6
Topper’s Package Mathematics - XI Limits 100 1. % TYPE BASED QUESTIONS 1. 2 5x x 0 log(1 3x ) lim x(e 1) is equal to : (a) 3 5 (b) 5 3 (c) 3 5 (d) 5 3 2. The value of x 2 2 x 0 e log(1 x) (1 x) lim x is equal to : (a) 0 (b) –3 (c) –1 (d) infinity 3. 1 2 2 x tan 3 tan x 2tanx 3 lim tan x 4tanx 3 equals : (a) 1 (b) 2 (c) 0 (d) 3 4. x 0 (2 x)sin(2 x) 2sin2 lim x is equal to : (a) sin 2 (b) cos 2 (c) 1 (d) 2cos2 sin2 5. The value of 3x 6 x 2 e 1 lim sin(2 x) is : (a) 3 2 (b) 3 (c) –3 (d) –1 6. x sin x x 0 e e lim x sin x is equal to: (a) –1 (b) 0 (c) 1 (d) None of these 7. 1 3 x 0 sin x x lim x cosx is equal to : (a) 1/2 (b) 1/3 (c) 1/6 (d) 1/12 8. 2 x 0 8sinx x cos x lim 3tanx x is equal to : (a) 3 (b) 2 (c) –1 (d) 4 9. If 2 1/x x 0 lim[1 x log(1 b )] = 2 2bsin , b > 0 and ( ,] , then the value of is : (a) 4 (b) 3 (c) 6 (d) 2 10. The value of : 1 1 1 1 0 cosec (sec ) cot (tan ) cot cos(sin ) lim is (a) 0 (b) –1 (c) –2 (d) 1 11. If f (4) = 4, f (4) = 1 then lim () x fx x 4 2 2 is equal to (a) 0 (b) 1 (c) –1 (d) none of these 12. lim log x e x x x x R S T U V W 0 2 1 1 b g is equal to (a) 1 4 (b) 1 2 (c) 1 (d) none of these 13. If () 2, () 1,() 1, () 2 fa fa ga ga then ()() ()() lim x a gxfa gafx x a is : (a) –5 (b) 1 5 (c) 5 (d) none of these 14. If f(x), g(x) be differentiable functions and f(1) = g (1) = 2 then 1 (1) ( ) ( ) (1) (1) (1) lim () () x f gx fxg f g gx fx is equal to (a) 0 (b) 1 (c) 2 (d) none of these 15. lim x x x x x is equal to 0 3 2 4 3 (a) 1 (b) -1 (c) 0 (d) none of these LIMITS Unit 11

Topper’s Package Mathematics - XI Limits Unit 11 …2020/08/06  · 3. 1 2 2 x tan 3 tan x 2tanx 3 lim tan x 4tanx 3 equals : (a) 1 (b) 2 (c) 0 (d) 3 4. x 0 (2 x)sin(2 x) 2sin2 lim

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Topper’s Package Mathematics - XI Limits Unit 11 …2020/08/06  · 3. 1 2 2 x tan 3 tan x 2tanx 3 lim tan x 4tanx 3 equals : (a) 1 (b) 2 (c) 0 (d) 3 4. x 0 (2 x)sin(2 x) 2sin2 lim

Topper’s Package Mathematics - XI Limits

100

1. % TYPE BASED QUESTIONS

1.2

5xx 0

log(1 3x )limx(e 1)

is equal to :

(a)35 (b)

53

(c)35

(d)53

2. The value of x 2

2x 0

e log(1 x) (1 x)limx

is

equal to :(a) 0 (b) –3(c) –1 (d) infinity

3. 1

2

2x tan 3

tan x 2tanx 3limtan x 4tanx 3

equals :

(a) 1 (b) 2(c) 0 (d) 3

4.x 0

(2 x)sin(2 x) 2sin2limx

is equal to :

(a) sin 2 (b) cos 2(c) 1 (d) 2cos2 sin2

5. The value of 3x 6

x 2

e 1limsin(2 x)

is :

(a)32 (b) 3

(c) –3 (d) –1

6.x sinx

x 0

e elimx sinx

is equal to:

(a) –1 (b) 0(c) 1 (d) None of these

7.1

3x 0

sin x xlimx cos x

is equal to :

(a) 1/2 (b) 1/3(c) 1/6 (d) 1/12

8. 2x 0

8sin x x cos xlim3tan x x

is equal to :

(a) 3 (b) 2(c) –1 (d) 4

9. If 2 1/x

x 0lim[1 x log(1 b )]

= 22bsin , b > 0 and

( , ] , then the value of is :

(a) 4

(b) 3

(c) 6

(d) 2

10. The value of :

1 1 1 1

0

cosec (sec ) cot (tan ) cot cos(sin )lim

is(a) 0 (b) –1(c) –2 (d) 1

11. If f (4) = 4, f (4) = 1 then lim( )

x

f xx

4

22

is equal

to(a) 0 (b) 1(c) –1 (d) none of these

12. limlog

x

e xx

xx

RSTUVW0 2

1 1b g is equal to

(a)14

(b) 12

(c) 1 (d) none of these13. If ( ) 2, ( ) 1, ( ) 1, ( ) 2 f a f a g a g a then

( ) ( ) ( ) ( )lim

x a

g x f a g a f xx a is :

(a) –5 (b)15

(c) 5 (d) none of these14. If f(x), g(x) be differentiable functions and

f(1) = g (1) = 2 then

1

(1) ( ) ( ) (1) (1) (1)lim( ) ( )

x

f g x f x g f gg x f x is equal to

(a) 0 (b) 1(c) 2 (d) none of these

15. limx

x x

x x is equal to

0

3 24 3

(a) 1 (b) -1(c) 0 (d) none of these

LIMITSUnit11

Page 2: Topper’s Package Mathematics - XI Limits Unit 11 …2020/08/06  · 3. 1 2 2 x tan 3 tan x 2tanx 3 lim tan x 4tanx 3 equals : (a) 1 (b) 2 (c) 0 (d) 3 4. x 0 (2 x)sin(2 x) 2sin2 lim

LimitsTopper’s Package Mathematics - XI

101

16. limx

xx x e

x

0

2

2

1d i is equal to :

(a) 1 (b) 0

(c)12 (d) none of these

17. The value of limx0

2 2x x

x x

sin

sin is

(a) a log 2 - 2 (b) 1/2 log 2 - 2(c) log 2 - 2 (d) none of these

18. The value of Lim x xx xx

x

1 1 log is :

(a) 1 (b) -1(c) 2 (d) none of these

19. If Lim x a xxx

0 3

2sin sin is finite then the value of a

is :(a) –2 (b) –1(c) 2 (d) none of these

20. If Lim x ax ax a

9 9

9 then all possible values of a

can be :(a) 5 (b) 1(c) 3 (d) – 1

21. The value of Limx /2 (cosx)cosx is equal to :

(a) 1 (b) -1

(c) log 2 (d) none of these

22. Lt x x

xx

3 2

3 3

9....... :

(a) 1 (b)16

(c)13 (d) none of these

23. The value of lim ....x

nx x x nx

is

1

2

1:

(a) n (b)n 1

2

(c)n n( )1

2(d)

n n( )12

24. The value of limcos cos )

x

xx

0 4

1 1b g is :

(a) 1/8 (b) 1/2(c) 1/4 (d) none of these

25. The value of

40

cos sin ) coslimx

x xx

is

(a) 1/5 (b) 1/6(c) 1/4 (d) 1/2

26. The value of limln( )

h

In h hh

0 2

1 2 2 1b g is :

(a) 1 (b) –1(c) 0 (d) none of these

27. If limx a

x a

x aa xx a

1, then the value of a is

(a) 1 (b) 0(c) e (d) none of these

28. The integer n, for which0

(cos 1)(cos )limx

nx

x x ex

is a finite non zero number-(a) 1 (b) 2(c) 3 (d) 4

29.1/2 1/3

20

(cos ) (cos )limsinx

x xx

is :

(a) 1/6 (b) –1/12(c) 2/3 (d) 1/3

2. /, – , 0 × , 0°, °BASED QUESTIONS

30. If [x] denotes the greatest integer less than orequal to x for any real number x. Then,

n

[n 2]limn

is equal to :

(a) 0 (b) 2(c) 2 (d) 1

31.32 3

54 4 4n

x 1 x 1limx 1 x 1

equals

(a) 1 (b) 0(c) –1 (d) none of these

32. 2nlim [ x 2x 1 x]

is equal to :

(a) (b)12

(c) 4 (d) 1

33.2x

2x 1limx 2x 1

is equal to :

(a) 2 (b) –2(c) 1 (d) –1

34.n 2

x

2 (n 5n 6)lim(n 4)(n 5)

is equal to :

(a) 0 (b) 1(c) (d)

Page 3: Topper’s Package Mathematics - XI Limits Unit 11 …2020/08/06  · 3. 1 2 2 x tan 3 tan x 2tanx 3 lim tan x 4tanx 3 equals : (a) 1 (b) 2 (c) 0 (d) 3 4. x 0 (2 x)sin(2 x) 2sin2 lim

Topper’s Package Mathematics - XI Limits

102

35. If f(x)= 2x sinx

x cos x

, then x

lim f(x) is euqal to:

(a) 0 (b) (c) 1 (d) None of these

36. For x > 0 , sin x

1/xx

1lim (sinx)x

is equal to

(a) 0 (b) –1(c) 1 (d) 2

37. limn

n n

n na ba b

, where a > b > 1, is equal to :

(a) –1 (b) 1(c) 0 (d) none of these

38. The value of lim . .tan/ /

/ /x

x x

x xe ee e

xx

is

1 1

1 11

:

(a) 1 (b) 0(c) –1 (d) none of these

39. limsin !

, ,n

pn nn

p is equal to

2

10 1b g

:

(a) 0 (b) (c) 1 (d) none of these

40. The value of Limx

x x xx

4 2

31

1sin( / )

| |

is :

(a) 0 (b) 1(c) –1 (d) does not exist

41. The value of Limx0

1x

xFHG

IKJ

tan

is equal to :

(a) 0 (b) 1(c) e (d) none of these

42. The value of the Limx [13 + 23+ 33 + ......+n3]/n4

is equal to :

(a)13 (b) 1

(c)12 (d) none of these

43. If f(x) = x x

x x

sincos2 then Lim

x f(x) is equal to

(a) 0 (b) (c) 1 (d) none of these

44. If limx

xx

ax b

FHG

IKJ

3

211

2b g then

(a) a = 1, b = 1 (b) a = 1, b = 2(c) a = 1, b = –2 (d) none of these

45. The value of limsin

| |x

xx

x

x

FHG

IKJ

F

H

GGGG

I

K

JJJJ

2 1

1 is :

(a) 0 (b) 1(c) –1 (d) none of these

46. The value of lim /

x

xx equals

1:

(a) 0 (b) 1(c) e (d) e–1

47. The value of lim cos sinx

xx x

is

FHG

IKJ

FHG

IKJ

4 4 :

(a)2

(b)4

(c) 1 (d) none of these

48.3

4 4 4

1 8lim ...1 1 1x

nn n n

is :

(a) 1/4 (b) 1/8(c) 1/2 (d) none of these

49. The value of4 4 4 3 3 3

5 5x n

1 2 3 .... n 1 2 3 ... nlim – limn n

is

(a) zero (b)14

(c)15 (d)

130

3. 1 BASED QUESTIONS

50. The value of 1/ 1/ 1/

1 2 ......

nxx x xn

x

a a aLtn =...

(a) 0 (b) 1(c) a1 a2 a3........an (d) none of these

51. If 0 < x < y, then lim( ) /

n

n n ny x

1 is equal to

(a) e (b) x(c) y (d) none of these

52. If limx

x

x xe

F

HGIKJ 1 2

22 then :

(a) 1 2,(b) 2 1,(c) 1, tanany real cons t(d) 1

53. The value of Limx

2 32 5

2

2

8 32

xx

x

FHG

IKJ

is equal to :

(a) e–2 (b) e–4

Page 4: Topper’s Package Mathematics - XI Limits Unit 11 …2020/08/06  · 3. 1 2 2 x tan 3 tan x 2tanx 3 lim tan x 4tanx 3 equals : (a) 1 (b) 2 (c) 0 (d) 3 4. x 0 (2 x)sin(2 x) 2sin2 lim

LimitsTopper’s Package Mathematics - XI

103

(c) e–8 (d) 1

54. If Lim x Kx

x

11( sin )cot

then value of k is :(a) –1 (b) 0(c) 1 (d) none of these

55. The value of Limx0

1/tan

4

xx

is :

(a) e (b) e2

(c) e3 (d) 156. If [x] denotes the greatest integer less than or

equal to x, then,

lim.....

n

x x x n x

n

1 2 32 2 2 2

3 equals :

(a)x2

(b)x3

(c)x6 (d) 0

57. The value of lim tan

x

xx

122b g

is equal to :

(a) e2/ (b) e1/

(c) e2/ (d) e1/

58. If a, b, c, d are positive then limx

c dx

a bx

FHG

IKJ 1 1

(a) ed b/ (b) ec a/

(c) e c d a b b g/ (d) e

59. The value of lim sinsinx a

x axa

is

FHG

IKJ

1

:

(a) e asin (b) e atan

(c) e acot (d) 1

60.

21/

20

2limxx x

x

e ex

is :

(a) e1/2 (b) e1/4

(c) e1/3 (d) e1/12

61. If f(x) = x xx x

x2

25 3

2

FHG

IKJ then lim

x f(x) is equal to

(a) e4 (b) e3

(c) e2 (d) none of these

4. LHL AND RHL NEWTON LEEBNIT’Z RULESERIES BASED QUESTIONS

62. For a R (the set of all real numbes), a 1,a a a

a 1n

(1 2 ... n )lim(n 1) (na 1) (na 2) ... (na n)

=

160

than, a is equal to :(a) 5 (b) 7

(c) 152 (d)

172

63.[x]

x 0lim( 1)

, where [] denotes the greatest inte-ger function is equal to :(a) 0 (b) 1(c) –1 (d) does not exit

64. If : R R is defined by f(x) [x 3] [x 4] forx R , then

–x 3lim f(x) is equal to where [ ]

denote the greatest integer function:

(a) – 2 (b) –1(c) 0 (d) 1

65.

2sec x

22

2x4

f(t)dt

limx

16

equals :

(a)8 f(2)

(b)2 f(2)

(c)2 1f

2

(d) 4f(2)

66. If f : R R be a differentiable function having

f(2)= 6 1f (2)48

. Then

f(x)3

6x 2

4t dt

limx 2

is equal

to :(a) 18 (b) 12(c) 36 (d) 24

67. The value of x

2 3x 0

(1 e )sin xlimx x

is equal to :

(a) –1 (b) 0(c) 1 (d) 2

68. If f (x) =

sin[x] [x] 0[x]0, [x] 0

where, [x] denotes the greatest integer lessthan or equal to x, then

x 0lim f(x)

is equal to :

(a) 1 (b) 0(c) –1 (d) None of these

69. The value of Limx0

(1 cos2 )2

xx

is :

(a) 1 (b) –1(c) 0 (d) does not exist

Page 5: Topper’s Package Mathematics - XI Limits Unit 11 …2020/08/06  · 3. 1 2 2 x tan 3 tan x 2tanx 3 lim tan x 4tanx 3 equals : (a) 1 (b) 2 (c) 0 (d) 3 4. x 0 (2 x)sin(2 x) 2sin2 lim

Topper’s Package Mathematics - XI Limits

104

70. If Limx0

ae b x cex x

x x cossin

= 2 then :

(a) a = 1, b = 1, c = 1 (b) a = 1, b = 2, c = 1,(c) a = 1, b = 2, c = 2 (d) a = 2, b = 1, c = 1

71. The value of limsin

x

x x x

x

F

H

GGG

I

K

JJJ0

3

56 is

(a) 0 (b) 1

(c)160 (d)

1120

72. The value of lim | |sinx

xx

:

(a) is equal to –1 (b) is equal to 1(c) is equal to (d) does not exist

73. The value of lim

/

x

xx e ex

x

0

1

2

1 12

b g

(a) 1124e

(b) 1124e

(c) 24e

(d) none of these

74. lim sin sin

x

t t

x y

a

y

a

xe dt e dt

F

HIKzz0

1 2 2

is equal to (where a

is a contant.)

(a) e ysin2(b) sin2y e ysin2

(c) 0 (d) none of these

75.

0

3 | |lim7 5| |x

x xx x

is :

(a) 2 (b)16

(c) 0 (d) does not exist

76. Let ( ) sgn(sgn(sgn )).f x x Then 0limx ( )f x is

(a) 1 (b) 2(c) 0 (d) none of these

77. Let and be the distinct roots of ax2 + bx + c

= 0, then 2

2x 0

1– cos(ax bx c)lim(x – )

is equal to:

(a) 0 (b)2

2a ( )2

(c) 21 ( )2 (d)

22– a ( )

2

78. If 2x

2x 0

a blim 1x x

= e2, then the values of a

and b, are :(a) aR, b = 2 (b) a = 1, bR(c) aR, bR (d) a = 1 and b = 2

79. Let f (a) = g(a) = k and their nth derivativesnf (a) , ng (a) exist and are not equal for some n.

Further if

( ) ( ) ( ) ( ) ( ) ( )lim( ) ( )x a

f a g x f a g a f x g ag x f x = 4, then

the value of k is :(a) 2 (b) 1(c) 0 (d) 4

INTEGER TYPE QUESTIONS

1. 2 2lim ( 8 3 4 3)x

x x x x

2.0

sinlim1 1x

xx x

is equal to

3.

lim cosm

m

xm

4. Let , R be such that 2

0

sin( )lim 1sinm

x xx x

.

Then 6( + ) equals

5. If 2 3

sin cos tan

( )2 1 1

x x x

f x x x xx

, then 20

( )limx

f xx

is

6. The value of 2

20

1 1lim

9 3x

x

x

is

7. 20

cos sinlimtanx

x x xx x

is equal to

8.cosec

0

1 tanlim1 sin

x

x

xx

is equal to

9. The value of lim1

n

nn

xx

where x < –1 is

10. The value of 2

00

coslim

x

n

tdt

x

is

Page 6: Topper’s Package Mathematics - XI Limits Unit 11 …2020/08/06  · 3. 1 2 2 x tan 3 tan x 2tanx 3 lim tan x 4tanx 3 equals : (a) 1 (b) 2 (c) 0 (d) 3 4. x 0 (2 x)sin(2 x) 2sin2 lim

LimitsTopper’s Package Mathematics - XI

105

1. (A), 2. (B), 3. (B), 4. (D), 5. (C), 6. (C), 7. (C),

8. (A), 9. (D), 10. (C), 11. (B), 12. (D), 13. (C), 14. (C),

15. (D), 16. (C), 17. (D), 18. (C), 19. (A), 20. (B), 21. (D),

22. (B), 23. (C), 24. (A), 25. (B), 26. (B), 27. (A), 28. (C),

29. (B), 30. (C), 31. (B), 32. (D), 33. (B), 34. (A), 35. (C),

36. (C), 37. (B), 38. (A), 39. (A), 40. (B), 41. (C), 42. (D),

43. (C), 44. (C), 45. (A), 46. (C), 47. (B), 48. (D), 49. (C),

50. (C), 51. (C), 52. (C), 53. (C), 54. (D), 55. (B), 56. (B),

57. (C), 58. (A), 59. (C), 60. (D), 61. (A), 62. (B), 63. (D),

64. (C), 65. (A), 66. (A), 67. (C), 68. (D), 69. (D), 70. (B),

71. (D), 72. (D), 73. (D), 74. (A), 75. (D), 76. (D), 77. (B),

78. (B), 79. (D)

1. (2) 2. (1) 3. (1) 4. (7) 5. (1) 6. (3) 7. (2)

8. (1) 9. (1) 10. (1)

INTEGER TYPE QUESTIONS