15
應用 HTN-JPDA 類神經網路解決多目標追蹤之問題 應用 HTN-JPDA 類神經網路解決多目標追蹤之問題 Tracking of Multi-Targets Using JPDA Hopfield-Tank Neural Solution 蔡樸生 Pu-Sheng Tsai 中華技術學院電子系講師 Instructor Department of Electronic Engineering China Institute of Technology 陳珍源 Jen-Yang Chen 中華技術學院電子系教授 Professor Department of Electronic Engineering China Institute of Technology Email: [email protected] 資料關聯是解決多目標追蹤之核心技術,但大部份的演算法,包括聯合機率關 聯法與多重假說追蹤法都過於複雜,不適合實現與達到即時處理的要求。尤其 當追蹤目標增加,合理的事件也隨著急速增加,對每一個合理事件分別計算發 生的機率,必將造成計算上沉重的負擔。為了有效掌握目標之運動軌跡,本文 將採用霍普菲爾-坦克類神經網路,基於 HTN 網路中每一節點的狀態必朝向能 量遞減的方向上變化之特性與強大的平行處理能力,快速解決資料關聯的問題。 關鍵詞: 資料關聯、聯合機率關聯法、多重假說追蹤法、霍普菲爾-坦克類神經網路。 Abstract The problem of tracking multiple targets in the presence of clutter is addressed. Data association is the most critical part in multi-target tracking; erroneous data as- sociations can result in lost tracks. The joint probabilistic data association (JPDA) and multiple hypotheses tracking (MHT) algorithm have been previously reported to be suitable for this problem. However, the complexity of this algorithm increases rapidly with the number of targets and returns. The computation for probabilities of enormous feasible events becomes very heavy burden. For real-time processing and tracking performance, it seems that parallel structure is a suitable approach. A Hop- field-Tank Network, which consists of many connected processing elements, is ca- pable of parallel computation, and it is suitable for a solution to the data association problem. - 143 -

Tracking of Multi-Targets Using JPDA Hopfield-Tank Neural

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Hopfield-Tank
China Institute of Technology
Email: [email protected]

Abstract
The problem of tracking multiple targets in the presence of clutter is addressed. Data association is the most critical part in multi-target tracking; erroneous data as- sociations can result in lost tracks. The joint probabilistic data association (JPDA) and multiple hypotheses tracking (MHT) algorithm have been previously reported to be suitable for this problem. However, the complexity of this algorithm increases rapidly with the number of targets and returns. The computation for probabilities of enormous feasible events becomes very heavy burden. For real-time processing and tracking performance, it seems that parallel structure is a suitable approach. A Hop- field-Tank Network, which consists of many connected processing elements, is ca- pable of parallel computation, and it is suitable for a solution to the data association problem.
- 143 -
Tracking (MHT)Hopfield-Tank Neural Network (HTN)

(Nearest Neighbor Standard Filter; NNSF)[3,4]
"1" "0"(Innovation)

(Maximum Likelihood Function)
Y. Bar-Shalom Tse 1975 (Probabilistic Data Association; PDA)[7](All Neighbor)
(Validation Region; Gating)

Y. Bar-Shalom Fortmann 1983
(Joint Probabilistic Data Association; JPDA)[9]
144
Roecker JPDA
"AD HOC JPDA"[10]Emre and Seo [11]

Y. Bar-Shalom Chang [12] JPDA

JPDA
(Neural Network)
JPDA SOFM
-(Hopfield-Tank; HTN) JPDA HTN

JPDA : km
[] (Validation Matrix) Gate
[ ] , 1, 2, , , 0,1, 2, ,jt kj m tω = =L TL (1)
jtw t ’1’
’0’
j
m

j jt
145
ˆ ( ) 0,
jt jt
0
jt k t
jt j
≤ =∑ θ L

[] (1) (Binary M
146

(5) 1
ˆ( ) ( ) T
j t
τ ω =
θ t
[] ( )kθ
1 11{ ( ) } { ( ) ( ), } [ ( ) ( ), ] { ( ) }k k kP k Z P k Z k Z p Z k k Z P k Z c
− −= = ⋅θ θ θ θ 1k− (8)
1 1 1 2
j jt j
p Z k k Z p z k z k z k k Z
p z k k Zθ
− −

=
=
=∏
1 1
j
N z k if k p z k k Z
V if
τ θ
θ (10)
ˆ[ ( )] [ ( ); ( 1), ( )]j jt t tj j j j jN z k N z k z k k S k−
)1(ˆ −kkz jt j : jt
)(kS jt j : jt
( )1 ( )
1
[ ( ) ( ), ] [ [ ( )]] k
j
=
(Prior Probability) ( )kθ
{ ( )} { ( ), ( ), ( )} { ( ) ( ), ( )} { ( ), ( )}P k P k P k Pδ φ δ φ δ φ= = ⋅θ θ θ θ θ θ θ θ θ (12)
{ ( ) ( ), ( )}P k δ φθ θ θ :
km : k
( )φ θ : θ

−= ⋅ − =θ θθ θ θ θ (13)
{ ( ), ( )} { ( ) ( )} { ( )}P P Pδ φ δ φ φ= ⋅θ θ θ θ θ (14)
{ ( ) ( )}P δ φθ θ : ( )φ θ
∏ =
DP−
tj j D D F j tk
P k Z V N z k P P c m
τ δ δφφ t µ φ−−
= =
= −∏ ∏θ (16)
PMF )(φµF { ( )} ( )FP φ µ φ=θ Possion
! )()(
P k Z N z k P P c
φ τ ttδ δλ −
[] t j
ˆ{ } { } (t k k j jt jtP Z P Z wβ θ
= =∑ θ
i i j j i
j i
148
) iE A X W X xθ ≠
= − ⋅ = − −∑ (20)
1 1( ) ( )2 2i i i ij j i i j i i
E A X X W X iXθ ≠
= − ⋅ = − +∑∑ ∑ (21)
A W x )iθ ≠
= ∑ − (Firing Function)HTN
(1)(2) (3) N


51 52 53 55
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
1 2 3 4 5
=
xiX 1xiX =

X X ≠
X X ≠
X N N−∑∑ (25)
: , 1 , 1)(xy xi y i y i x i y x
dist X X X+ ≠
2 2
[( ) ] ( ) 2 2
xi xj xi yi x i j i x i y x
xi xy xi y i y i x i x i y x
A BE X X X X
C DX N dist X X X
≠ ≠
+ − ≠
= ⋅ + ⋅
+ − + ⋅ ⋅ +
∑∑∑ ∑∑∑
xy
W A x y i j B i j x y
C D dist j i j i
δ δ δ δ
TSP
})({)( kZkiPki θβ
−= − k
1 22 ( ) (1 ) /D G Db S k P P Pλ π= − (32)
1 0
τ ≠
i t j i X X

⋅∑∑∑
t i X )−∑ ∑
i t X β−∑∑
[] JPDA
2 2( 1) ( 2 2 2
t t t t DAP i i i j i i i
i t t i t j i t i i t
A B DE X X X X X Xτ
τ
[JPDA ]
: O O 1 2 3(3.3, 2.1) , (1.4, 2.5) , (2.4, 2.225)T T
: TT PP )45.2,0.2(,)0.2,8.2( 21 ==
: 99.0=GP
2χ : Prob 2( ) 0.01 , 9.χ γ γ> = = 21
(1) 2 jtd 2χ
151
0 16.667 0.1 O P d
− ⇒ = = <

1 0 0 θ
1 0 0 θ
1 0 0 θ
0 1 0 θ
0 0 1 θ
1 0 0 θ
0 0 1 θ
0 1 0 θ
1 1exp[ ] exp[ ] 2 2(2 ) (2 )
t t t j j j jt
M Mt t j j
v S v d
1}{1}{0}{1}{ 4321 0
1 ×+×+×+×= kkkk ZPZPZPZP θθθθβ 1}{0}{0}{1}{ 8765 ×+×+×+× kkkk ZPZPZPZP θθθθ
55566.0,3967.0,0,0
t
t
+ = +
= +
k (38)
( )tx k t ( ) ( )t Tx k x x y y= & &
( )tF k t t ( )tG k
153
2
2
01 0 0 2 0 1 0 0 0 1 0 0 0
( ) , ( ) , ( ) 0 0 1 0 0 1 00 20 0 0 1
0
= = =
k σ
x y kmk k sσ σ= =
PDA : 0.95GP = 2χ
9.2γ = 0.95DP =
: 20.2km−
( )x km ( )y km ( )x km s& ( )y km s&
1 1.5 3.5 0.4 0.56 2 1.0 4.0 0.6 0.44 ()()() PDAJPDAHTNPDA
PDA



HTN-JPDA
(Cluster)

1. Bar-Shalom, Y., Fortmann, T. E., Tracking and Data Association. Academic Press, Or-
lando, FL, 1988. 2. Blackman, S. S., Multiple Taget Tracking with Radar Appications, Artech House,
Dedham, Ma., (1986). 3. A. Farina and S. Pardini, "Track-While-Scan Algorithm in a Clutter Environment",
IEEE Trans. Aerospace & Electronic Systems, Vol. AES-14, September 1978, pp.768-779.
4. X. Rong Li and Bar-Shalom, Y., " Tracking in Clutter with Nearest Neighbor Filters: Analysis and Performance", IEEE Trans. Aerospace & Electronic Systems, Vol. 32, No.3 1996, pp.995-1099.
5. Smith, P., and Buechler, G., “A branching algorithm for discriminating and tracking multiple objects,” IEEE Trans. Automatic Control, Vol. AC-20, Feb.1975, pp. 101-104.
6. C.L. Morefield, "Application of 0-1 Integer Programming to Multi-Target Tracking Problems", IEEE Trans. Automatic Control, Vol. AC-22, June.1977, pp. 302-312.
7. Y. Bar-Shalom and E. Tse, " Tracking in a Cluttered Environment with Probabilistic Data Association", Automatica, Vol. 11, September 1975, pp. 451-460.
8. Reid, D.b, " An Algorithm for Tracking Multiple Targets", IEEE Trans. Automatic Control, Vol. AC-24, Dec. 1979, pp. 843-845.
9. Fortmann, T. E., Bar-Shalom, Y., and Scheffe, M., “Sonar tracking of multiple targets using joint probabilistic data association,” Journal of Oceanic Engineering, OE-8, July 1983. pp. 173-184.
10. J.A. Roecker, and G.L. Phillis, "Supoptimal Joint Probabilistic Data Association", IEEE Trans. on Aerospace & Electronic Systems, Vol. 29, No.2, Apr. 1993, pp.510-517.
11. Emre, E. and Seo, J., “A Unifying Approach to Mult-Target Tracking”, IEEE Trans. on Aerospace & Electronic Systems, Vol. AES-25, July. 1989, pp.520-528.
12. K.C. Chang, C.Y. Chong, and Y. Bar-Shalom, “Joint Probabilistic Data Association in Distributed Sensor Networks”, IEEE Trans. Automatic Control, Vol. AC-31, October 1986, pp. 889-897.
13. C.Y. Chong, K.C. Chang, and S.Mori, “Distributed Tracking in Distributed Sensor
155
HTN-JPDA
Networks”, Proc. American Control Conf., Seattle, MA, June 1985. 14. J. L. Speyer, “Computation and transmission requirements for a decentralized LQG
control problem”, IEEE Trans. Automatic Control, Vol. AC-24, no. 2, Apr.1979, pp. 266-269.
15. R.M. Yannone, “Expert System in the Fighter of 1990’s”, IEEE Aerospace & Elec- tronic Systems Magazine, Vol. 1, February. 1986, pp.12-16.
16. Ho. P.F. and Tsai W.H., “Target Detection and Targeting in Infrared Image Sequences by Neural Networks Using Self-Organizing Feature Maps”, 1992 IPPR Conference on Computer Vision, Graphics, and Image Processing, Taiwan, pp. 306-313, Aug. 1992.
156
157