62
Torsion in buildings the Mexican research experience after the 1985 earthquake Gustavo Ayala

Torsion in buildings the Mexican research experience after the 1985 earthquake Gustavo Ayala

  • Upload
    lucine

  • View
    25

  • Download
    0

Embed Size (px)

DESCRIPTION

Torsion in buildings the Mexican research experience after the 1985 earthquake Gustavo Ayala. TORSI O N. Caus e s No coincidence of acting and resisting forces in structures with asymmetric plan distibutions of masses, stiffnesses and/or strengths. Kinematic e f f ects - PowerPoint PPT Presentation

Citation preview

  • Torsion in buildings the Mexican research experience after the 1985 earthquake

    Gustavo Ayala

  • TORSION

    Causes No coincidence of acting and resisting forces in structures with asymmetric plan distibutions of masses, stiffnesses and/or strengths.

    Kinematic effectsCoupling between lateral and rotational displacements of the levels.

    Consequences Non-contemplated damage in asymmetric structures subjected intense earthquakes.

  • DAMAGE STATISTICS

    19th SEPTEMBER 1985, MEXICO EARTHQUAKE

  • DESIGN PHYLOSOPHYTorsion DesignElastic models of single storey shear buildings. DESIGN RECOMMENDATIONS FOR TORSIONIt is formally accepted that under intense seismic events structural damage (non-linear behaviour) may occur.

  • SPATIAL VARIATION OF THE TORSION CENTRE IN MULTI-STOREY BUILDINGS WITH IN-PLAN AND ELEVATION ASYMMETRY ( SHEAR AND BENDING MODELS)

  • CENTRE OF TORSION The Centre of Torsion of a buuilding is defined as the loci on its levels or inter-storeys at which the seismic force or shear must be applied to produce only translations with no rotations

    PARAMETERS WHICH DEFINE THE LOCATION OF THE CENTRE OF TORSION. Stiffness Location of the elements Distribution of lateral loads The CENTRE OF TORSION is not an INVARIANT

  • SHEAR MODELS

    EXACT .

    Infinite stiffnesses of beams Plane frames

    TRADITIONAL.

    Bending on beams Inter-storey stiffnesses of plane frames

    THREE DIMENSIONAL MATRIX FORMULATION

    LOCATION OF THE CENTRE OF TORSION

  • BUILDING MODELS 4 levels

  • BUILDING MODELS 15 levels

  • BUILDING MODELS 4 levels

    Model

    L ( m )

    Cols. in black ( cm )

    Cols. in white ( cm )

    W( Ton / m2 )

    I

    5.0

    60 x 60

    40 x 40

    0.8

    II

    5.0

    40 x 40

    60 x 60

    1.0

    III

    5.0

    40 x 40

    40 x 40

    0.8

    Model

    Cols. ( cm )

    Wall

    W ( Ton / m2 )

    IV

    60 x 60

    Concrete, fc =200 kg/cm2, 8 cm thick

    1.304 y 1.152

    V

    60 x 60

    Masonry, f*m = 15 kg/cm2, 10 cm thick

    1.304 y 1.152

  • BUILDING MODELS 15 levels

    Model

    Brick wall, f*m = 15 kg/cm2, 15cm thick

    Level 1to 14

    Level 15

    I

    Entre Eje 1 - 2 y A B

    690 kg/m2

    450 kg/m2

    II

    Entre Eje 1 - 3 y A C

    690 kg/m2

    450 kg/m2

    III

    Entre Eje 1 - 5 y A E

    690 kg/m2

    450 kg/m2

    IV

    Entre Eje 1 - 7 y A G

    690 kg/m2

    450 kg/m2

    Model

    Concrete wall, fc = 250 kg/cm2, 15 cm thick

    Level 1 to 14

    Level 15

    V

    Entre Eje 1 - 2 y A B

    690 kg/m2

    450 kg/m2

    VI

    Entre Eje 1 - 3 y A C

    690 kg/m2

    450 kg/m2

    VII

    Entre Eje 1 - 4 y A D

    690 kg/m2

    450 kg/m2

    VIII

    Entre Eje 1 - 5 y A E

    690 kg/m2

    450 kg/m2

  • Location of the torsion centre4 levelsModel IModel II

  • Location of the torsion centre4 levelsModel IIIModel IV

  • Location of the torsion centre15 levels4 levelsModel VModel I

  • Location of the torsion centre15 levelsModel IIModel III

  • Location of the torsion centre15 levelsModel IVModel V

  • Location of the torsion centre15 levelsModel VIModel VII

  • Location of the torsion centre15 levelsModel VIII

  • INELASTIC TORSION

  • Parametric studies based on single storey models

    Distribucin en planta de las rigideces y resistencias. Excentricidad esttica Relacin de aspecto de la planta Cociente Rr/ Rn Periodo fundamental de vibrar ( T ) Relacin de frecuencias desacopladas ( W ) Evaluacin del criterio de diseo por Torsin del RCDF BACKGROUND

  • BACKGROUND1 ) Gmez, Ayala and Jaramillo, 19872) Barrn, Ayala and Zapata, 1991

  • BACKGROUND3) Garca and Ayala, 19914) Zapata and Ayala,1993

  • Relationships of Maximum Ductility Ratios vs. Strength Distribution in shear models with resisting elements in two orthogonal directions.

    SOME RESULTS OBTAINED FROMSINGLE STOREY MODELS

  • Relationships of Maximum Ductility Ratios vs. Strength DistributionSOME RESULTS OBTAINED FROMSINGLE STOREY MODELS

  • STUDY OF THE RESPONSE OF 3D BUILDING MODELS TORSIONALLY COUPLED

  • INVESTIGATED MODEL

  • CONSIDERED PARAMETERSMASS AND STIFFNESS ASYMMETRIC.DYNAMICA AMPLIFICATION FACTOR. FAdin = Mt Me

    Design Eccentricity : ed1 = a es + b b ed2 = d es - b b

  • TYPES AND LEVELS OF STRUCTURAL ASYMMETRYMASS ASYMMETRIC MODELSSTIFFNESS ASYMMETRIC MODELSmean values

    Eccentricity

    Model I

    Model II

    Model III

    Mass

    0.10 b

    0.15 b

    0.20 b

    Eccentricity

    Model I

    Model II

    Model III

    Stiffness

    0.106 b

    0.176 b

    0.224 b

  • Symmetric ModelINSTANTANEOUS CENTRE OF SEISMIC SHEAR (CICS)Model I Mass AsymmetricInterstorey 01

  • Symmetric ModelModel I Mass AsymmetricInterstorey 01INSTANTANEOUS CENTRE OF SEISMIC SHEAR (CICS)

  • Model III Mass AsymmetricModel II Mass AsymmetricInterstorey 01INSTANTANEOUS CENTRE OF SEISMIC SHEAR (CICS)

  • Modelo II Asimtrico en RigidezModelo I Asimtrico en RigidezInterstorey 01INSTANTANEOUS CENTRE OF SEISMIC SHEAR (CICS)

  • Model III Stiffness AsymmetricInterstorey 01INSTANTANEOUS CENTRE OF SEISMIC SHEAR (CICS)

  • SYMMETRIC MODELINSTANTANEOUS CENTRE OF STIFFNESS (CIR)Interstorey 01

  • MODEL I MASS ASYMMETRICInterstorey 01INSTANTANEOUS CENTRE OF STIFFNESS (CIR)

  • MODEL II MASS ASYMMETRICInterstorey 01INSTANTANEOUS CENTRE OF STIFFNESS (CIR)

  • MODEL III MASS ASYMMETRICInterstorey 01INSTANTANEOUS CENTRE OF STIFFNESS (CIR)

  • MODEL I STIFFNESS ASYMMETRICInterstorey 01INSTANTANEOUS CENTRE OF STIFFNESS (CIR)

  • MODEL II STIFFNESS ASYMMETRICInterstorey 01INSTANTANEOUS CENTRE OF STIFFNESS (CIR)

  • MODEL III STIFFNESS ASYMMETRICInterstorey 01INSTANTANEOUS CENTRE OF STIFFNESS (CIR)

  • SYMMETRIC MODELInterstorey 01SHEAR - TORSIONAL MOMENT HISTORY SUPERPOSED ON THE SUCT

  • MODEL I MASS ASYMMETRICInterstorey 01SHEAR - TORSIONAL MOMENT HISTORY SUPERPOSED ON THE SUCT

  • Interstorey 01MODEL II MASS ASYMMETRICSHEAR - TORSIONAL MOMENT HISTORY SUPERPOSED ON THE SUCT

  • Interstorey 01MODEL III MASS ASYMMETRICSHEAR - TORSIONAL MOMENT HISTORY SUPERPOSED ON THE SUCT

  • MODEL I STIFFNESS ASYMMETRICInterstorey 01SHEAR - TORSIONAL MOMENT HISTORY SUPERPOSED ON THE SUCT

  • Interstorey 01MODEL II STIFFNESS ASYMMETRICSHEAR - TORSIONAL MOMENT HISTORY SUPERPOSED ON THE SUCT

  • SHEAR - TORSIONAL MOMENT HISTORY SUPERPOSED ON THE SUCTInterstorey 01MODEL III STIFFNESS ASYMMETRIC

  • DYNAMIC AMPLIFICATION FACTOR

    Inelastic Dynamic Eccentricity ( e din )

    MODEL

    Interstorey

    1

    5

    15

    Symmetric

    0.050 - 0.093b

    0.036 - 0.067b

    0.076 - 0.141b

    Inelastic DynamicAmplification Factor ( FA din )

    Mass asymmetric

    Model I

    2.09 - 3.89

    1.38 - 2.56

    1.25 - 2.33

    Model II

    1.02 - 1.89

    0.99 - 1.83

    0.87 - 1.62

    Model III

    1.06 - 1.97

    0.82- 1.53

    0.83 - 1.54

    Siffness asymmetric

    Model I

    2.16 - 4.02

    1.23 - 2.28

    0.52 - 0.97

    Model II

    1.54 - 2.86

    0.87 - 1.61

    0.13 - 0.24

    Model III

    1.19 - 2.21

    0.70 - 1.30

    0.13 - 0.23

  • EEFECT OF FUNDAMENTAL PERIOD

  • STRUCTURAL MODELS Group 1 (Models 4 levels) Group 2 (Models 8 levels) Group 3 (Models 15 levels)

  • SIMTRICOS Y ASIMTRICOS EN MASAS

  • ASIMTRICOS EN RIGIDECES

  • STIFFNESS ASYMMETRIC

  • CONSIDERACIONES PARA EL ANLISIS NO LINEAL Se asume que los modelos poseen base rgidaSe desprecian los efectos P-DeltaSe asume que el sistema de piso es indeformable en su planoLas uniones viga-columna se suponen rgidasLa masa del nivel se supone concentrada en un punto (CM)La estructura no pierde su geometra inicial durante el anlisis y hasta antes del colapso Excitacin ssmica

  • BEHAVIOUR PARAMETERS

    CIR (Instantaneous Stiffness Centre)

    Centro instantneo de torsin de entrepiso obtenido en cada paso de anlisis

    CICS (Instantaneous Sismic Shear Centre)

    Es un punto que define la ubicacin en planta de la demanda de fuerza cortante en cada paso de anlisis.

    SUCT (ltimate Shear - Torsion Surface)

    Locus de las combinaciones de fuerza cortante y momento torsionante de entrepiso, que aplicadas estticamente a la estructura, producen su colapso.

  • RESULTSInterstorey 014 levelsMEM411MEM402CICSCIR

  • RESULTSInterstorey 014 levelsMEM402MEM411

  • RESULTSInterstorey 018 levelsMEM802MEM822CICSCIR

  • RESULTSInterstorey 018 levelsMEM802MEM822

  • RESULTSInterstorey 0115 levelsMEM1502MEM1522CICSCIR

  • RESULTSInterstorey 0115 levelsMEM1522MEM1502

  • Universidad Nacional Autnoma de MxicoPOR MI RAZA HABLARA EL ESPIRITU