23
Tradeoff Between Powertrain Tradeoff Between Powertrain Complexity and Fuel Efficiency 2009 DOE Hydrogen Program and Vehicle Technologies A lM iR i AnnualMerit Review June 08, 2010 Namdoo Kim (PI), Aymeric Rousseau (Presenter) Argonne National Laboratory Sponsored by Lee Slezak Project ID #VSS010 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project ID #VSS010

Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Tradeoff Between PowertrainTradeoff Between Powertrain Complexity and Fuel Efficiency

2009 DOE Hydrogen Program and Vehicle Technologies A l M i R iAnnual Merit Review 

June 08, 2010

Namdoo Kim (PI),  Aymeric Rousseau (Presenter)Argonne National Laboratory

Sponsored by Lee SlezakProject ID #VSS010

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project ID #VSS010

Page 2: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Project OverviewTimeline

Start – September 2009

Barriers Evaluate fuel consumption potential 

End – September 2010

70% Complete

and cost benefit of powertrains

Assess impact on component requirements

Budget FY09 ‐ $150K (2Mode

q

FY09  $150K (2Mode Development and Validation)

FY10 ‐ $400K

2

Page 3: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Objectives

The objective is to evaluate the benefits of several multi‐mode powertrain configurations from a fuel 

consumption and cost point of view. 

EVT efficiency of electro‐mechanical power path increases with powertrain (PT) configuration complexitypowertrain (PT) configuration complexity

EVT mechanical losses also increase with PT complexity

Evaluate the trade‐offs between EVT system efficiency and EVTEvaluate the trade offs between EVT system efficiency and EVT mechanical loss based on multi‐mode powertrain complexity

Select the most promising configuration to support future DOE 

3

fuel consumption studies

Page 4: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

EVT Hybrid

An EVT hybrid uses differential gearing to split power into two paths:

ll h l– All‐Mechanical

– Electro‐Mechanical

EVT gearing acts like an automobile differential, which uses gearing to split power between left andright wheels.

Series – Engine Operates Independently

– + Continuously Variable (CVT) Operation, y ( ) p ,

– + Unlimited Transmission Speed Ratio

Parallel – Mechanical Path Through

+ Motors and Controllers Cost Less– + Motors and Controllers Cost Less, 

– + Higher Transmission Efficiency.

4

Page 5: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

MilestonesYear 1 Year 2

Analyze APRF test data

Implement component dataImplement component data

Develop 2 Mode control

Validate 2 Mode model

Develop 3 Mode transmission

Develop 3 Mode control

Develop 4 Mode transmissionDevelop 4 Mode transmission

Develop 4 Mode control

Size Vehicles

Run Simulations

Provide Report

Current Status

5

Page 6: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

ApproachDevelop Transmission 

Models of Selected Patents

Search Existing Patents for Multi Mode HEV m

ption ?

Develop Vehicle Level C t l B d A il bl

Fuel Con

sum

Control Based on Available Test Data and Literature Powertrain Configuration 

Complexity

6

Page 7: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Technical AccomplishmentsU d t d Effi i P t ti l f E h M lti M dUnderstand Efficiency Potential of Each Multi-Mode

Input Split

1

1.5

The ratio P-elect to P-eng, Single Mode EVTConstant Engine Torque and Engine Speed (@ W-eng=1500rpm, T-eng=120Nm)

0.95

1Efficiency

“All-Mechanical” Power “All-Input” Power

-0 5

0

0.5

Pwr R

atio

0.8

0.85

0.9

Eff.

“Mechanical Point”ratio :0.72

-1.5

-1

-0.5P

EVT10.65

0.7

0.75

EVT1

“Electro-Mechanical” Power Efficiency drops sharply at low SR (high vehicle speed)

0 0.5 1 1.5 2 2.5-2

SR, the ratio of W-eng to W-out 0 0.5 1 1.5 2 2.5

SR, the ratio of W-eng to W-out

Power ratio = electro mechanical power / all mechanical power

7

Power ratio = electro‐mechanical power / all‐mechanical power (small values mean little recirculation, higher efficiencies)

Patented in the US in 1969

Page 8: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Technical AccomplishmentsU d t d Effi i P t ti l f E h M lti M dUnderstand Efficiency Potential of Each Multi-Mode

Dual ModeEffi i (@ W 1500 T 100N )

The ratio P-elect to P-eng , Two Mode EVT (GM P 6,478,705)C t t E i T d E i S d (@ W 1500 T 100N )

0.8

0.9

1Efficiency (@ W-eng=1500rpm, T-eng=100Nm)

1

1.5

2Constant Engine Torque and Engine Speed (@ W-eng=1500rpm, T-eng=100Nm)

“All-Mechanical” Power

“Mechanical Point”

“All-Input” Power

0.6

0.7Eff.

-1

-0.5

0

0.5

Pwr R

atio

“Electro-Mechanical” Power

Mechanical Point

0 0.5 1 1.5 2 2.5 3 3.5 40.4

0.5

SR, the ratio of W-eng to W-out

EVT1EVT2

0 0.5 1 1.5 2 2.5 3 3.5 4-2

-1.5

SR, the ratio of W-eng to W-out

EVT1 (Input Split)EVT2 (Compound Split)

The objective is to minimize the power ratio, to minimize recirculation

Power through the transmission (engine to output) is the sum of  all‐mechanical power and electro‐mechanical power.

8

Transmit more power mechanically, which is more efficient. Two mechanical points allow higher efficiency over wider range

GM patent no. 6,478,705

Page 9: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Technical AccomplishmentsU d t d Effi i P t ti l f E h M lti M dUnderstand Efficiency Potential of Each Multi-Mode

Three Mode

0.9

1Efficiency (@ W-eng=1500rpm, T-eng=100Nm)

EVT1EVT2EVT3

1

1.5

2

The ratio P-elect to P-eng , Three Mode EVT (GM P 6,551,208)Constant Engine Torque and Engine Speed (@ W-eng=1500rpm, T-eng=100Nm)

EVT1 (Input Split)EVT2 (Compound Split)EVT3 (Compound Split)

0.6

0.7

0.8

Eff.

-0.5

0

0.5

Pwr R

atio

0 0.5 1 1.5 2 2.5 3 3.5 40.4

0.5

SR, the ratio of W-eng to W-out

0 0.5 1 1.5 2 2.5 3 3.5 4-2

-1.5

-1

SR, the ratio of W-eng to W-out

Power through the transmission (engine to output) is the sum of  all‐mechanicalpower and electro‐mechanical power.

9

Transmit more power mechanically, which is more efficient.

Maintain high efficiency over a wider rangeGM patent no. 6,551,208

Page 10: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Technical Accomplishments Multi Mode Efficiency Potential SummaryMulti-Mode Efficiency Potential Summary

Single  Two Three Four

Eff. of electro‐mechanical power path 0 + ++ +++p p

Electro‐mechanical capacity 0 + ++ +++

Cost  0 ‐ ‐‐ ‐‐

Oil pump loss 0Oil pump loss 0 ‐ ‐ ‐

Planetary gear spin loss 0 ‐ ‐‐ ‐‐

Clutch drag loss 0 ‐ ‐‐ ‐‐

Transmission model needs to include: 

Oil Pump LossPlanetary GearClutch drag losses

Key:  Baseline =  0, Better =  +, Worse =  ‐

0.150

0.200

0.250

0.300

0.350 0 bar

5 bar

10 bar

16 bar

Oil Pump Loss Planetary Gear Spin Losses 

Clutch drag losses

10

0.000

0.050

0.100

0 1000 2000 3000 4000 5000 6000 7000 8000

Spin loss : 99.5%

Page 11: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Technical AccomplishmentsM d l d Diff t T i iModeled Different Transmissions

Gear System

‐ Transmission models developed in SimDriveline to allow for modeling of detailed losses (oil pump spin

:

of detailed losses (oil pump, spin, clutch drag).‐ Low level control developed for each transmission

11

::

Page 12: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Technical AccomplishmentsD l d Si l 2 d 3 M d C t lDeveloped Single, 2 and 3 Mode Controls

Control Logic Philosophy

Controller objective: Find the power split between mechanical components (ICE, MC2, MC1) that meets the driver request for the current speed of the vehicle, while maintaining acceptable battery SOC and minimal fuel consumption 

Use a compound split mode– Use a compound split mode

– Electric power should stay low with wide ratio coverage

Mode selection rule is defined by maps which are computed in Matlab using a brute‐Mode selection rule is defined by maps which are computed in Matlab using a brute‐force algorithm (similar to instantaneous optimization)

The SOC correction and engine ON/OFF conditions have to be properly defined

outT out

ecandidate

ontransmissi

MCMC

MCMC

TT

2,1

2,1

eTEquations(Two modes & fixed gear modes)

nConsumptioFuelCandidate

12

Note: an instantaneous optimization has also been defined for the 2Mode

ontransmissi

Page 13: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Technical AccomplishmentsI t f P t i C t Si i d O tiImpact of Powertrain on Component Sizing and Operation

Single Dual

Small SUV Vehicle Sizing Veh Spd, m/s x10Eng ONGB Mode x100

UnitSingle Mode

Dual Mode

Engine Power kW 195 191

Motor 1 Power kW 110 49 200

300UDDS - Part 2 - Engine speed and torqueSingle Mode

GB Mode x100Eng Spd, rpm /10Eng Trq, Nm

Motor 1 Power kW 110 49

Motor 2 Power kW 90 60

Vehicle Weight kg 2026 19830

100

200

150 200 250 300 350

400

500UDDS - Part 2 - Engine speed and torqueDual Mode

Dual mode allows smaller electric machines

100

200

300

400electric machines

Mode selection also impact the component operating conditions (e g engine speed

13

150 200 250 300 350

0

Cycle is UDDS Hill 2

conditions (e.g., engine speed and torque)

Page 14: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Technical AccomplishmentsV lid t Si l d D l M d C t lValidate Single and Dual Mode Controls

Analyze Data Develop Control

Collect Test Data

Engine Torque

Validate Model

APRF

Understand Gearbox Model Gearbox

Source : GM

14

Example of GM 2 Mode Tahoe

Page 15: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Future Activities

Multi‐mode analysis completion Refine / develop the design options and control of three and four mode 

powertrains

Complete fuel efficiency comparison and analysis study based on a small SUV

To ensure fair comparison, several control parameters will be simulated and/or heuristic optimization algorithm will be used to tune the parameters

Several drive cycles, include RWDC might be considered

Net Present Value (NPV) will also be consideredNet Present Value (NPV) will also be considered

Expand study– Additional vehicle classes (e.g., compact, midsize car, midsize SUV…)

– Additional multi‐mode (e.g., 5, 6…) if the tip not reached

– Other configurations options (e.g., for series, compare series vs. GM Volt vs. BYD…)

15

Page 16: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Summary

The fuel efficiency potential of several multimode systems (1 to 4 modes) has been defined.

Detailed transmission models, including spin losses, clutch drag and oil pump losses have been developed along with their low level controllers.

Vehicle level control strategies have been defined for several multi‐mode systems (1, 2 and 3).

For the small SUV application considered, preliminary results show impact on component sizing and component operating conditions

Future work will address the four selected multi‐mode systems to assess their impact on fuel consumption and component i i

16

sizing. 

16

Page 17: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Additional Slides

17

Page 18: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

List of Publications

Karbowski, D., Kwon, J., Kim, N., Rousseau, A., “Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle”, SAE 2010‐01‐0816, SAE World Congress, Detroit, April 2010g , , p

N. Kim, A. Rousseau, R. Carlson, F. Jehlik, “Tahoe HEV Model Development in PSAT”, SAE 2009‐01‐1307, World Congress, April 2009

B. Carlson, J. Kim, A. Rousseau, “GM Tahoe 2 Mode System”, DOEB. Carlson, J. Kim, A. Rousseau,  GM Tahoe 2 Mode System , DOE Presentation, June 2008, Washington DC

1818

Page 19: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Single Mode EVT :

Lever and stick diagrams for a simple planetary EVT (Input split):

EGMC2 MC78 30

S C R

OUT

A lever can be drawn in the same orientation as planetary “sticks”. – Patented in the US in 1969!

Toyota Prius uses this same basic gear schematic and power flow– Toyota Prius uses this same basic gear schematic and power flow

Engine torque is split unequally, based on ring‐to‐sun gear ratio.

Final drive receives most of the engine torque directly.

Generator receives a small fraction of engine torque (e g 1/3) but must be able to

19

Generator receives a small fraction of engine torque (e.g. 1/3) but must be able to turn much faster than the engine.

Page 20: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Single Mode EVT Limitations

Electro‐mechanical (continuously variable) power path is less efficient due to electrical power recirculation.

EVT gear ratio or “mechanical point” must be chosen for high drive‐cycle fuel EVT gear ratio or  mechanical point  must be chosen for high drive‐cycle fuel economy (no recirculation).

With high engine speed, transmission uses high speed ratios, with high electro‐mechanical power.

High electro‐mechanical component power has high cost.

High electro‐mechanical use increases “real‐world” fuel consumption.

20

Page 21: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

EVT Power Split Design Options:

Input Split (IS), Output Split, and Compound Split (CS) EVT hybrids use gearing in different places:– I.S. : One electric motor is geared at the input, and the other motor turns with the output

C S : One electric motor is geared at the input and the other is geared at the output– C.S. : One electric motor is geared at the input, and the other is geared at the output.

21

Input split, output split and compound split can be combined to form a multi‐mode EVT

Page 22: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Two Mode EVT :

Lever and stick diagrams for a two mode EVT;  for example

GM patent no. 6,478,705EGMC2 EGMC2

CL1S1 C1 R1

MCOUTCL2 R2 C2 S2

Engine is connected to the 1st ring gear.

Generator is connected to the 1st sun gear.

i d h 2 d Motor is connected to the 2nd sun gear.

Final drive is connected to the planet carrier

Two clutches are provided, one for each EVT range or “mode”. (Mechanical loss)

d l f d ( h l l )

22

Needs two planetary gear sets for EVT2 mode. (Mechanical loss)

Page 23: Tradeoff Between Powertrain - Presentations/HEVs and PHEVs... · Engine torque is split unequally, based on ring‐to‐sun gear ratio. Final drivereceives most of the engine torque

Three Mode EVT :

Lever and stick diagrams for a three mode EVT;  for example

GM patent no. 6,551,208EGMC2

MC

CL2

CL1S1 C1 R1

R2 C2S2

OUT

CL2

CL4

CL3C2

R3

C3S3

Engine is connected to the 1st ring gear.

Generator is connected to the 1st sun gear.

i d h 2 d Motor is connected to the 2nd sun gear.

Final drive is connected to the 3rd planet carrier

Four clutches are provided, two for each EVT range or “mode”. (Mechanical loss)

d h l f d ( h l l )

23

Needs three planetary gear sets for EVT2, EVT3 mode. (Mechanical loss)