsIonospheric Regions

Low LatitudesLow LatitudesMid LatitudesMid LatitudesHigh LatitudesHigh Latitudes

52

Ionosphere Cross Section

Fig 8.6 Tascione

53

Equatorial Ionosphere is Anomalous

• Key: Electric Fields– E-Region Dynamo– F-region Dynamo

• ~ Horizontal Magnetic Field

E x B drift upward

vB

E

54

Map of Ionospheric Critical Frequency

• F-region peak density

nemax (cm-3) = 1.24 x 104 f (Mhz)

• Maximum separation in arcs near twilight

• Electric field reversal weakens anomaly through night

TIME-GCM Model

Evening Morning

55

Winds Can Affect Ionization Peaks

56

Instabilities in Equatorial Ionosphere

• Recombination at night removes E-Region

– F-Region recombination slower

• Vertical density gradient produces Rayleigh-Taylor instability

• Low density plasma drifts up field lines

- Produces “bubbles”- Empty field lines- Horizontal gradients cause

scintillation of radio signals

57

GUVI FUV Ionosphere Observations

Longitude

Latit

ude

Depleted Flux Tubes

e + O+ O* (135 nm) I = ne2 ds

9/22/2002

e + O+ O* (135 nm)

Equ

ator

ial A

nom

aly

Magnetic Equator

58

18MidnightNoon

Solar Maximum

Noon Midnight18

Solar Minimum

20dB

15dB10dB

5dB2dB

1dB

L-Band

SOLAR CYCLE CHANGES INDUCE SOLAR CYCLE CHANGES INDUCE IONOSPHERIC IRREGULARITIES THAT AFFECT IONOSPHERIC IRREGULARITIES THAT AFFECT

ELECTROMAGNETIC PROPAGATIONELECTROMAGNETIC PROPAGATION

59

Mid-Latitude Ionosphere• Simple concepts apply more readily

– Magnetic field closer to vertical– Usually not much particle precipitation

• Electrodynamics less important (except during geomagnetic storms)– But, plasma irregularities more prevalent at mid-

latitudes than previously thought• Closer to photochemical equilibrium

– neutral composition is crucial:ne nO / nN2

• Neutral winds can blow plasma up or down field lines– Up: Lower recombination rate (fewer molecules)– Down: Higher recombination rate (more molecules)

• Plasma flow from plasmasphere can be important– Helps maintain nighttime ionosphere

60

Mid-Latitude Ionosphere, cont.

• Various diurnal and seasonal “anomalies”– See Tascione, 8.4

• Strong solar cycle variation associated with Solar EUV Radiation

61

High Latitude Ionosphere

• Magnetic field lines – “Open” over polar region– Closed in auroral oval, but extend deep

into magnetotail

• Main coupling region to magnetosphere– But, during geomagnetic storms, E

fields can penetrate to lower latitudes

62

Magnetosphere-Ionosphere-Atmosphere Coupling Processes

ParticlePopoulation

H+, He+,O+

ElectricField

ParticlePrecipitation

PolarWind

ParticlePopoulation

H+, He+,O+

Convection,Heating,

CompositionChanges

Ionization,Conductivity,

Heating

EnergeticAuroral

Ion Outflow

Neutral Motion,Composition

Changes,Dynamo E Field

Schunk & Nagy, Ionospheres

63

Polar Wind

• O+ is major ion in F-region

• Upward acceleration of H+, He+

– Ambipolar electric field – fewer collisions with O+

• Causes supersonic outflow of light ions

64

Electric Field

Schunk & Nagy, Ionospheres

65

Electric Field, cont.

• Solar wind motion (Vsw) contains electric field: E = - Vsw x B

• Near-Earth sees electric field that points in dawn to dusk direction

• E-field maps down highly conducting field lines into ionosphere

• This “convection” E causes E x B drift of ionospheric plasma in anti-sun direction

• Farther from Earth, E x B drift is toward the equatorial plane

66

Electric Field, cont.

• Charges on polar cap boundary induce E fields on nearby closed field lines, opposite to convection electric field

• Ionospheric plasma on closed field lines drifts sunward in response

• On boundary of open and closed field lines, field-aligned currents flow between the magnetosphere and ionosphere

67

Auroral Plasma Drifts

• High altitudes– No net current– Collisions impart

momentum and cause neutral winds

• Low altitudes– Ion-neutral

collisions cause heating

– Ions lose mobility– Current carried by

electrons

• Plasma drifts in two-cell pattern

68

Electric Field, cont.

Collisional “friction” between ions moving in response to E fields and neutrals causes joule heating and momentum transfer

Schunk & Nagy, Ionospheres

69

Particle Precipitation

Akasofu, Scientific American, May 1, 1989

70

Auroral Energetic Electron Spectrum

Dynamics Explorer 2 Measurement

ModelCalculations

From Rees, Phys. Chem. Upper Atmos.

71

Ionization Rates by Energetic Auroral Electrons

From Rees, Phys. Chem. Upper Atmos.

72

Polar Ionospheric Phenomena

Magnetospheric Electric FieldsParticle Precipitation

Field-aligned CurrentsPolar Holes

Ionization TroughsTongues of Ionization

Plasma PatchesAuroral Ionization EnhancementsElectron and Ion Temperature Hot

Spots

Depend on:Phase of Solar Cycle

SeasonTime of Day

Type of Convection PatternStrength of Convection

Infinite Possibilities &Infinite Opportunities to

Study the Physics

Schunk & Nagy, Ionospheres

73

Other Empirical Models

• International Reference Ionosphere (IRI)– MSIS-like model of ionosphere– http://modelweb.gsfc.nasa.gov/models/iri.html

• Horizontal Wind Model (HWM)– Model of horizontal components of the neutral

wind– http://uap-www.nrl.navy.mil/models_web/

hwm/hwm_home.htm