73
8/6/2019 1 PHASORS 2019 Northwest Electric Meter School Arlen Everist Puget Sound Energy Exchanging expertise since 1893 Objectives What is a phasor? Why are phasors important in metering? Working with vectors or phasors Standard meter service phasor diagrams Troubleshooting

Track C Phasors Arlen Everist - Compatibility Mode

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

1

PHASORS

2019 Northwest Electric Meter School 

Arlen Everist 

Puget Sound Energy

Exchanging expertise since 1893

Objectives• What is a phasor?

• Why are phasors important in metering?

• Working with vectors or phasors

• Standard meter service phasor diagrams

• Troubleshooting

Page 2: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

2

Terms and Concepts

• Rotation – the direction around the center

Phasors rotate counter‐clockwise

• Sequence – the order of progressionPhase sequence can be ABC or ACB

A Phasor is a special type of Vector

A vector represents a quantity with magnitude and direction

Page 3: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

3

Handbook for Electricity Metering

• A phasor is a quantity which has magnitude, direction and time relationship.  Phasors are used to represent sinusoidal voltages and currents by plotting on rectangular coordinates.  If the phasors were allowed to rotate about the origin, and a plot made of ordinates against rotation time, the instantaneous sinusoidal wave form would be represented by the phasor.

Sine Wave

M7-7

Page 4: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

4

Three phase sine wave and corresponding phasors –

ideal condition

Three phase sine wave and corresponding phasors –unbalanced 

load

Page 5: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

5

Quantities

• For our purposes the main uses include:

– Voltage

– Current

– Impedance

Lots of other uses

• Navigation: Seattle to Spokane 233 miles at 890

Page 6: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

6

Why Study Phasors?

• A simple visual representation of electrical phenomena

– Visual of what’s happening in the service and in the meter

– Understand necessary concepts for testing and billing 

• A tool for troubleshooting

How do we work with phasors?

• Phasors are vectors in motion; treat them like vectors

• Vectors can be described in 2 ways: polar and rectangular (Cartesian)

• Vectors can be added, subtracted, multiplied and divided

Page 7: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

7

Vector DescriptionRectangular Coordinates:  (1,2)

2

1

(1,2)

M7-1

Vector DescriptionPolar Coordinates: 2.24<63.40

1

2

1

63.40

M7-4,6

Page 8: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

8

Vector Exercise 1

• Draw vectors 2<00 and 3<300  (thin)

• Draw vectors (1,0) and (1.73, 1) (thick)

Vector Exercise 1

• Draw vectors 2<00 and 3<300  (thin)

1

1 200

900

Page 9: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

9

Vector Exercise 1• Draw vectors 2<00 and 3<300  (thin)

• They remain the same vectors regardless of position in space

1

1 200

900

Vector Exercise 1Reference changed – note position of 900

• Draw vectors 2<00 and 3<300  (thin)

1

1 200

900

Page 10: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

10

Vector Exercise 1

• Draw vectors 2<00 and 3<300  (thin)

• Draw vectors (1,0) and (1.73, 1) (thick)

1

1 200

900

Vector Exercise 1

• Draw vectors 2<00 and 3<300  thin

• Draw vectors (1,0) and (1.73, 1) thick

• Describe with both methods

1

1 200

900

Page 11: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

11

Vector Exercise 1• Describe with both methods – the vectors on the X axis are straightforward (1,0) = 1< 00

• 3 < 300 :  3 x cos 300  = 2.6 ;  3 x sin 300 = 1.5

• 3 < 300 = (2.6, 1.5)      

1

1 200

900

1 < 00 (2,0)

(2.6, 1.5)

Vector Exercise 1• Describe with both methods

• (1.73, 1):  1.732  + 12 = 3.99;  √ 3.99 = ~ 2

• 1 / 1.73 = 0.578; tan‐1 0.578 = 300

• (1.73, 1)  = 2 < 300

1

1 200

900

1 < 00 (2,0)

2 < 300

(2.6, 1.5)

Page 12: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

12

Adding (or subtracting) Vectors

• Vectors can be added or subtracted

• Easiest in rectangular coordinates

M7‐3

M7‐17

Vector Exercise 1 extension• Add 1 < 00  + 2 < 00

• 1 < 00  = (1,0); 2 < 00  = (2,0)

• 1 + 2 = 3; 0 + 0 = 0

• 1 < 00  + 2 < 00 = (3,0) = 3 < 00 

1

1 200

900

1 < 00 2 < 00

3

Page 13: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

13

• Add 2 < 00  + 3 < 300

• 2 < 00  = (2,0) ; 3 < 300 = (2.6, 1.5)

• Xs:  2 + 2.6 = 4.6;         Ys:  0 + 1.5 = 1.5

• (4.6, 1.5) ;  4.62 + 1.52 = 23.41;  √ 23.41 = ~4.8

• 1.5 / 4.6 = 0.326; tan‐1 0.326 = 180

• 2 < 00  + 3 < 300  = 4.8 < 180

1

1 200

900

(2,0)

(2.6, 1.5)

4.8 < 180

Vector Exercise 2

2 < 3100 + 10 < 350 = ?

270

0

Page 14: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

14

Vector Exercise 22<310 = (1.29, ‐1.53)    10<35 = (8.19, 5.74)

Add X values Add Y values

1.29 + 8.19 = 9.48       ‐1.53 + 5.74 = 4.21

? = (9.48, 4.21)

4.21 / 9.48 = tan θ = 0.444

Θ = 23.95

Hyp = 9.48 / cos θ = 10.37

? = 10.37<23.95 = 10 < 24

Vector Exercise 2

2<3100 + 10<350 =10<24

270

0

10<24

Page 15: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

15

Proof of 1.73 relationship

• Side = 1; angle at bottom is 1200

• Perpendicular bisector of 120 also bisects red line

• Cos30 x 1 = half of red line = 0.866

• 0.866 x 2 = 1.73 = length of red line

3090

60

120

1

1.73

Proof of 1.73 relationship

• ‐0.5 – 1 = 1.5

• 0.866 – 0 = 0.866

• SQRT(1.52 + 0.8662) = 1.73

• 0.866 / 1.5 = Tan‐1 30

1<0

1<120

(1,0)

(-0.5, 0.866)

Page 16: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

16

Impedance

• To divide polar coordinates, divide magnitudes and subtract angles

V= 120 < 0;   I = 10 < 30;   

Z = V/I:  120/10 = 12;   0 – 30 = ‐30;    Z = 12 < ‐30

What’s the reference?

Page 17: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

17

SCALE

What is the scale? Does the radius of the circle = 1v, 480v, 10a?Mfrs. handle this in different ways, showing the voltages relative to each other and the currents relative to each other, or scaling them to each other in some fashion.

Names

• Vector (and phasors) must be named or labeled properly to be useful

• Voltages are labeled with a V or E and the phase relationship of the potential difference:  Van, ECB, etc.

• Currents are labeled with an I and the phase:  Ia, IB, etc.

Page 18: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

18

Vector Review

• Magnitude and direction

• Rectangular coordinates

• Polar coordinates

• Add – head‐to‐toe

• Reference

• Scale

• Labels

Phasor rotation is counterclockwise

0

45

270

90

180

Page 19: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

19

Phasor rotation is counterclockwisePhase rotation or Phase sequencing

can be ABC or ACB

VA / VA

270

90

180

VB / VC

VC / VB

3 phase ACB rotation

Page 20: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

20

Phasor Review

• Phasors are vectors that rotate

• Represent cyclical phenomona

• In metering, rotation is counterclockwise

• In metering, degree notation is clockwise, with 0 at 3 o’clock

Real Life AdventuresHow does this relate to my meter work?

Page 21: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

21

Powermate Circuit Analyzer

Page 22: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

22

Page 23: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

23

Page 24: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

24

LED Billboard

Page 25: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

25

Page 26: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

26

3 wire delta, 5S or 12S meter

Vab

Vcb

Ia

Ic

AB

C

W = E x I x √3 x cos θ

Page 27: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

27

3 wire delta

Or…W = E x I x cos (α+θ) per element α is the angle at unity between E and IΘ is the pf angle caused by the load.

Angles α and θW = E x I x cos (α + θ)

Vab

Ia theoretical

Ia actual—add α and θ for watts

Angle α is the unity phase relationship = 300 for VAB - Ia

Angle θ caused by customer load

Page 28: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

28

Angles α and θW = E x I x cos (α + θ)

Vab

Angle α is the unity phase relationship 300 for IA in a 3W delta

If θ is leading the theoretical angle, consider it a negative angle when adding

If the theoretical angle is leading, consider angle αto be negative

3 wire delta with 300 lag

Wa = E x I x cos (30+30) (0.5) Wc = E x I x cos (-30+30) (1.0)Wt = E x I x 1.5Wt = E x I x {√3 x cos 30} ({}=1.5)

Page 29: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

29

3 Wire Delta

Several ways to approach this:

System PF = 0.816, so I lags V by 350

Or compare phases:- Ia lags Vab by 640, at unity this would be 300 so Ia lags by 340

- Ic lags Vcb by 50

but it should lead by 300 so Ic lags by 350

Is this a delta?

Page 30: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

30

2P-N service with CTs

Next service type

Page 31: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

31

Meter software example

4W Wye

Page 32: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

32

Ametek JemStar II

4W Wye

Page 33: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

33

Unbalanced 4W Wye

4 Wire Wye Power Calculations per Phase

V     x    I   =  VA     x    PF     = W

• PhA: 123.9 x 3.3 = 408.9 x 0.999 = 408.3

• PhB: 124.0 x 0.1 =  12.4  x 0.438 =     5.4

• PhC: 123.5 x 0.5 =  61.8  x 0.906 =   56.0

• Totals 483.1 469.7

• PF = W / V = .972 or 97.2%

• OR by average:  Iave =1.3, <ave = 30.60

(123.8 x 1.3) x 3 = 482.8 x 0.860 = 415.2

Page 34: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

34

Neutral Current

• Add current vectors

• Ia =3.31<2.83 = (3.31, ‐0.16)

• Ib = 0.11>304.40 = (0.06, 0.09)

• Ic = 0.51>145.36 = (‐0.49, ‐0.29)

• In = 2.88 > ‐180.04 = (2.88, ‐0.36)

• Angle of the neutral will be roughly opposite the largest current—current is flowing away from the meter in the neutral.

M-7 12

Phasors with Neutral (green)

Page 35: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

35

Example from phase angle lab tomorrow

4W Wye

• Ia‐EAN____  Ia‐EBN_____  Ia‐ECN_____

• Ib‐EBN____  Ib‐ECN_____  Ib‐EAN_____

• Ic‐ECN____  Ic‐EAN_____  Ic‐EBN_____

Page 36: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

36

What’s the reference?

LUNCH

Page 37: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

37

4 wire deltaPhasors

4 W Delta Xfrmrs

B N A C

Page 38: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

38

4 W Delta XfrmrsRearranged

N

AB

C

4 W Delta Service Representation

A

C

B

Page 39: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

39

4 W Delta Meter Phasors(3 phase balanced load)

C

AB

4 wire deltaPhasors

Page 40: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

40

4 wire deltaPhasors

4 wire delta, 3 element solid state auto‐detecting meter phasors

Page 41: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

41

4 wire delta, 3 element solid state auto‐detecting meter phasors

4 Wire Delta at UnityPhase to phase V to describe 

service

Van and Vbn are ½  V Φ – Φ

Vcn = Van x √ 3

Example: 240v delta

Van & Vbn = 120v

Vcn = 208v

Angle α for A phase = 300

Angle α for B phase = ‐300

Angle α for C phase = 00

Angle θ is the pf caused by the customer load.

Van

IaIb

Vbn

Vcn

Ic

αα

Page 42: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

42

4 Wire Delta Power Calculations per Phase

• Wa = VAN * Ia * cos(α + θ)  for A phase• Wb = VBN * Ib * cos(α + θ)  for B phase• Wc = VCN * Ic * cos(α + θ)  for C phase• Wt = Wa + Wb + Wc

• Angle α for A is 300, for B is ‐300, for C = 0• VAN and VBN = ½ Ø – Ø voltage, • VCN = VAN * √ 3• Like a wye, angle θ can be different for each phase

and results from the load connected to that phase

The VA Question 

• There are at least 2 methods commonly used to calculate VA, and others as well.

• 1. The traditional method of adding watts from each phase and VARs from each phase, then creating a hypotenuse, VA.  This is basically what the old wh meter / VARh meter installations did, and is called the vectorial method.

Page 43: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

43

The VA Question

• 2.  With microprocessor meters, we can now calculate VA per phase, then add the 3 VA values.  This is called the arithmetic method.  The Handbook considers this to be more “accurate.”  (See VA Metering)

• 3.  One meter mfr. multiplies V x I x 0.93 on all three phases to arrive at VA.

The VA Question

• Your utility has a method built into its rate structure.  It is probably the vectorial method, based on a wh reading and a varh reading.  Your meter may be calculating by another method.  This will only matter if you use the meter’s power or PF calculations for billing.

Page 44: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

44

4 Wire Wye Power Calculations per Phase

V     x    I   =  VA     x    PF     = W var• PhA: 123.9 x 3.3 = 408.9 x 0.999 = 408.3 22.1• PhB: 124.0 x 0.1 =  12.4  x 0.438 =     5.4 11.6• PhC: 123.5 x 0.5 =  61.8  x 0.906 =   56.0 26.1• Arithmetic Totals  483.1 469.7 59.8• Vectoral: 408.3 + 5.4 + 56 = 469.7w

»22.1 + 11.2 + 26.1 = 59.4 var»469.72  + 59.42 = 473.42 va

• Is PF 97.2% or 99.2%  ?

Vectorial vs Arithmetic • How is your meter calculating power factor?

• 97.2% or 99.2%

• What if the difference is at the PF cutoff for var adjustment?

• Which is more accurate?

483.1 va469.7 w

473.4 va

469.7 w

59.9 var

59.9var

Page 45: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

45

4 wire delta, 2 element meterphasor analysis

VAB,

IA-B

VC, IC

4 wire delta, 2 element meter, phasor analysis

VAB,

IA-B

VC, IC

Page 46: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

46

What if IB is not reversed?

VAB,

VC, IC

IA+B

Full torque on C0 torque on AB

Page 47: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

47

4 wire delta with roughly equal 1 phase and 3 phase loads

Phase C is a good indicator of 3p load

Bp 2.34-1.37=0.97Ap 2.95-1.37=1.58

Service has roughly 1.4a of 3p load and 1-1.5a single phase load

Check

• P‐P voltage = 230 x 1.37 x 1.73 = 545w

• A = 115 x 2.95 = 339w

• B = 115 x 2.34 = 269w

• C = 199 x 1.37 = 273w

» Total    881w

»3p       ‐545w

» 336w / 2 = 163 / 115=1.4

Page 48: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

48

3 phase component1 phase component

Varied Load

• This is just a way to understand what’s happening behind the phasors

• Don’t count on reverse analyzing load with any confidence

• There may be phase to phase load buried in there

• Understanding the relationship between the load and the phasors is important

Page 49: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

49

Typical 4 Wire Delta

More load on A and B phases, but significant load on C phase indicating 3 phase loadNotice 3rd harmonic distortion on B phase

4 Wire Delta

Small 3 phase load

Page 50: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

50

Note mfr’s use of phasors to indicate angle but not magnitude

4 Wire Delta

Notice lack of C phase current – A and B phase roughly balanced

Page 51: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

51

4 Wire Delta

Notice lack of C phase current –most of load is on B phase

4 Wire Delta Service

Note distortion of current waveform and smooth voltage waveform

Page 52: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

52

Harmonic Analysis

Lots of 11th and 13th harmonic in current but relatively little voltage distortion

Reactive MeteringElectromechanical

W =Van x Ia x cos θ

VAR = Van x Ia x sin θ or Vra x cos(90‐ θ)

Van

Ia

Vra

θ

Page 53: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

53

Phase shift schematic from Handbook for Electricity Metering

Shifting a Wye: Wiring and Phasors from HEM

Phasor analysis can help verify expected voltage angles and troubleshoot mis-wiring

Page 54: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

54

Shifting a Delta: Wiring and Phasors from HEM

Reactive Metering

VAR measurements are made by integrating the voltage waveform to obtain a 90°phase shift, then each voltage sample is multiplied by the coincident current sample and the product is accumulated to obtain a VARs.

From Landis + Gyr manual

Page 55: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

55

Reactive MeteringElectromechanical

VAR = Van x Ia x sin θ = 0

or VAR = Vra x Ia x cos(90‐ θ) = 0

Ia

Vra

Dk. Blue lags by 90 degrees

Page 56: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

56

Power Factor = 0

Current (orange) lags voltage (blue) by 900 so positive and negative power (light green) cancel out – no real power, all reactive power

Reactive MeteringElectromechanical

W =Van x Ia x cos 10 

VAR = Van x Ia x sin 10 or Vra x Ia x cos(80)

Van

Ia

Vra

Θ = 10

Page 57: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

57

100 lagging current, WH meter

VARH meter sees 800 leading current

Page 58: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

58

TROUBLESHOOTING

How Phasors Can Help Solve Your Problems

Examples of troubleshooting:What’s wrong here?

4W Y with CTs

Van

Vbn

VcnIc

Ia

Ib

Page 59: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

59

One polarity reversed

What’s wrong here?

4W Y with CTs

Van

Vcn

VbnIc

IaIb

Page 60: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

60

What’s wrong here?

4W Y with PTs and CTs

Van

Ic

Ib Ia

Vbn

Vcn

Miswired 4 wire delta with 2 element EM 15S Self‐Contained Meter 

What will the meter

register if C phase

(high leg) is in the

center at the 

socket?

A C B

Page 61: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

61

Miswired 4 wire delta 2 element EM 

C

B A

B

AC

Miswired 4 wire delta 2 element EM 

• Expected ActualVcn

IcVab

Ia-IbVac

Vbn

Ib

Ia-Ic

Page 62: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

62

Power calculations for 15S

• E x I x SQRT3 = 240v x 10a x 1.73 = 4157

• Correct meter 

• “2S” element sees (240v x ½ Ia x 0.866) + (240v x ‐ ½ Ib x 0.866) = 2078va

• “1S” element sees 208v x 10a = 2080va

• 2078 + 2080 = 4158VAt

Miswired 15S meter socket

• “2S” element sees the same as before, just A and C instead of A and B = 2078va

• “1S” element is now B phase with a 300

lag and 120v:  120v x 10a x 0.866 = 1039va

• 2078va + 1039va = 3117

• 3117 / 4157 = 75% registration on balanced 3 Φ load!  Lighting load is ok.

Page 63: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

63

What’s This?

Solar System with 2 inverters to create a 3 phase feed

Here B phase is common – an inverter is connected A-B and another C-B. There is no A-C load / generation, but B current is combined from both sources.

Page 64: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

64

Schematic

BA C

Inverter Inverter

PanelsPanels

• 12S16S

Ib is unmetered in a 12S or 5S meter

Page 65: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

65

Phase B is vector sum of –Ia and ‐Ic

Use of Phasors or Vectors in Related Equipment

Transformer connections

Instrument transformer performance

Relay applications

Page 66: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

66

Power Transformers

Power Transformer Connections

Depending on the winding configuration, the phase angle relationship changes from high side to low.  Normal shift in a delta—wye is +/‐ 300.

This is important for transformer relays.

Page 67: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

67

Instrument Transformers

Vector Analysis of a PT from the Handbook for Electricity Metering

Page 68: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

68

Electromechanical relays

Testing microprocessor relays

Page 69: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

69

Sequence Phasors in Relaying

In relaying, phasors are used to analyze fault current  into positive, negative and zero sequence currents; and there are many other situations where phasors make things clearer.

C B

C

A A

B

A

B   C

Arlen [email protected]

206‐550‐6706

Page 70: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

70

TI‐36X Scientific Calculator

Polar – Rectangular Conversion

You can do the rectangular-polar conversion on some calculators. Look for the expressions R>P and P>R as second and/or third functions. There should also be an X<>Y key. To convert 1,2 to polar coordinates:1(X<>Y) 2(3rd) (R>P)Display should show 2.2360… which is the magnitude(X<>Y)Display should show 63.4349… which is the angle

Page 71: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

71

Rectangular to Polar

Rectangular to Polar

Page 72: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

72

Rectangular to Polar

Rectangular to Polar

Page 73: Track C Phasors Arlen Everist - Compatibility Mode

8/6/2019

73

Polar to Rectangular

• Reverse the process:

• Magnitude (2.236) X/Y angle (63.434)

• 2nd  P>R

• Display = 1  X/Y 1.99999

L+G terminology

• VAtd: Time delay (lagging) measurement of Volt‐Amperes. At unity power factor VAtd is equal to watts. 

• VARtd: Time delay (lagging) measurement of Volt‐Amperes reactive.