59
Training Machine Learning Models via Empirical Risk Minimiza8on (Lecture 2) Peter Richtárik The 41 st Woudschoten Conference - October 5-7, 2016

Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

TrainingMachineLearningModelsviaEmpiricalRiskMinimiza8on

(Lecture2)PeterRichtárik

The41stWoudschotenConference-October5-7,2016

Page 2: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Part1Lecture1Condensed

to2Slides

Page 3: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Lecture1•  EmpiricalRiskMinimiza8on–  PrimalFormula8on(minimizetheaverageofnconvexfunc8onsofdvariables)

– DualFormula8on(maximizeaconcavefunc8onofnvariables)

•  5BasicTools– GradientDescent(GD)– AcceleratedGradientDescent(AGD)– HandlingNonsmoothness:ProximalGradientDescent:–  RandomizedDecomposi8on

•  Stochas8cGradientDescent(SGD)•  RandomizedCoordinateDescent(RCD)

–  Parallelism/Minibatching

Page 4: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

SummaryofComplexityResultsfromLecture1

Method # iterations Cost of 1 iter.

Gradient Descent

(GD)

Lµ log(1/✏) n

Accelerated Gradient Descent

(AGD)

qLµ log(1/✏) n

Proximal Gradient Descent

(PGD)

Lµ log(1/✏) n + Prox Step

Stochastic Gradient Descent

(SGD)

⇣maxi Li

µ +

�2

µ2✏

⌘log(1/✏) 1

Randomized Coordinate Descent

(RCD)

maxi Liµ log(1/✏) 1

\begin{tabular}{|c|c|c|}\hline\bfMethod&\bf\#itera8ons&\bfCostof1iter.\\\hline\hline\begin{tabular}{c}GradientDescent\\(GD)\end{tabular}&$\arac{L}{\mu}\log(1/{\color{red}\epsilon})$&$n$\\\hline\begin{tabular}{c}AcceleratedGradientDescent\\(AGD)\end{tabular}&$\sqrt{\arac{L}{\mu}}\log(1/{\color{red}\epsilon})$&$n$\\\hline\begin{tabular}{c}ProximalGradientDescent\\(PGD)\end{tabular}&$\arac{L}{\mu}\log(1/{\color{red}\epsilon})$&$n$+ProxStep\\\hline\begin{tabular}{c}Stochas8cGradientDescent\\(SGD)\end{tabular}&$\led(\arac{\max_iL_i}{\mu}+\arac{\sigma^2}{\mu^2{\color{red}\epsilon}}\right)\log(1/{\color{red}\epsilon})$&$1$\\\hline\begin{tabular}{c}RandomizedCoordinateDescent\\(RCD)\end{tabular}&$\frac{\max_iL_i}{\mu}\log(1/{\color{red}\epsilon})$&$1$\\\hline\end{tabular}

Page 5: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Part2ArbitrarySampling(AUnifiedTheoryofDeterminis8candRandomizedGradient-TypeMethods)

P.R.andMar8nTakáčOnop:malprobabili:esinstochas:ccoordinatedescentmethodsOp&miza&onLe.ers10(6),1233-1243,2016(arXiv:1310.3438)

Page 6: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

TheProblem

Page 7: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

TheProblem\[\min_{w\in\mathbb{R}^d}\;\;\led[P(w)\equiv\frac{1}{n}\sum_{i=1}^n\phi_i(A_i^\topw)+\lambdag(w)\right]\]

minx2Rn

f(x)

Smooth and �-strongly convex

Page 8: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

TheAlgorithm

Page 9: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

\[x_i^{t+1}\ledarrowx_i^t-\frac{1}{{\color{red}v_i}}(\nablaf(x^t))^\tope_i\]

Choosearandomset${\color{blue}S_t}$ofcoordinates

${\color{blue}p_i=\mathbf{P}(i\inS_t)}$

For i 2 St do

Choose a random set St of coordinates

x

t+1i x

ti

\[x_i^{t+1}\ledarrowx_i^t\]

For i /2 St do

For$i\no8n{\color{blue}S_t}$do

x

t+1i x

ti �

1

vi(rf(xt))>ei

i.i.d.witharbitrarydistribu8on

St ✓ {1, 2, . . . , n} ${\color{blue}S_t}\subseteq\{1,2,\dots,n\}$

e1 =

0

@100

1

A

$e_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$

e2 =

0

@010

1

A

n = 3Example

Page 10: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Complexity

Page 11: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

KeyAssump8on

\[\mathbf{E}\led[f\led(x+\sum_{i\in{\color{blue}\hat{S}}}h_ie_i\right)\right]\;\;\leq\;\;f(x)+\sum_{i=1}^n{\color{blue}p_i}\nabla_if(x)h_i+\sum_{i=1}^n{\color{blue}p_i}{\color{red}v_i}h_i^2\]

\[{\color{blue}p_i}=\mathbb{P}(i\in\hat{S})\]

Parameters v1, . . . , vn satisfy:

Parameters${\color{red}v_1,\dots,\color{red}v_n}$sa8sfy:

Inequalitymustholdforall

\[x,h\in\mathbb{R}^n\]

E

2

4f

0

@x+

X

i2S

hiei

1

A

3

5 f(x) +nX

i=1

pirif(x)hi +nX

i=1

pivih2i

x, h 2 Rn pi = P(i 2 St)

i 2 St

Page 12: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

ComplexityTheorem

\[t\;\;\geq\;\;\led(\max_i\frac{{\color{red}v_i}}{{\color{blue}p_i}\lambda}\right)\log\led(\frac{f(x^0)-f(x^*)}{\epsilon{\color{blue}\rho}}\right)\] \[\mathbf{P}\led(f(x^t)-f(x^*)\leq\epsilon\right)\geq1-{\color{blue}\rho}\]

t �✓max

i

vi

pi�

◆log

✓f(x

0)� f(x

⇤)

✏⇢

P�f(xt)� f(x⇤) ✏

�� 1� ⇢

strongconvexityconstantpi = P(i 2 St)

Page 13: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

UniformvsOp8malSampling

\[{\color{blue}p_i}=\frac{{\color{red}v_i}}{\sum_i{\color{red}v_i}}\]

pi =1

nmax

i

vipi�

=

nmaxi vi�

\[\max_i\frac{{\color{red}v_i}}{{\color{blue}p_i}\lambda}=\frac{{\color{blue}n}\max_i{\color{red}v_i}}{\lambda}\]

max

i

vipi�

=

Pi vi�

\[\max_i\frac{{\color{red}v_i}}{{\color{blue}p_i}\lambda}=\frac{\sum_i{\color{red}v_i}}{\lambda}\]

pi =viPi vi

Outputasubsetof$C_j$ofsize$\tau$chosenuniformlyatrandom

Page 14: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

HowtoComputetheStepsizeParameters?

ZhengQuandP.R.CoordinatedescentwitharbitrarysamplingII:ESO,arXiv:1412.8063,2014

ZhengQuandP.R.CoordinatedescentwitharbitrarysamplingI:algorithmsandcomplexityOp&miza&onMethodsandSoCware31(5),829-857,2016(arXiv:1412.8060)

ZhengQuandP.R.CoordinatedescentwitharbitrarysamplingII:expectedseparableoverapproxima:onOp&miza&onMethodsandSoCware31(5),858-884,2016

Page 15: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Part3Quartz

ZhengQu,P.R.andTongZhangQuartz:RandomizeddualcoordinateascentwitharbitrarysamplingInAdvancesinNeuralInforma&onProcessingSystems28,2015

Page 16: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

EmpiricalRiskMinimiza8on

Page 17: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Sta8s8calNatureofData

\[\phi_i(a)=\arac{1}{2\gamma}(a-b_i)^2\]\[\Downarrow\]\[\frac{1}{n}\sum_{i=1}^n\phi_i(A_i^\topw)=\frac{1}{2\gamma}\|Aw-b\|_2^2\]

Data(e.g.,image,text,measurements,…)

Label\[A_i\in\mathbb{R}^{d\8mesm},\qquady_i\in\mathbb{R}^m\]

Ai 2 Rd⇥m

yi 2 Rm

(Ai, yi) ⇠ Distribution

Page 18: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Predic8onofLabelsfromData\[(A_i,y_i)\sim\emph{Distribu8on}\]

(Ai, yi) ⇠ Distribution

A>i w ⇡ yi

\[A_i^\topw\approxy_i\]

w 2 RdFind

Suchthatwhen(data,label)pairisdrawnfromthedistribu8on

Then

Predictedlabel Truelabel

Linearpredictor

Page 19: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

MeasureofSuccess\[\mathbf{E}\led[loss(A_i^\topw,y_i)\right]\]

loss(a, b)

E⇥loss(A>

i w, yi)⇤

(Ai, yi) ⇠ Distribution

Wewanttheexpectedloss(=risk)tobesmall:

data label

Page 20: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

FindingaLinearPredictorviaEmpiricalRiskMinimiza8on(ERM)

\[\min_{w\in\mathbb{R}^d}\frac{1}{n}\sum_{i=1}^nloss(A_i^\topw,y_i)\]

\[(A_1,y_1),(A_2,y_2),\dots,(A_n,y_n)\sim\emph{Distribu8on}\](A1, y1), (A2, y2), . . . , (An, yn) ⇠ Distribution

Drawi.i.d.data(samples)fromthedistribu8on

minw2Rd

1

n

nX

i=1

loss(A>i w, yi)

Outputpredictorwhichminimizestheempiricalrisk:

Page 21: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

ERM:Primal&DualProblems

Page 22: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

PrimalProblem

Regularizer:1-stronglyconvex

\[\min_{w\in\mathbb{R}^d}\;\;\led[P(w)\equiv\frac{1}{n}\sum_{i=1}^n\phi_i(A_i^\topw)+\lambdag(w)\right]\]

Loss:convex&-smooth

1/�

minw2Rd

"P (w) ⌘ 1

n

nX

i=1

�i(A>i w) + �g(w)

#

g(w) � g(w0) + hrg(w0), w � w0i+ 1

2kw � w0k2 \[g(w)\geq g(w' ) + \left< \nabla g(w' ), w-w' \right> + \frac{1}{2}\|w-w' \|^2\]

kr�i(t)�r�i(t0)k ��1 · kt� t0k

Lipschitzconstant

Page 23: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

DualProblem

-stronglyconvex

\[D(\alpha)\equiv-\lambdag^*\led(\frac{1}{\lambdan}\sum_{i=1}^nA_i\alpha_i\right)-\frac{1}{n}\sum_{i=1}^n\phi_i^*(-\alpha_i)

1–smooth&convex

D(↵) ⌘ ��g⇤

1

�n

nX

i=1

Ai↵i

!� 1

n

nX

i=1

�⇤i (�↵i)

max

↵=(↵1,...,↵n)2RN=RnmD(↵)

\[\max_{\alpha=(\alpha_1,\dots,\alpha_n)\in\mathbb{R}^{N}=\mathbb{R}^{nm}}D(\alpha)\]

g⇤(w0) = max

w2Rd

�(w0

)

>w � g(w)

\[g^*(w')=\max_{w\in\mathbb{R}^d}\led\{(w')^\topw-g(w)\right\}\]

�⇤i (a

0) = max

a2Rm

�(a0)>a� �i(a)

\[\phi_i^*(a')=\max_{a\in\mathbb{R}^m}\led\{(a')^\topa-\phi_i(a)\right\}\]

2 Rm

2 Rm 2 Rm

2 Rd

Page 24: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

FenchelDuality

\[P(w)-D(\alpha)\;\;=\;\;\lambda\led(g(w)+g^*\led(\bar{\alpha}\right)\right)+\frac{1}{n}\sum_{i=1}^n\phi_i(A_i^\topw)+\phi_i^*(-\alpha_i)=\]\[\lambda(g(w)+g^*\led(\bar{\alpha}\right)-\led\langlew,\bar{\alpha}\right\rangle)+\frac{1}{n}\sum_{i=1}^n\phi_i(A_i^\topw)+\phi_i^*(-\alpha_i)+\led\langleA_i^\topw,\alpha_i\right\rangle\]

↵ =1

�n

nX

i=1

Ai↵i

\[\bar{\alpha}=\frac{1}{\lambdan}\sum_{i=1}^nA_i\alpha_i\]

� 0� 0

w = rg⇤(↵)

\[w=\nablag^*(\bar{\alpha})\]

↵i = �r�i(A>i w)

\[\alpha_i=-\nabla\phi_i(A_i^\topw)\]

P (w)�D(↵) = � (g(w) + g⇤ (↵)) +1

n

nX

i=1

�i(A>i w) + �⇤

i (�↵i) =

�(g(w) + g⇤ (↵)� hw, ↵i) + 1

n

nX

i=1

�i(A>i w) + �⇤

i (�↵i) +⌦A>

i w,↵i

Weakduality

Op:malitycondi:ons

Page 25: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

QuartzAlgorithm

(↵t, wt) ) (↵t+1, wt+1)

Page 26: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Quartz:Bird’sEyeView

\[(\alpha^t,w^t)\qquad\Rightarrow\qquad(\alpha^{t+1},w^{t+1})\]

\[w^{t+1}\ledarrow(1-\theta)w^t+\theta{\color{red}\nablag^*(\bar{\alpha}^t)}\]

\[\alpha_i^{t+1}\ledarrow\led(1-\frac{\theta}{{\color{blue}p_i}}\right)\alpha_i^{t}+\frac{\theta}{{\color{blue}p_i}}{\color{red}\led(-\nabla\phi_i(A_i^\topw^{t+1})\right)}\]

STEP1:PRIMALUPDATE

STEP2:DUALUPDATE

↵t+1i

✓1� ✓

pi

◆↵ti +

pi

��r�i(A

>i w

t+1)�

wt+1 (1� ✓)wt + ✓rg⇤(↵t)

Choosearandomset${\color{blue}S_t}$ofdualvariables

${\color{blue}p_i=\mathbf{P}(i\inS_t)}$

Choose a random set St of dual variables

pi = P(i 2 St)For i 2 St do

✓ = minipi��nvi+��n

$\theta=\min_i\frac{{\color{blue}p_i}\lambda\gamman}{{\color{red}v_i}+\lambda\gamman}$

Page 27: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

RandomizedPrimal-DualMethods

SDCA: SS Shwartz & T Zhang, 09/2012 mSDCA M Takac, A Bijral, P R & N Srebro, 03/2013 ASDCA: SS Shwartz & T Zhang, 05/2013 AccProx-SDCA: SS Shwartz & T Zhang, 10/2013 DisDCA: T Yang, 2013 Iprox-SDCA: P Zhao & T Zhang, 01/2014 APCG: Q Lin, Z Lu & L Xiao, 07/2014 SPDC: Y Zhang & L Xiao, 09/2014 Quartz: Z Qu, P R & T Zhang, 11/2014

Algorithm 1-nice 1-optimal ⌧ -nice arbitrary

additional

speedup

direct

p-d

analysis

acceleration

SDCA •mSDCA • • •ASDCA • • •

AccProx-SDCA • •DisDCA • •

Iprox-SDCA • •APCG • •SPDC • • • • •Quartz • • • • • •

{\footnotesize\begin{tabular}{|c|c|c|c|c|c|c|c|c|c}\hlineAlgorithm&1-nice&1-op8mal&$\tau$-nice&arbitrary&{\begin{tabular}{c}addi8onal\\speedup\end{tabular}}&{\begin{tabular}{c}direct\\p-d\\analysis\end{tabular}}&accelera8on\\\hline\hlineSDCA&$\bullet$&&&&&&\\\hlinemSDCA&$\bullet$&&$\bullet$&&$\bullet$&&\\\hlineASDCA&$\bullet$&&$\bullet$&&&&$\bullet$\\\hlineAccProx-SDCA&$\bullet$&&&&&&$\bullet$\\\hlineDisDCA&$\bullet$&&$\bullet$&&&&\\\hlineIprox-SDCA&$\bullet$&$\bullet$&&&&&\\\hlineAPCG&$\bullet$&&&&&&$\bullet$\\\hlineSPDC&$\bullet$&$\bullet$&$\bullet$&&&$\bullet$&$\bullet$\\\hline\bf{Quartz}&{\color{red}$\bullet$}&{\color{red}$\bullet$}&{\color{red}$\bullet$}&{\color{red}$\bullet$}&{\color{red}$\bullet$}&{\color{red}$\bullet$}&\\\hline\end{tabular}}

Page 28: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Complexity

Page 29: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Assump8on3(ExpectedSeparableOverapproxima8on)

E

������

X

i2S

Ai↵i

������

2

nX

i=1

pivik↵ik2

\[\mathbf{E}\led\|\sum_{i\in\hat{S}}A_i\alpha_i\right\|^2\;\;\leq\;\;\sum_{i=1}^n{\color{blue}p_i}{\color{red}v_i}\|\alpha_i\|^2\]

\[{\color{blue}p_i}=\mathbb{P}(i\in\hat{S})\]

Parameters v1, . . . , vn satisfy:

Parameters${\color{red}v_1,\dots,\color{red}v_n}$sa8sfy:

inequalitymustholdforall↵1, . . . ,↵n 2 Rm

\[\alpha_1,\dots,\alpha_n\in\mathbb{R}^m\]

pi = P(i 2 St)

i 2 St

Page 30: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

ComplexityTheorem(QRZ’14)

\[t\;\;\geq\;\;\max_i\led(\frac{1}{{\color{blue}p_i}}+\frac{{\color{red}v_i}}{{\color{blue}p_i}\lambda\gamman}\right)\log\led(\frac{P(w^0)-D(\alpha^0)}{\epsilon}\right)\]

\[\mathbf{E}\led[P(w^t)-D(\alpha^t)\right]\leq\epsilon\]

E⇥P (wt)�D(↵t)

⇤ ✏

t � max

i

✓1

pi+

vipi��n

◆log

✓P (w0

)�D(↵0)

Page 31: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Part4Quartz:SpecialCases

Page 32: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

SpecialCase1:SerialSampling

Page 33: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

\begin{table}\begin{tabular}{|c|c|}\hline&\\Op8malsampling&$\displaystylen+\frac{\arac{1}{n}\sum_{i=1}^nL_i}{\lambda\gamma}$\\&\\\hline&\\Uniformsampling&$\displaystylen+\frac{\max_iL_i}{\lambda\gamma}$\\&\\\hline\end{tabular}\end{table}Li ⌘ �

max

�A>

i Ai

Optimal sampling n+1n

Pni=1 Li

��

Uniform sampling n+maxi Li

��

Complexity

pi =LiPj Lj

$p_i=\frac{L_i}{\sum_jL_j}$

pi =1n

Page 34: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Data

Dataset# Samples

n# features

ddensity

nnz(A)/(nd)

astro-ph 29,882 99,757 0.08%

CCAT 781,265 47,236 0.16%

cov1 522,911 54 22.22%

w8a 49,749 300 3.91%

ijcnn1 49,990 22 59.09%

webspam 350,000 254 33.52%

\begin{table}\begin{tabular}{|c|c|c|c|}\hline{\bfDataset}&\begin{tabular}{c}{\bf\#Samples}\\$n$\end{tabular}&\begin{tabular}{c}{\bf\#features}\\$d$\end{tabular}&\begin{tabular}{c}{\bfdensity}\\$nnz(A)/(nd)$\end{tabular}\\\hline\hlineastro-ph&29,882&99,757&0.08\%\\\hlineCCAT&781,265&47,236&0.16\%\\\hlinecov1&522,911&54&22.22\%\\\hlinew8a&49,749&300&3.91\%\\\hlineijcnn1&49,990&22&59.09\%\\\hlinewebspam&350,000&254&33.52\%\\\hline\end{tabular}\end{table}

Page 35: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

0 50 100 15010−15

10−10

10−5

100

nb of epochs

Prim

al d

ual g

ap

Prox-SDCAQuartz-UIprox-SDCAQuartz-IP

0 50 10010−15

10−10

10−5

100

nb of epochs

Prim

al d

ual g

ap

Prox-SDCAQuartz-U (10θ)Iprox-SDCAQuartz-IP (10θ)

Data = cov1, n = 522, 911, � = 10�6

Standardprimalupdate

Experiment:QuartzvsSDCA,UniformvsOp8malSampling

“Aggressive”primalupdate

Data=\tex�t{cov1},\quad$n=522,911$,\quad$\lambda=10^{-6}$

Page 36: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

SpecialCase2:Minibatching&

Sparsity

Page 37: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

DataSparsity

1 ! nAnormalized

measureofaveragesparsityofthedata

“Fullysparsedata” “Fullydensedata”

Page 38: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

ComplexityofQuartz

Fully sparse data

(! = 1)

n

⌧+

maxi Li

��⌧

Fully dense data

(! = n)n

⌧+

maxi Li

��

Any data

(1 ! n)n

⌧+

⇣1 +

(!�1)(⌧�1)n�1

⌘maxi Li

��⌧

\begin{table}\begin{tabular}{|c|c|}\hline&\\\begin{tabular}{c}Fullysparsedata\\(${\color{blue}\8lde{\omega}=1}$)\end{tabular}&$\displaystyle\frac{n}{{\color{red}\tau}}+\frac{\max_iL_i}{\lambda\gamma{\color{red}\tau}}$\\&\\\hline&\\\begin{tabular}{c}Fullydensedata\\(${\color{blue}\8lde{\omega}=n}$)\end{tabular}&$\displaystyle\frac{n}{{\color{red}\tau}}+\frac{\max_iL_i}{\lambda\gamma}$\\&\\\hline&\\\begin{tabular}{c}Anydata\\(${\color{blue}1\leq\8lde{\omega}\leqn}$)\end{tabular}&$\displaystyle\frac{n}{{\color{red}\tau}}+\frac{\led(1+\frac{({\color{blue}\8lde{\omega}}-1)({\color{red}{\color{red}\tau}}-1)}{n-1}\right)\max_iL_i}{\lambda\gamma{\color{red}\tau}}$\\&\\\hline\end{tabular}\end{table}

⌘ T (⌧)

Page 39: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Speedup

\[\frac{T(1)}{T({\color{red}\tau})}\geq\frac{{\color{red}\tau}}{1+\frac{\8lde{\omega}-1}{n-1}}\geq\frac{{\color{red}\tau}}{2}\]

\[1\leq{\color{red}\tau}\leq2+\lambda\gamman\]

Assumethedataisnormalized: Li ⌘ �max

(A>i Ai) 1

Then:

Linearspeedupuptoacertaindata-independentminibatchsize:

\[T({\color{red}\tau})\;\;=\;\;\frac{\led(1+\frac{({\color{blue}\8lde{\omega}}-1)({\color{red}\tau}-1)}{(n-1)(1+\lambda\gamman)}\right)}{{\color{red}\tau}}\8mesT({\color{red}1})\]

⌧ 2 + ��n T (⌧) 2

⌧⇥ T (1)

Furtherdata-dependentspeedup,uptotheextremecase:

\[T({\color{red}\tau})\leq\frac{2}{{\color{red}\tau}}\8mesT({\color{red}1})\]

\[{\color{blue}\8lde{\omega}}=O(1)\]T (⌧) = O

✓T (1)

\[T({\color{red}\tau})={\calO}\led(\frac{T({\color{red}1})}{\color{red}\tau}\right)\]

T (⌧) =

⇣1 + (!�1)(⌧�1)

(n�1)(1+��n)

⌧⇥ T (1)

! = O(��n)

Page 40: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

0 500 1000 1500 20000

500

1000

1500

2000

τ

spee

d up

fact

or

λ=1e-3

λ=1e-4

λ=1e-6

n = 106, ! = 102, � = 1

Speedup:sparsedata

Page 41: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

0 500 1000 1500 20000

500

1000

1500

2000

τ

spee

d up

fact

or

λ=1e-3

λ=1e-4

λ=1e-6

n = 106, ! = 104, � = 1

Speedup:denserdata

Page 42: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

0 500 1000 1500 20000

100

200

300

400

500

600

700

τ

spee

d up

fact

or

λ=1e-3

λ=1e-4

λ=1e-6

n = 106, ! = 106, � = 1

Speedup:fullydensedata

Page 43: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

astro_ph:n=29,882density=0.08%

0 500 10000

200

400

600

800

τ

spee

d up

fact

or T

(1,1

)/T(1

,τ)

λ=5.8e−3 in practiceλ=5.8e−3 in theoryλ=1e−3 in practiceλ=1e−3 in theoryλ=1e−4 in practiceλ=1e−4 in theory

Page 44: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

CCAT:n=781,265density=0.16%

0 500 10000

200

400

600

800

1000

τ

spee

d up

fact

or T

(1,1

)/T(1

,τ)

λ=1.1e−3 in practiceλ=1.1e−3 in theoryλ=1e−4 in practiceλ=1e−4 in theoryλ=1e−5 in practiceλ=1e−5 in theory

Page 45: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Algorithm Iteration complexity g

SDCA n+

1

��12k · k

2

ASDCA 4⇥max

(n

⌧,

rn

��⌧,

1

��⌧,

n13

(��⌧)23

)12k · k

2

SPDC

n

⌧+

rn

��⌧general

Quartzn

⌧+

✓1 +

(! � 1)(⌧ � 1)

n� 1

◆1

��⌧general

\begin{tabular}{c|c|c}\hlineAlgorithm&Itera8oncomplexity&$g$\\\hline&&\\SDCA&$\displaystylen+\frac{1}{\lambda\gamma}$&$\arac{1}{2}\|\cdot\|^2$\\&&\\\hline&&\\ASDCA&$\displaystyle4\8mes\max\led\{\frac{n}{{\color{red}\tau}},\sqrt{\frac{n}{\lambda\gamma{\color{red}{\color{red}\tau}}}},\frac{1}{\lambda\gamma{\color{red}\tau}},\frac{n^{\frac{1}{3}}}{(\lambda\gamma{\color{red}\tau})^{\frac{2}{3}}}\right\}$&$\arac{1}{2}\|\cdot\|^2$\\&&\\\hline&&\\SPDC&$\displaystyle\frac{n}{{\color{red}\tau}}+\sqrt{\frac{n}{\lambda\gamma{\color{red}\tau}}}$&general\\&&\\\hline&&\\\bf{Quartz}&$\displaystyle\frac{n}{{\color{red}\tau}}+\led(1+\frac{(\8lde\omega-1)({\color{red}\tau}-1)}{n-1}\right)\frac{1}{\lambda\gamma{\color{red}\tau}}$&general\\&&\\\hline\end{tabular}

Primal-DualMethodswithtau-niceSamplingLi=

1

SS-Shwartz&TZhang‘13

SS-Shwartz&TZhang‘13

YZhang&LXiao‘14

Page 46: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

\begin{tabular}{c|c|c|c|c}\hlineAlgorithm&$\gamma\lambdan=\Theta(\arac{1}{\tau})$&$\gamma\lambdan=\Theta(1)$&$\gamma\lambdan=\Theta(\tau)$&$\gamma\lambdan=\Theta(\sqrt{n})$\\\hline&$\kappa=n\tau$&$\kappa=n$&$\kappa=n/\tau$&$\kappa=\sqrt{n}$\\\hline\hline&&&&\\SDCA&$n\tau$&$n$&$n$&$n$\\&&&&\\\hline&&&&\\ASDCA&$n$&$\displaystyle\frac{n}{\sqrt{\tau}}$&$\displaystyle\frac{n}{\tau}$&$\displaystyle\frac{n}{\tau}+\frac{n^{3/4}}{\sqrt{\tau}}$\\&&&&\\\hline&&&&\\SPDC&$n$&$\displaystyle\frac{n}{\sqrt{\tau}}$&$\displaystyle\frac{n}{\tau}$&$\displaystyle\frac{n}{\tau}+\frac{n^{3/4}}{\sqrt{\tau}}$\\&&&&\\\hline&&&&\\\bf{Quartz}&$\displaystylen+\8lde{\omega}\tau$&$\displaystyle\frac{n}{\tau}+\8lde{\omega}$&$\displaystyle\frac{n}{\tau}$&$\displaystyle\frac{n}{\tau}+\frac{\8lde{\omega}}{\sqrt{n}}$\\&&&&\\\hline\end{tabular}

Algorithm ��n = ⇥(

1⌧ ) ��n = ⇥(1) ��n = ⇥(⌧) ��n = ⇥(

pn)

= n⌧ = n = n/⌧ =

pn

SDCA n⌧ n n n

ASDCA nnp⌧

n

n

⌧+

n3/4

p⌧

SPDC nnp⌧

n

n

⌧+

n3/4

p⌧

Quartz n+ !⌧n

⌧+ !

n

n

⌧+

!pn

Forsufficientlysparsedata,Quartzwinsevenwhencomparedagainstacceleratedmethods

Accelerated

Page 47: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

SpecialCase3:DistributedSampling

Page 48: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

References

ZhengQu,P.R.andTongZhangQuartz:RandomizeddualcoordinateascentwitharbitrarysamplingNeuralInforma&onProcessingSystems28,865-873,2015

P.R.andMar8nTakáčDistributedcoordinatedescentforlearningwithbigdataJournalofMachineLearningResearch17(75),1-25,2016(arXiv:1310.2059)

OlivierFercoq,ZhengQu,P.R.andMar8nTakáčFastdistributedcoordinatedescentforminimizingnon-stronglyconvexlossesIEEEInt.WorkshoponMachineLearningforSignalProc.,2014

2

Page 49: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

DistributedQuartz:PerformtheDualUpdatesinaDistributedManner

↵t+1i

✓1� ✓

pi

◆↵ti +

pi

��r�i(A

>i w

t+1)�

QuartzSTEP2:DUALUPDATE

Choose a random set St of dual variables

For i 2 St do

Datarequiredtocomputetheupdate

Page 50: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Distribu8onofDatan=#dualvariables Datamatrixn

c

n

c

n

c

n

c

Page 51: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

DistributedSampling

Page 52: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

DistributedSampling

Randomsetofdualvariables

Each node independently picks ⌧ dual variables

from those it owns, uniformly at random

Alsosee:CoCoA+[Ma,Smith,Jaggietal15]

Page 53: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

ComplexityofDistributedQuartz

n

c⌧+max

i

�max

⇣Pdj=1

⇣1 +

(⌧�1)(!j�1)

max{n/c�1,1} +

⇣⌧cn � ⌧�1

max{n/c�1,1}

⌘!0

j�1

!0j

!j

⌘A>

jiAji

��c⌧

\[\frac{n}{c\tau}+\max_i\frac{\lambda_{\max}\led(\sum_{j=1}^d\led(1+\frac{(\tau-1)(\omega_j-1)}{\max\{n/c-1,1\}}+\led(\frac{\tauc}{n}-\frac{\tau-1}{\max\{n/c-1,1\}}\right)\frac{\omega_j'-1}{\omega_j'}\omega_j\right)A_{ji}^\topA_{ji}\right)}{\lambda\gammac\tau}\]

n

c⌧+

Something that looks complicated

��c⌧

Key:Gettherightstepsizeparametersv(sothattheESOinequalityholds)

Theleadingterminthecomplexityboundthenis:

max

i

✓1

pi+

vipi��n

==

Page 54: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Experiment

Machine:128nodesofHectorSupercomputer(4,096cores)

Problem:LASSO,n=1billion,d=0.5billion,3TB

P.R.andMar8nTakáčDistributedcoordinatedescentforlearningwithbigdataJournalofMachineLearningResearch17(75),1-25,2016(arXiv:1310.2059)

Page 55: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

LASSO:3TBdata+128nodes

Page 56: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Experiment(Accelera8on)Machine:128nodesofArcherSupercomputer

Problem:LASSO,n=5million,d=50billion,5TB

(60,000nnzperrowofA)

2

OlivierFercoq,ZhengQu,P.R.andMar8nTakáčFastdistributedcoordinatedescentforminimizingnon-stronglyconvexlossesIEEEInt.WorkshoponMachineLearningforSignalProc.,2014

2

Page 57: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

LASSO:5TBdata(d=50billion)128nodes

104

105

106

10−0.1

100

100.1

100.2

Iterations

L(x

k)−L

*

hydra

hydra2

102

103

10−0.1

100

100.1

100.2

Elapsed time [sec.]

L(x

k)−L

*

hydra

hydra2

Page 58: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

THEEND

Page 59: Training Machine Learning Models via Empirical Risk ......Part 3 Quartz Zheng Qu, P.R. and Tong Zhang Quartz: Randomized dual coordinate ascent with arbitrary sampling In Advances

Coauthors

ZhengQu(HongKong)

ZhengQu,P.R.andTongZhangQuartz:RandomizeddualcoordinateascentwitharbitrarysamplingInAdvancesinNeuralInforma&onProcessingSystems28,865-873,2015(arXiv:1411.5873)

P.R.andMar8nTakáčOnop:malprobabili:esinstochas:ccoordinatedescentmethodsOp&miza&onLe.ers10(6),1233-1243,2016(arXiv:1310.3438)

Mar:nTakáč(Lehigh)

TongZhang(Baidu)