19
Tracker-based Peer Selection using ALTO Map Information draft-yang-tracker-peer-selection-00 Y. Richard Yang Richard Alimi, Ye Wang, David Zhang, Kai Lee IETF 79 - Beijing, China - Nov 2010

Tracker-based Peer Selection using ALTO Map Information

  • Upload
    binah

  • View
    35

  • Download
    0

Embed Size (px)

DESCRIPTION

Tracker-based Peer Selection using ALTO Map Information. draft-yang-tracker-peer-selection-00 Y. Richard Yang Richard Alimi, Ye Wang, David Zhang, Kai Lee. Challenges. Tracker Scalability Many peers distributed in many torrents/channels Many ISPs providing ALTO info - PowerPoint PPT Presentation

Citation preview

Page 1: Tracker-based Peer Selection using ALTO Map Information

Tracker-based Peer Selection using ALTO Map Information

draft-yang-tracker-peer-selection-00

Y. Richard Yang

Richard Alimi, Ye Wang, David Zhang, Kai Lee

IETF 79 - Beijing, China - Nov 2010

Page 2: Tracker-based Peer Selection using ALTO Map Information

Challenges Tracker Scalability

Many peers distributed in many torrents/channels Many ISPs providing ALTO info

Application-Network Information Fusion Application requirements/policies Application endpoint info Network providers’ ALTO info Third-party database info

2IETF 79 - Beijing, China - Nov 2010

Page 3: Tracker-based Peer Selection using ALTO Map Information

Simple Representation

Problem: scanning Peer Table to select peers can be inefficient

Peer ID IP Address Upload Capacity

Play Point ALTONetwork

Info

City …

GH4C9 128.36.233.1

512 kbps 01:19:21 pid1.yale New Haven

J8NRE 130.132.10.2

10 Mbps 00:05:37 pid2.yale Unknown …

… … … … … … …

3IETF 79 - Beijing, China - Nov 2010

Peer Table

Cost Tables, e.g., ALTO Cost table

Page 4: Tracker-based Peer Selection using ALTO Map Information

Peer Selection using Classification Objective

Aggregation to improve scalability only need to match categories better scalability

Many Classification Attributes, e.g., Upload capacity class, play point cluster, ALTO

Network Map Multi-Dimension Classification

Classify peers using multiple attributes, e.g., Level 1: ALTO Network Map Level 2: Upload capacity

4IETF 79 - Beijing, China - Nov 2010

Page 5: Tracker-based Peer Selection using ALTO Map Information

Peer Classification: an Example

IETF 79 - Beijing, China - Nov 2010 5

Classification 1(upload capacity)

Classification 2(ALTO map)

n1 (Root)

n2(low)

n3(med)

n4(high)

n5 (Root)

n6(ISP1)

n7(ISP2)

n8(PID1)

n9(PID2)

n10(PIDA)

n11(PIDB)

Page 6: Tracker-based Peer Selection using ALTO Map Information

Peer Classification: an Example

IETF 79 - Beijing, China - Nov 2010 6

newpeer

(high capacity)(IP address in ISP1:PID2)

Classification 1(upload capacity)

Classification 2(ALTO map)

n1 (Root)

n2(low)

n3(med)

n4(high)

n5 (Root)

n6(ISP1)

n7(ISP2)

n8(PID1)

n9(PID2)

n10(PIDA)

n11(PIDB)

Page 7: Tracker-based Peer Selection using ALTO Map Information

Peer Selection using Classification Home Node

A leaf category node where the peer issuing LISTING request belongs to

Peer Selection Sequence A mapping: from a home node to a traversal sequence

of category nodes, with a specified target fraction to be reached upon visiting each node

Peer Selection Process Sequentially follow the nodes in the sequence in order

7IETF 79 - Beijing, China - Nov 2010

Page 8: Tracker-based Peer Selection using ALTO Map Information

An Example Peer A in n4 (home leaf)

requests 50 neighbors:

- select up to 25 (50%) peers from n4;

- continue to reach up to 40 (80%) from n5;

- continue to reach up to 49 (95%) from n2;

- continue to reach up to 50 (100%) from n3

Peering Selection Tablen4→[n4, 50%] [n5, 80%] [n2, 95%] [n3, 100%]n5→[n4, 20%] [n5, 60%] [n2, 95%] [n3, 100%] …n9→…

8IETF 79 - Beijing, China - Nov 2010

A, B, C…

D, E…

A, B, C, D, E…

Root

ISP1(n1)

HC(n4)

LC(n5)

ISP2(n2)

HC(n6)

LC(n7)

ISP3(n3)

HC(n8)

LC(n9)

Page 9: Tracker-based Peer Selection using ALTO Map Information

Simple Peer Classification using ALTO Network Maps One three-layer classification tree using the ALTO

Network Map of each ISP Used in P4P trials Can be used with distributed trackers (one tracker per ISP)

… …

9IETF 79 - Beijing, China - Nov 2010

ISP1 Root

Intra-ISP1

iPID iPID

ePID ePID

Page 10: Tracker-based Peer Selection using ALTO Map Information

Peering Matrix Computation Bandwidth Matching

Consider both application requirements and ALTO info for each PID, tracker periodically estimates aggregated upload capacity

and download demand use bandwidth matching algorithm to compute weights

Generic Peering Matrix bandwidth matching, assuming uniform supply and demand across PIDs

ALTOServices

ApplicationPeering MatrixComputation

Network Map

Cost MapApp-specificor genericpeering matrix

App-specificstates

10IETF 79 - Beijing, China - Nov 2010

Page 11: Tracker-based Peer Selection using ALTO Map Information

ALTO/P4P Library for Tracker Peer Selection

11

Application Optimization

Engine(peering matrix computation;

a separate thread or machine)

ALTO Infoupdate

(run in its own thread)

Peer Classification:

-Upon peer arrival, looks up new address in each ALTO Network Map

IETF 79 - Beijing, China - Nov 2010

Peer Selection: -Upon peer LISTING request, selects peers according to classification

Peer Update: -Upon peer keep alive, update statistics of classification

Page 12: Tracker-based Peer Selection using ALTO Map Information

Memory: < 150 MB

Benchmarking

12

Application Optimization

Engine(if state

dependent, 5 sec)

ALTO Infoupdate

(run in its own thread;

potentially slowest)

Peer Classification: -Lookup rate: ~2,000,000 lookups/sec using Patricia tree

IETF 79 - Beijing, China - Nov 2010

Peer Selection: -Join rate (classification + peer selection): 25,000 peers/sec in single thread

Peer Update

1,000,000 peers; Network Map/Cost Map with 10 to 30 PIDs

Page 13: Tracker-based Peer Selection using ALTO Map Information

PlanetLab Experiments Experiment Setup

~2500 P2P live streaming clients 4 instances running on each PlanetLab node

Three emulated ALTO servers US, Europe, Asia

Generic Peering Matrix using the library

ResultsMetric w/o ALTO w/ ALTO

Network Efficiency

Intra-US supply ratio25.9 GB (/44.1 GB)58.7%

40.9 GB (/52.6 GB)77.8%

Intra-PID supply ratio6.9 GB15.6%

22.7 GB43.2%

Application Performance

Avg. Playback Startup Delay

31.1 seconds 26.9 seconds

#Playback Freezes 106 for all clients 52 for all clients

13IETF 79 - Beijing, China - Nov 2010

Page 14: Tracker-based Peer Selection using ALTO Map Information

Thank you!

IETF 79 - Beijing, China - Nov 2010 14

Page 15: Tracker-based Peer Selection using ALTO Map Information

Backup Slides

Page 16: Tracker-based Peer Selection using ALTO Map Information

Tracker ISP Data Structures

ISP 1 ISP M

ISPPIDMapPIDMap

PIDMapPortalAPI

ISPPDistanceMapPDistanceMap

PDistanceMapPortalAPI

16IETF 79 - Beijing, China - Nov 2010

Page 17: Tracker-based Peer Selection using ALTO Map Information

Per Channel Data Structures

isp1 ispK

Peer Group1

PeerGroup2

Peer Group 3

Peer Group 4

17IETF 79 - Beijing, China - Nov 2010

Page 18: Tracker-based Peer Selection using ALTO Map Information

Peering Matrix

A data structure to implement peering weights of per-ISP classification tree each entry in matrix encodes peering weight from row to column complexity: O(N)

iPID1 iPID2 iPID3 iPID4 intra ISP

ePID1 ePID2 ePID3

iPID1

iPID2

iPID3

iPID4

18IETF 79 - Beijing, China - Nov 2010

Page 19: Tracker-based Peer Selection using ALTO Map Information

Implementation Experience Processing Complexity

Peer IP lookup in peer classification We use Patricia Trie for IP address lookup: > 2,000,000/second

extended LC-trie can be more efficient hash map is slow

Multi-thread Processing ALTO info update should run in a thread

periodically refresh ALTO maps Network Map update triggers Cost Map update and peer classification

update slowest part

Cost Map update triggers Peering Matrix update e.g., by calling AOE

Can run multi-thread workers for peer classification if peer arrival/departure rate is high

19IETF 79 - Beijing, China - Nov 2010