30
Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances: Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009 vity-less Rayleigh Superfluorescence in a Thermal G FIP

Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

  • Upload
    elisa

  • View
    44

  • Download
    0

Embed Size (px)

DESCRIPTION

Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:. FIP. Joel A. Greenberg and Daniel. J. Gauthier Duke University 5/22/2009. Cavity-less Rayleigh Superfluorescence in a Thermal Gas. Superfluorescence (SF). Pump. W. N. L. W 2 /L l~1. - PowerPoint PPT Presentation

Citation preview

Page 1: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Transient enhancement of the nonlinear atom-photon coupling via

recoil-induced resonances:

Joel A. Greenberg and Daniel. J. Gauthier

Duke University

5/22/2009

Cavity-less Rayleigh Superfluorescence in a Thermal Gas

FIP

Page 2: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Superfluorescence (SF)Superfluorescence (SF)

L

Pump

Dicke, Phys. Rev. 93, 99 (1954); Bonifacio & Lugiato, Phys. Rev. A 11, 1507 (1975), Polder et al., Phys. Rev. A 19, 1192 (1979), Rehler & Eberly, Phys. Rev A 3, 1735 (1971)

WN

‘endfire’ modes

W2/L

Page 3: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

SF ThresholdSF Threshold

time

Pow

er

SFsp/N

sp

• Cooperative emission produces short, intense pulse of light

• PpeakN2

• Delay time (D) before pulse occurs

• Threshold density/ pump power

D

Ppeak

1

Spontaneous Emission

Amplified Spontaneous Emission (ASE)

Superfluorescence (SF)

SF Thresh

Cooperativity

Malcuit, M., PhD Dissertation (1987); Svelto, Principles of Lasers, Plenum (1982)

Page 4: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

New Regime: Thermal Free-space SFNew Regime: Thermal Free-space SF

10~

Pump (F)Cold atoms

Pump (B)

Detector (B)

Detector (F)- T=20 K

- L=3 cm, R=150 m - N~109 Rb atoms

- PF/B~4 mW - F2F’3=5

F=R2/L~1

NO CAVITY!NOT BEC!

≠ Slama et al. ≠ Inouye et al.

Inouye et al. Science 285, 571 (1999); Slama et al. PRL 98, 053603 (2007)

* Counterpropagating,

* Large gain path length2

collinear pump beams1

1) Wang et al. PRA 72, 043804; 2) Yoshikawa PRL 94, 083602

Page 5: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Results - SFResults - SF

0 100 200 3000

1

2

3

t (s)

Pow

er (W

)

Forward

Backward

F/B PumpsMOT beams

• Light persists until N falls below threshold

• F/B temporal correlations

• ~1 photon/atom large fraction of atoms participate

on

off

Wang et al. PRA 72, 043804 (2005)

Page 6: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

0 1 2 3 401234

2 3 4255075

100

Dtime

Pow

erPpeak

PF/B (mW)

Pp

eak

(W

)

D (s

)

PF/B (mW)

2/1/

BFP

•Density/Pump power thresholds

•PpeakPF/B

• D (PF/B)-1/2

Results - SFResults - SF

Consistent with CARL superradiance*

*Piovella et al. Opt. Comm. 187, 165 (2001)

BFP /

Page 7: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

SF MechanismSF Mechanism

What is the mechanism responsible for SF?

Page 8: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Probe

Pump (F)Cold atoms

Pump (B)Detector (B)

- T=20 K - L=3 cm, R=150 m- N~109 Rb atoms

- PF/B~4 mW - F2F’3=5

10~

Detector (F)

(p =+)

What is the mechanism responsible for SF?

SF MechanismSF Mechanism

Page 9: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Probe SpectroscopyProbe Spectroscopy

0 100 200

Forward Detector

Backward Detector (FWM)

250 0 250

250 0 250 (kHz)

Rayleigh

SF signal

time (s)

Pro

be P

ower

P

robe

Pow

er

Rayleigh pump beam alignment

Raman pump beam alignment

SF

Pow

er

Raman

SF

Page 10: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Probe SpectroscopyProbe Spectroscopy

0 100 200

Forward Detector

Backward Detector (FWM)

250 0 250

250 0 250 (kHz)

Rayleigh

SF signal

time (s)

Pro

be P

ower

P

robe

Pow

er

Rayleigh pump beam alignment

Raman pump beam alignment

SF

Pow

er

Raman

SFRayleigh scattering is critical

for observation of SF

Page 11: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

• Observe free-space superfluorescence in a cold, thermal gas

• Large F/B gain path length + pair of pump beams

• Spectroscopy and beatnote imply Rayleigh scattering as source of SF

• Temporal correlation between forward/backward radiation

ConclusionsConclusions

Page 12: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

• Study dependence of Ppeak and D on N

• Look at competition between vibrational Raman and Rayleigh SF

Future WorkFuture Work

Page 13: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

700 500 300

BeatnoteBeatnote

(kHz)

Look at beatnote between probe beam and SF light as probe frequency is scanned

Pow

er (

F)

Page 14: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

700 500 300

170 172 174 176

BeatnoteBeatnote

(kHz)

time (s)

1/f f~450kHz fSF~-50kHz

Look at beatnote between probe beam and SF light as probe frequency is scanned

Page 15: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Weak probeWeak probe

Forward: Rayleigh backscattering Backward: Recoil-mediated FWM

250 0 250

1

2

250 0 2500

1

2

(kHz) (kHz)

Probe (p=+)

Pumps ()

I ou

t/Iin

I ou

t/Iin

Forward

Backward

Rayleigh Rayleigh

Page 16: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Weak probeWeak probe

Probe (p=+)

Pumps ()

Forward

Backward

250 0 2500

2

4

6FWM Above Thresh

Below thresh

(kHz)

Page 17: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Weak probeWeak probe

Probe (p=+)

Pumps ()

Forward

Backward

Backward

400 200 0 200 400 400 200 0 200 400

Forward

(kHz) (kHz)

Page 18: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Coherence TimeCoherence Time

0 1 2 3 4 5 60.00.20.40.60.81.0

time

Pow

er

F/B Pumpson

off

off

1

PR

PR

off

Page 19: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Lin || LinLin || Lin

100 200 300

Pow

er

time (s)

Pumps ()

Forward

Backward

Page 20: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Dtime

Pow

erPpeak

Pp

eak

(W

)Results - SFResults - SF

*Piovella et al. Opt. Comm. 187, 165 (2001)

0 5 10 15 20 250.000.050.100.150.20

OD N

)(NExp2)( tNN

Page 21: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

CARL RegimesCARL Regimes

Slama Dissertation (2007)

Quantum CARL

Ultr

acol

d A

tom

s/B

EC

Good Cavity: <r Bad Cavity: >r

Quantum:

r>G

Semiclassical:

r<G

In resonator Free space

MIT (2003)

MIT (1999)

Tub (2006)

Tub (2003)

Tub (2006)

The

rmal

Page 22: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

ConclusionsConclusionsRayleigh backscattering

Recoil-mediated FWM

250 0 250

1

2

250 0 2500

1

2

(kHz)

Page 23: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Superfluorescence (SF)Superfluorescence (SF)

L,N

Pump

Pow

er

SFsp/N

sp

D

Ppeak • Cooperative emission produces short, intense pulse of light

• Emission occurs along ‘endfire’ modes

• PpeakN2

Page 24: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Superfluorescence (SF)Superfluorescence (SF)

L,N

Pump

gL1

Spontaneous Emission

Amplified Spontaneous Emission (ASE)

Superfluorescence (SF)

SF Thresh

Page 25: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Weak probeWeak probe

Forward: Rayleigh backscattering Backward: Recoil-mediated FWM

250 0 250

1

2

250 0 2500

1

2

(kHz) (kHz)

Probe (p=+)

Pumps ()

I ou

t/Iin

I ou

t/Iin

Forward

Backward

Rayleigh Rayleigh

RNg 2

Page 26: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Probe SpectroscopyProbe Spectroscopy

0 100 200

Forward Detector Backward Detector (FWM)

250 0 250 250 0 250 (kHz) (kHz)

Rayleigh

SF signal

time (s)

Pro

be P

ower

Pro

be P

ower

Rayleigh pump beam alignment

Raman pump beam alignment

SF

Pow

erRaman

SF

Page 27: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Forward Detector Backward Detector (FWM)

Probe SpectroscopyProbe Spectroscopy

0 100 200

250 0 250 250 0 250 (kHz) (kHz)

Rayleigh

SF signal

time (s)

Pro

be P

ower

Pro

be P

ower

Rayleigh pump beam alignment

Raman pump beam alignment

SF

Pow

er

Rayleigh scattering is critical for observation of SF

Page 28: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Observation of Cavity-less Rayleigh Superfluorescence in a

Thermal Gas

Joel A. Greenberg and Daniel. J. Gauthier

Duke University

5/22/2009

Page 29: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

Our SetupOur Setup

10~

Pump (F)Cold atoms

Pump (B)Detector (B)

Detector (F)- T=20 K - L=3 cm, R=150 m- N~109 Rb atoms

- PF/B~4 mW - F2F’3=5

- No cavity- Thermal atoms- Counterprop. pumps

Inouye et al. Science 285, 571 (1999); Slama et al. PRL 98, 053603 (2007)

Page 30: Transient enhancement of the nonlinear atom-photon coupling via recoil-induced resonances:

• Motivation

• Collective effects

• Self-organization

• Experimental results

• Conclusions/Future work

OutlineOutline