54
f ¡ | | W ' | | | TRANSIENT HEAT CONDUCTION lülÜll THROUGH A CYLINDRICAL THREELAYER HOLLOW FUEL ELEMENT WITH INTERNAL AND EXTERNAL 'ERNAL COOLING < ! lm«il;ÍIÍFK mim w ■i tir. BB?« IM mu¿<~\ : Www .""Hilí &'#"qJM«£kΫ i Ht" It (L .rfai";'Uti äff ÚW- tyw$J&'' f v ίτ<'efe*^· "$. * ^ '·*«·^i?CÍVi»rVj^litr; Joint Nuclear Research Centre Ispra Establishment - Italy PL §s!3Ä&^

TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

f ¡ | | W ' | | | TRANSIENT HEAT CONDUCTION l ü l Ü l l

THROUGH A CYLINDRICAL THREE­LAYER

HOLLOW FUEL ELEMENT WITH INTERNAL

AND EXTERNAL 'ERNAL COOLING

<!lm«il;ÍIÍFK mim

w ■i tir.

BB?« IM mu¿<~\: Www .""Hilí &'#"qJM«£kΫ

i Ht"

It (L .rfai";'Uti

äff

ÚW- tyw$J&'' f v ί τ< 'efe*^· "$. * ^ '·*«· i?CÍVi»rVj litr; Joint Nuclear Research Centre

Ispra Establishment - Italy

PL

§s!3Ä&^

Page 2: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

yiispif

M P i « i i i i iÄ up Ha» lileiiliiîilfel LEGAL NOTICE

'lì HïiÎÏW ISiMSOS S 'l¡£iA¡i"ífí!1

lihî

This document was prepared under the sponsorship of the Commission

- of,heEurop^communilies'ISii3iÍ!l l i m Neither the Commission of the European Communities, its contractors nor nny person acting on their b e h A | ; | | Í | f e p S A | | | |

3

BÉifïi!iÉ

make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method or process disclosed in this document may not infringe privately owned rights; or

Ml

assume any habihty with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4

at the price of B.Fr. 60.— 1 ' ffl«Hii&

Commission of thegkq,., European Communities D.G. XIII - C.I.D. European Communities

.G. XIII - C.I.D. 29, rue Aldringen L u x e m b o u r

s document was reproduced on the basis of the best available copy. "¿Ét

Page 3: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

EUR 4862 e TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL THREE-LAYER HOLLOW FUEL ELEMENT WITH INTERNAL AND EXTERNAL COOLING by H. WUNDT

Commission of the European Communities Joint Nuclear Research Centre - Ispra Establishment (Italy) Technology Luxembourg, August 1972 - 46 Pages - B.Fr. 60.—

The method, developed in an earlier paper (EUR 4834), of solving Fourier's equation for locally selected temperatures by Laplace transform techniques is extended and applied to the case of a three layer hollow cylinder. The middle heat-generating cylinder is canned internally and externally by non-producing layers rcsp., before the heat is carried away by convection, on both sides The effect of small gaps between the layers is considered. Both coolant bulk temper­atures as well as the heat source density are arbitrary input functions of the tame. They may also be the outputs of some other programme (neutron kinetics equations, e.g.) so that the systems may be treated simultaneously.

EUR 4862 e TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL THREE-LAYER HOLLOW FUEL ELEMENT WITH INTERNAL AND EXTERNAL COOLING by H. WUNDT

Commission of the European Communities Joint Nuclear Research Centre - Ispra Establishment (Italy) Technology Luxembourg, August 1972 - 46 Pages - B.Fr. 60.—

The method, developed in an earlier paper (EUR 4834), of solving Fourier's equation for locally selected temperatures by Laplace transform techniques is extended and applied to the case of a three layer hollow cylinder. The middle heat-generating cylinder is canned internally and externally by non-producing layers resp., before the heat is carried away by convection, on both sides The effect of small gaps between the layers is considered. Both coolant bulk temper­atures as well as the heat source density are arbitrary input functions of the time. They may also be the outputs of some other programme (neutron kinetics equations, e.g.) so that the systems may be treated simultaneously.

EUR 4862 e TRANSITENT HKAT CONDUCTION THROUGH A CYLINDRICAL ΐ ν ? ™ ^ ™ ™ ? L L O W F U E L ELEMENT WITH INTERNAL AND EXTERNAL COOLING by H. WUNDT

Commission of the European Communities Joint Nuclear Research Centre - Ispra Establishment (Italy) Technology Luxembourg, August 1972 - 46 Pages - B.Fr. 60.—

The method, developed in an earlier paper (EUR 4834), of solving Fourier's equation for locally selected temperatures by Laplace transform techniques is extended and applied to the case of a three layer hollow cylinder. The middle heat-generating cylinder is canned internally and externally by non-producing layers resp., before the heat is carried away by convection, on both sides. The effect of small gaps between the layers is considered. Both coolant bulk temper­atures as well as the heat source density are arbitrary input functions of the time. They may also be the outputs of some other programme (neutron kinetics equations, e.g.) so that the systems may be treated simultaneously.

Page 4: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

The time behaviour of the interesting temperatures is presented explicitly; only some auxiliary functions must be generated by integration of very simple ordinary differential equations. In this sense, the solution is not yet „complete", bu t prepared for a digital programmation, which will certainly be much time-saving against conventional integration methods.

The time behaviour of the interesting temperatures is presented explicitly; only some auxiliary functions must be generated by integration of very simple ordinary differential equations. In this sense, the solution is not yet „complete", but prepared for a digital programmation, which will certainly be much t ime-saving against conventional integration methods.

The time behaviour of the interesting temperatures is presented explicitly; only some auxiliary functions must be generated by integration of very simple ordinary differential equations. In this sense, the solution is not yet „complete", bu t prepared for a digital programmation, which will certainly be much t ime-saving against conventional integration methods.

Page 5: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

EUR 4 8 6 2 e

COMMISSION OF THE EUROPEAN COMMUNITIES

TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL THREE-LAYER

HOLLOW FUEL ELEMENT WITH INTERNAL AND EXTERNAL COOLING

by

H. WUNDT

1972

Joint Nuclear Research Centre Ispra Establishment - Italy

Technology

Page 6: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

A B S T R A C T

The method, developed in an earlier paper (EUR 4834), of solving Fourier's equation for locally selected temperatures by Laplace transform techniques is extended and applied to the case of a three layer hollow cylinder. The middle, heat-generating cylinder is canned internally and externally by non-producing layers resp., before the heat is carried away by convection, on both sides. The effect of small gaps between the layers is considered. Both coolant bulk temper­atures as well as the heat source density are arbitrary input functions of the time. They may also be the outputs of some other programme (neutron kinetics equations, e.g.) so that the systems may be treated simultaneously.

The time behaviour of the interesting temperatures is presented explicitly; only some auxiliary functions must be generated by integration of very simple ordinary differential equations. In this sense, the solution is not yet „complete", but prepared for a digital programmation, which will certainly be much time-saving against conventional integration methods.

KEYWORDS

FUEL ELEMENTS TRANSIENTS CYLINDERS TIME DEPENDENCE CONFIGURATION PROGRAMMING HEAT TRANSFER FOURIER HEAT EQUATION COOLING LAPLACE TRANSFORM

Page 7: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

3 -

I n d e x

Page

In t roduct ion 5

1. Formulation of the problem 6

2 . The general so lu t i on in the complex domain 10

3 . The se lec ted temperatures 17

I4. Solut ion for the se lec ted temperatures in the

complex domain 18

5. The modified functions and the d iscr iminant

equation 2λ

β. Computation of the residues 23

7. The inverse transformation ¿y

8. The stationary solution 35

9. The final presentation of the solution 43

References 40

Page 8: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method
Page 9: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

INTRODUCTION *)

I n the frame of r e a c t o r dynamics, t he s p a t i o - t e m p o r a l tempera­t u r e d i s t r i b u t i o n i n f u e l e lements must he fo l lowed up s i m u l t a ­neous ly w i t h the e v o l u t i o n of t h e n e u t r o n f l u x , because tempera­t u r e changes feedback on r e a c t i v i t y . I t i s t h e r e f o r e not s u f f i ­c i e n t to i n t e g r a t e the ; .hea t conduc t ion e q u a t i o n f o r t h e r e s p e c ­t i v e c o n f i g u r a t i o n "by any method which cannot h e coupled wi th the i n t e g r a t i o n p r o c e d u r e of t h e r e a c t o r - k i n e t i c e q u a t i o n s ;

I n most c a s e s t h e p o i n t model i s good enough fo r the neu t ron k i ­n e t i c s . This means t h a t one has t o dea l a p r i o r i w i th o r d i n a r y d i f f e r e n t i a l e q u a t i o n s . Aga ins t t h i s , t he t r a n s i e n t h e a t conduc­t i o n e q u a t i o n c o n t a i n s a t l e a s t two independent v a r i a b l e s , t h e t ime and (mos t ly ) one space c o o r d i n a t e . However, of p r a c t i c a l i n ­t e r e s t a r e on ly t e m p e r a t u r e s a t some s e l e c t e d p o i n t s and, for the feedback on t h e r e a c t i v i t y , ave raged t e m p e r a t u r e s over homogene­ous r e g i o n s .

I t i s t h e r e f o r e obvious t o develop a s o l u t i o n method of the h e a t conduc t ion e q u a t i o n which r e d u c e s the p a r t i a l d i f f e r e n t i a l equa­t i o n s to o rd ina ry ones by a p p r o p r i a t e e l i m i n a t i o n of t h e space v a r i a b l e . Such a reduced system i s t h e n s u i t a b l e t o be t r e a t e d s imu l t aneous ly w i t h the r e a c t o r k i n e t i c e q u a t i o n s , by ana log as we l l a s by d i g i t a l computers . The c o u p l i n g with the k i n e t i c equa­t i o n s i s however n o t n e c e s s a r y . The method r a t h e r p r o v i d e s s o l u ­t i o n s a l s o fo r t h e conduct ion e q u a t i o n s e p a r a t e l y , whereby the h e a t source d e n s i t y and the ambient t empera tu re may be cons ide red as f r e e , i . e . no t o the rwi se guided , p e r t u r b a t i o n i n p u t s as f u n c ­t i o n s of the t i m e .

The method has been developed i n an e a r l i e r r e p o r t [1] f o r one-and two- l aye r problems i n p l a n e , c y l i n d r i c a l and s p h e r i c a l geome­t r y s i m u l t a n e o u s l y . In t h i s pape r , t h e method w i l l be extended t o a h o l l o w - c y l i n d r i c a l fuel e l e m e n t , t he h e a t p roduc ing l a y e r of which i s canned i n t e r n a l l y a s w e l l a s e x t e r n a l l y b y a f u r t h e r l a y e r . The convec t ive c o o l i n g i s , from these c a n n i n g l a y e r s , a t t he same t ime inwards and ou twards .

*) Manuscript received on May 23, 1972

Page 10: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 6 -

It appears that the reasoning of the analysis can be comple­tely taken over from [1 ]; no particularly new mathematical pro­blems do occur. As however the number of boundary conditions increases with the number of layers considered, the numerical expense grows progressively.

For this reason, the formulation in this part is such that the numerical parameters should be specified in advance. The programmation does not result in a general code, as it is the case in [1], but rather in the treatment of a particular case.

An explanation of the different steps (and their why) is no longer provided here; this must be read in every case in [1 ].

1 . Formulation of the Problem

R3=P3R

R2=P2R

0 < R < PzR< PaR< p±Rs;

r r r r r

ζ

^ ζ

«Ξ

R1=R

R PsR paR P*R

®ak(t)(given)

(searched)

ι 0ik(t)(given)

internal bore, flowed through by coolant, internal canning cylinder, index i, fuel cylinder, with homogeneous heat source, ini ex u, external canning cylinder, index a, external space, convective cooling.

The dependent system variables are:

©.(r,t) eu(r,t) ®Q(r,t)

temperature of the internal cylinder, temperature of the fuel cylinder, temperature of the external cylinder.

The temperature of the coolant flowing inside is denoted by Θ., (t), that of the coolant flowing outside by Θ i_(t). The uni-

Page 11: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

form heat production in the fuel cylinder per unit time and vo­

lume is W(t). These three time functions are arbitrary system

inputs, or may possibly be furnished by other systems counled

with the present problem.

As the temperature gradients in axial and tangential direc­

tions are negligible against that in radial direction (towards

the cooling surface), the space coordinates ζ and φ are disre­

garded.

The material values which may be different only from layer to

layer are denoted by

λ ­ thermal conductivity,

a2 ­ thermal diffusivi ty,

pc ­ specific heat per unit volume.

There are gaps between the layers i and u, and between u and

a, respectively, the widths d2 and de of which are negligible

against the layer thicknesses. The gap widths, as well as the

material values, must be assumed to be constant in order to avoid

non­1ineari tie s.

The FOURIER equations of the three layer temperatures are

~2 91 ­■ . a r 3r » ^ ·Ί ' a. or

h® Β2 ® BP) / \

_L % _ _ u + 1 _u Vivili r i 2) ~2 at - 9 r 2 r 3r % > < 1 · 2 ' u u , 3 © as® , a@ _J a _ a 1 a / . ,v

~2 a t - 9 r s + r 3r * ^·*> a

The two boundary conditions across a gap between the media 1 and 2 are

λι—g = ^ 2 - ^ (heat flux condition; gap without heat capacity)

Page 12: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 8 -

and

©ι = Θ2 + ΔΘ (Δ© = temperature step across the gap) .

We assume ne i the r r a d i a t i o n nor convection, but conduction

only. The temperature g rad ien t across the gap i s then constant

so tha t

3© Δ© = —g£ . d , with d = gap width.

In order to evaluate the gradient a© /Br, we consider the

heat flux condi t ion a t one of the surfaces ( the other one lead­

ing to the same r e s u l t ) :

γ a© 3©2 λ

σ — £ = s ã=* = λ, ar Λ2

ar »

hence, by s u b s t i t u t i o n

©ι = ©2 + d.?3" ¿f* .

The temperature ©i at the gap surface i s a l i n e a r combination

of the temperature ©2 of the opposi te surface and i t s inward gra­

d i e n t .

For the cool ing surfaces R and p±R (p 2 ,P3 ,p* being the r a d i i

r a t i o s with r e s rec t t o the inner r ad iu s (Ri = R), we assume the

usual convective boundary condi t ions of the t h i r d kind with heat

t r ans fe r coef f i c ien t s a. and α , r e spec t ive ly . 1 a

Paying a t t e n t i o n to the cor rec t s igns, the fol lowing six

boundary condi t ions may be es tabl ished:

r = R : ­ \ ^ \ = a i ! > i k ( t ) ­ ©i(R, t ) ] , ( 1 Λ )

a© . a®.

r = p2R: λ ­JM = λ.

r=R

a®.

( 1 . 5 ) u 3r i 3r »

r=p2R r=p2R

Page 13: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

r =

λ. 3© © ( p 2 R , t ) = © i ( p 2 R , t ) + d 8 . — ­ g i

Xg r=p2R

λ 3® p3R: ®„(paR,t) = ® a (p 3 R, t ) ­ d a . ^ ^

λ. u s r=p3R

3® u

a 3r

= λ 3®

a a 3r

r=p3R r=p3R

r = p*R: + X a ­ g ? = aa r © a k ( t ) ­ © a(p*R,t)] .

r=p±R

( 1 . 6 )

( 1 . 7 )

( 1 . 8 )

( 1 . 9 )

The e q u a t i o n s and t h e boundary c o n d i t i o n s a r e LAPLACE­trans­

formed with r e s p e c t to t h e t i m e . The i n i t i a l s t a t e i s supposed

t o be t h e s t a t i o n a r y s t a t e ( a l l t e m p e r a t u r e s b e i n g then only d e ­

v i a t i o n s from t h i s s t a t e ) so t h a t i n i t i a l va lues ©(θ) do not ex­

p l i c i t l y occu r . With θ = £ ) Θ and W =<£ W we have

I J I J

~- i 1 d * i

a i d r ' r d r

(1 .10 )

a u

ä \ , 1 d »u , Δνν(5)

d r 2 r d r \ u ' ( 1 . 11 )

dd

a

θ 2 a

~a d r

a l a

2 r d r ( 1 . 1 2 )

We now make the v a r i a b l e t r a n s f o r m a t i o n

*/s — r f a u

_d dx

_ JT

dx ' , and X =

^5 R

u

(1 .13 )

The c o e f f i c i e n t s a r e made d i m e n s i o n l e s s by de f in ing

a 2

u

ã2

a i

h =

π2 a i ,

ii %

g

a 2

u a2

a

da. 'R »

a2

a

Pa

J

=

λ u

ÍS*

λ. 1

λ

a

λ β'

= s ,

d3

R »

λ u

λ a

q t =

= K± ,

OCÎR

λ u

λ a

, Q s

'

a '

λ a ~ α R a

(1 .14 )

Page 14: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 10

With the a b b r e v i a t i o n

„ / N ~ 2 A W ( s ) A W ( S ) (λ ,r,\

% — ' u u

the FOURIER equa t ions r e a d

a i d i = θ 1 + χ θ ί ' ( 1 « 1 6 )

θ = θ ' + - θ ' + Ρ - ^ ( i J 7 ) U U X U S ' V » ' /

• a 2 S = θ" + 1 θ ' , ( 1 . 1 8 ) a a a χ a ' \ · /

with t h e boundary c o n d i t i o n s

χ = X : - ( ^Χθ^Χ,β ) = * i k ( s ) - θ 1 ( χ , ε ) , ( 1 . 19 )

χ = p2X : X i d¿(p 2 X,s ) = θ ^ ρ ζ Χ , β ) , (1 .20)

θ π (ρ 2 Χ,3) = θ . ( ρ 2 Χ , 3 ) + β1Χθ^(ρ2Χ,3) , ( 1 . 21 )

χ = ρ3Χ : θ η ( ρ 3 Χ , 5 ) = e a ( p 3 X , s ) ­ β&Χθ^(ρ3Χ,5) , ( 1 . 22 )

λ & θ^(ρ 3 Χ, 8 ) = £ a ( p 3 X , s ) , ( 1 .23 )

χ = ρ*Χ : + q a Xd a (p 4 X,s ) = Q^M ­ θ&(ρ4Χ, s) . (1.2¿+)

2 . The General S o l u t i o n in t h e Complex Domain

The gene ra l s o l u t i o n of equa t ions (1 .16) to (1 .18 ) i s :

θ . ( χ , s ) = I i ( s ) . F ( a . x ) + I a ( s ) . « ( a x) 2 . 1 ) ­1­ ­ " ­ i

O u (x , s ) = U i ( s ) . F ( x ) + υ 2 ( 3 ) . Φ ( χ ) + Ρ ­ ^ ­ ( 2 . 2 )

θ ( χ . s ) = A i ( s ) . P ( a χ ) + A 2 ( s ) . $ ( a x ) ( 2 . 3 ) d et et

with c o e f f i c i e n t s I , U, A t o determine from t h e boundary c o n d i ­

t i o n s . The func t ions F and Φ form a system of l i n e a r l y indepen­

Page 15: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

­ 11 ­

dent fundamental solutions of reduced eq. (1.17).

F(x) = + Io(x) Φ(χ) = ­ Ko(x) ­ if Io(x) (2Λ)

F'(X) = + Ιι(χ) Φ'(χ) = + Ki(x) ­ if Ii(x) . (2.5)

For the choice of these combinations of BESSEL funct ions , see

[1 ] , Do not confuse the BESSEL function I i ( x ) with the above coef­

f i c i e n t I i ( s ) .

The coe f f i c i en t s a2 and a2 in (1 .16) and (1 .18) , resOect ive ly ,

reappear in a simple way in Uie arguments of Ρ and Φ (Eqs. 2.1

and 2 . 3 ) .

All coe f f i c i en t s l i t o A2 from (2.1) to (2 .3) depend on the

parameter s only, not on χ . When s u b s t i t u t i n g the solut ions (2.1)

into the boundary condit ions (1.19) to (1.2Ì+), we get t he follow­

ing system of l i n e a r equat ions i n matrix no ta t ion :

Page 16: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

­qi.XFV + ^ i ­ . a . V*a + Φ O

­ J ' ­ Φ '

­ β .XP'· ­ F ­ β Χ Φ' ­ Φ i a . p 2 a /ρ? . ^ a ^ p s a., pa

λ Ρ ' i Ρ2

Ρ2

0

0

0

0

ο

ο

Ρ

λ Ρ ' a ρ 3

0

λ φ ' i P R

V2

0

o

o

Φ +β X F ' ­ Ρ p s a e ^ P _ S ~ P . a" η a o

λ Φ' a p 3

­ F ' aaP3

O

O

O

+ Í3 χ δ ' ­ ï a ε* "π3 a ρ 3

a ci

­ Φ '

M Kk(s)\

Ui

U P

Α ι

O +q X P ' +P +q ΧΦ' +Φ ^ H a a P t a n p 4 ^ a a u * s P * / \ A 2

ö Q α cl '

o

Pjs) 5

P Í 8 ) S

O

Κ*(·Μ

( 2 . 6 )

Page 17: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

­ 13

The index no ta t ion i s an abbrev ia t ion of the arguments to be

appl ied , e . g . , F' _ a F'(aQP3X). All matrix elements depend a P3 a

upon X only, but not directly on s. The s­dependency enters

the system through the inhomogeneous terms θ.,, θ , , and Ρ, res­

pectively, the true perturbation functions.

The determinant of the matrix shall be called Δ(χ); it has

the infinitely many single zeros X (n = 1,2,...). This func­

tion­theoretical behaviour is known from [ï], no matter how

large are the parameter values q, β, λ, a, p.

From here, the computational expense becomes apparent ­ con­

tinuous necessity to develop 6­row determinants. Therefore, we

denote the matrix elements briefly with << ik >> (i = line index,

k = column index).

E.g., the coefficient Ii(s) results to be Ii(s) = ΔΙ­

where

the determinant ΔΙι is built from Δ by exchanging (in this case)

the first column by the vector of the inhomogeneous terms.

The tedious work to develop all these determinants is not re­

produced; we give directly the results:

Δ ­

11

21

31

0

0

0

11

21

31

12

22

32

0

0

0

12

22

32

0 0

2 3 21+

33 3U

U3 hh

53 5h

0 0

0

23

33

kk

5U

0

0

0

0

U5

55

65

U5

55

65

0

0

0

U6

56

66

he

56

66

­

11

21

31

12

22

32

0

2h

3U

|

m

^3

53

0

i+5

55

65

i+6

56

66 (2.7)

This r e l a t i v e l y simple represen ta t ion by products of 3­row

determinants only i s obviously due to the p a r t i c u l a r zero­ele­

ment d i s t r i b u t i o n in the main determinant only.

When developing the determinants ΔΙι e t c . , we arrange the r e ­

Page 18: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

­ 14

s u l t s according t o the th ree inputs θ k ( s ) , θ ( s ) , and P ( s ) / s ,

mul t ip l ied r e spec t ive ly with c e r t a i n conglomerates Ζ ( χ ) , which, ■

divided by Δ(Χ), are j u s t the t rans fe r functions t o anply on these

inpu t s .

ΔΙι = + * l k ( e ) .

I 22 23

32 33

kh 45 k6

5k 55 56

o 65 66

— 22 2k

32 3k

k3 U5

53 55

0 65

kS

56

66

"V ζ

+ *Lsl. -12. fi l\

■»

23 2k

k3 kk

23 2k

33 kk

"I

l ]·

1 i

55 56

65 66

2 3 2k

53 5k •

k5 U6 '

65 66

( 2 . 8 )

l i a

Of course, none of these elements except "0", also not "12"

as a factor, means the number itself, but the respective element

to be identified from the main matrix in (2.6), with the aid of

(2.7).

ΔΙ2 = + θ,, (s). ik'

+ Pis) s

21 23

31 33

kk k5 kS

5k 55 56

0 65 66

+ 21

31

2k

3k •

JIai

k3 k5 kS

53 55 56

0 65 66

+ 11 J '[ 23

a« 2h

kk

2 3 2k

33 3k

^

é

55

65

56

66

2 3 2U

65 66 •

k5 U6Í

65. 66,

Ji2p

Page 19: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

+ * a k(B). + 11 (2.9)

- 15 -

23 24 k5 46 33 34 ' 55 56 — ν ' ZI2a

ΔΙ3 results from ΔΙι by replacing always the rear index 2 by 1 and by changing the sign in the respective terms.

Δϋι = + * i k(s).

+ Usi + s ·

21 22 31 32

44

54 0

45 55 65

46 56 66 )

«Di:

11 12 21 22

44 45 46

54 55 56 0 65 66

+ 55 56

65 66 •

+ VB) · 45 46 55 56

^r JUtp

11

21

31

12

22

32

0

24

34

\

J -v JUia

11

21

31

12

22

32

0

2k

3k

\

/

(2.10)

AUj + eik(s). 21

31

22

32 •

k3 45

53 55

0 65

46

56

66

Uai

Page 20: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 16

+ P M 11 12

21 22

43 45 46

53 55 56 0 65 66

— 55 56 65 66

+ » a k ( s > ·

\

45 46

55 56

--y-

11 12 O

21 22 23

31 32 33

( 2 . i i )

U2a

Δυ2 r e s u l t s f rom AUi by r e p l a c i n g t h e r e a r i n d e x 4 by 3 and b y c h a n g i n g t h e s i g n i n t h e r e s p e c t i v e t e r m s .

AAi = + 3 l k ( s ) . + 66 43

53

44

54 • 21

31

22

32

" V

J A ± i

ί!ώ. +66 .

-VB>·

< S

'33 3k

53 5k -

■43 44

53 5k

1 1 1 I

11 12

21 22 -

2 3 2k

53 5k •

11 12 V

31 32 [j

J Aip

11

21

31

12

22

32

0

2 3

33

+ 43

53

k6

56 • ( 2 . 1 2 )

"Aia

ΔΔ2 = + θ ι ν ( 8 ) . - 65 43 44

53 54 •

21

31

22

32

"Aai

Page 21: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 17

HÍÍSI.. 65. "í 33

1 53

34 54

43" 44 53 54, f *

J

11

21

12

22

23 24 53 54 *

11

31

22 ΐ

32 J/

+ 9 a k ( B ) . | 44 45

54 55

1 1 1 2 O

21 22. 2 3

31 32 33 \f

-ν ZA2p

43 45

53 55

11 12 O

21 22 24

31 32 34

(2.13)

A2a

ΔΑ2 r e s u l t s from ΔΑι by rep lac ing the rear index 6 by 5 and by changing the sign in the respec t ive terms.

Moreover, ΔΙι changes in to ΔΑ2, ΔΙ2 in to ΔΑι, and àU± in to

Δυ2, by rep lac ing + ^ i k ( s ) "by + ^ a k ( s ) a n d g by i t s e l f , and by

changing a l l determinant elements in to t h e i r complement numbers

to 7· Poss ible l ine exchanges always cancel .

The determinant development has been stopped a t th is s t a g e ,

because the fur ther treatment must anyhow be performed by & com­

pu te r . For t h i s purpose, the p resen ta t ion i s s u f f i c i e n t l y luc id ,

3 . The Selected Temperatures

The following temperatures a r e se lec ted to be t r ea ted fu r the r :

I n t e r n a l cylinder II It

II II

Fuel cylinder

External cyl inder ­

internal surface

mean temperature

external surface

internal surface

mean temperature

external surface

internal surface

mean temperature

external surface

θ.(χ,5)

^(s)

θί(ρ2Χ,5) £u(paX,s)

»u(paX,s) ^a(paX,s) S (s) av ' Sa(p*X,s)

Page 22: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

­ 18 ­

I t would be i n t e r e s t i n g to know a lso the maximum temperature

of the heat producing middle cyl inder . This computation i s how­

ever not f e a s i b l e , as the pos i t i on of the maximum is not known

but should be evaluated from d$ /dx = 0. The locus of χ depends

u max

therefore on s ( i . e . on the time) tha t makes the inverse t r ans fo r ­

mation impossible.

The needed averaging ru les a re (see [ ï ] ) :

PaX

in te rna l cyl inder: * = ^ l · ^ J ^ a i * > * * * ~ χ ( \ _ , fv*k g , " 1 ^ ^ D

X 2

PaX

middle cy l inder : ?=­TT2—27 / ?M* âx= § — ^ P ^ ' ­ p 2 F ' ) (3 .2)

X''(pi­pi) J X(và-vl) Ps P2

paX

external cylinder: F=—^—=—?r— / p(a x)x dx= χ—Õ—(p*F' ­p3F' )

X 3 (p i ­p l ) 1 a a a X(p | ­p 23 ) t P ' a a ^ V a '

P 3 X (3.3)

and correspondingly for Φ, Φ, ï .

For the functions G and ψ, to be def ined in chapter 5, one has

G = =­^ (paG' „ ­ G' ) a i P s a i ' '

a i o ( p l ­ l )

and so on (always with minus sign).

4. Solution for the Selected Temperatures in the Complex Domain

When writing down the solutions (2.1) to (2.3) for the selected

temperatures and arranging the coefficients according to the three

input functions ^jvis), \ k (s) a n d

P(s)/s, one obtains by using

the notation Z, ., ..., defined in chapter 2:

Page 23: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

ί>, ϋ ί , ε ) = 4Γ(Ζ Τ , . F .+ΖΤ 4»Φ0 . ) « . , ( β ) + (Ζ τ ' . F e , + Z T · Φ β . ) £ ^ · +(Ζ_ .Ρ .+ΖΤ ·Φ J f l ^ s ) ( k . l ) i ' - ' Δ[_ I i i a i I i i a i i k I i p a j I 2 n a i ' s l i a a i I 2 a a i akv ' VH '

V»> - 2 (ZT . .P+Z T .·Φ)θ,. ( s ) + (Ζ τ · - .F+ZT . Φ ) ^ ^ - + ( Ζ τ .F+ZT . Φ ) θ , ( & ) I iD Ι 2 1 ì k v l i p l a p ' s v l i a l a a ' akV S í y (4.2)

« i ( p a X , s ) = \ _(ZI1i­FaiPa + ZIai*aipa ) ö ik ( s ) + (ZIip­PaiPa + Z I 2 p ^ a i p a ) E i f 1 + < ZIia 'Fa ipa^I aa' *aip. } V U ) .

(4.70

$ ( p a X , s ) = χ Γ(ΖΤΤ , . F +ZTT . . Φ ) ö . v ( s ) + ( Z T T .F +ZTT ­Φ ) ^ § 1 + (ZTT . P +ZTT ·Φ ) θ , Γ 8 ) Ί + ^ - ^ · fk 4 ) u V i ' Δ [_v U i i pa Uan ps' i k v Uip p 2 U2p p 2 ' s v Uia p 2 U2a p 2 ' ak. ' J s ^ *+·**/

» ( B ) = Τ uv ' Δ j V r ^ W ' ^ W ^ p - ^ p · * ' 1 ^ - (ϊσ1»·ί+^.β··>*Α(.β)]+ ^ (u-5) CO

I

θ ( p 3 X , s ) = χ f(ZTT . . F + Ζ . . . . . Φ ) θ . , ( ε ) + (Ζττ ,F +ZTT .Φ ) P - ^ - +(ZTT . P +ZTT .Φ ^ . ( s ) " ! - » - ^ ^ uv^o , Δ ij. U i A p 3 U s i p 3 , i kv ν U i p p 3 U s p p g , s v Uia pe U2a p 3 akv ' s

(4.6)

Vß)= Δ [^A.i­^Aai··)*^8) + ^ Α ι Ρ · ^ Ζ Α 2 ρ · ; ) ^ + r Z A a a ^ Z A 2 a · ^ ^ 5 ) '

(4.7)

(4.8)

V P * X , S ) = 1 [ ( Ζ Α Ι Γ Ρ £ a^/^rV^^^^^P^ + ζ. . Φ ) E L § 2 + ( ζ , ρ +ζΑ . Φ ) ö , r s )

aa P * Aap a a P 4 s v A i a ' a a p * A 2 a ' a a P * a k _

(4.9)

Page 24: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

­ 20 ­

The expressions in curved brackets, divided by.Δ. are the

transfer functions acting on the inputs ^ik(s)» g > or ^ak(

s)>

respectively.

These transfer functions are now developed into partial frac­

tion series, whereby it is known that only single poles occur,

because Δ has only single zeros. Numerator and denominator have

never common zeros.

After multiplication with s, one puts:

sVx,s) = (aio+£­^fMik(eW (apo+p^)P(s) + (ν^β^Β)

S+T1 s+^r s +^r

(4.10)

b._ v­.b_„ r—rb.

L ι η L—j η /—/ η

s+— s+— s+—

(4.11)

^(paX,s)= (c.o+y-^)s,ik(s) + (c +y^)p(s) + (C + ρ ^ ) β θ (Β) s+— s+— s+-v

(4.12)

d. *—* d . v­Ad s^u(p2X,s)= (d.o+^­^)s.ik(s) + (dpo+^­^)P(s) + (da0+^­^)s.ak(s)

s+— s+— s+­v

(4.13)

e . ν—\ e ν—ι e

ÍU.1U)

s*u(p3x,s)= ( y j ^ ) r t l k ( . ) + (VÄ(B) + (fao+V_%)si (.)

(4.15)

sea(p=x,s)= (gl0+yjla)s*lk(s) * (gpo+yAn)p(s) + ( g a o +yJV ) se a k ( s )

οι η OJ._ η au­ Π S+­Ü S+­^i s+.

(4.16) ν . . ν

Page 25: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

21 ­

'VB> = ^io-Υ-^^Ι^

+ (hpo

+E^

)P(s) + (hao

+Plf)

sW

s)

s+— s+— s+-v

(4 .17)

3.

5VP*X

'S)= <Jio

+£­5F ) « V

B ) + (WI~^

) P ( S ) + Í3ao

+J}­^)

e^

e>

s+— s+— s+­v

. ( 4 . 18 )

R2 >7s where ν m — i s the time c o n s t a n t t o be chosen because of X = — R,

a2 a u u

σ = + "/vi", Χ = + i o . A l l summations go from η = 1 to i n f i n i t y .

5 · The Modified Func t ions and t h e D i sc r im inan t Equa t ion

As t h e ze ros of F and of G l i e a l l on the imaginary a x i s , we

pass over t o the modif ied f u n c t i o n s G and ψ, whose ze ros a r e a l l

r e a l . So i n s t e a d of c o n s i d e r i n g e . g . the ze ros of F(x) = P ( i o ) , we

c o n s i d e r the ze ros of G(o) t h a t i s more s imple .

The o r i g i n a l and t h e modified f u n c t i o n s must s a t i s f y the func ­

t i o n a l r e l a t i o n s (see [ 1 ] ) :

F (+ io) = + G(o) P ( ­ i o ) = + G(o) ( 5 . 1 )

P ' ( + i o ) = ­ i G ' ( o ) Ρ ' ( ­ i o ) = + i G ' ( o ) ( 5 . 2 )

Φ(+ίσ) = + ψ ' (σ ) Φ(-Ισ) = + ψ(σ) - 1% G(o) ( 5 . 3 )

Φ ' (+ισ) = - ±ψ' (σ) Φ ' ( - ί σ ) = - ί ψ ' ( σ ) + %G'(a) ( 5 . 4 )

so that the modified functions are simply (as desired):

G(o) = + Jo(o) ψ(σ) = + |Υο(σ) (5.5) G'(o) = - Ji(o) ψ'(σ) = - |Υι(σ) . (5.6)

By substituting into (2.6) X = +io, we get (for argument -ίσ, the additional terms with G and G' in (5.3) and (5.4) create an additional separable determinant which however vanishes so that no new zeros occur for X = -io):

Page 26: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

Δ ( σ ) = ^

­ c i í OG' +G

­ i l a i a i

­ G ' a jPa

0 i '

a i

a j p a

0

Ai

G¿ 1

p 2

0

λ .ψ' 1 pa

■ß­jOG' ­ G -β - ΐΟψ' - ψ -1 a g a a g a K i v a g s ^ p a

0

0

0

0

Pa

P 3

λ G' a p 3

0

t P2

0

o

o

o

o

Ψ. P3

λ i!r' a p 3

+ β OG' - G a a a p 3 a g pa ^a Y a Q p 3

Y a „ p 3

+ β σψ' - ψ

- G ' -a a P 3

+σ_σθ ' _ +G

- Ψ ' a a p 3

+ n Olir' + ψ a a a p * a a P 4 a a „ p 4 a„P4

= 0

to CO

■A * * )

(5.7)

*) N.B.

From each of the l i nes 2 and 5, a f ac to r of - i has been ex t rac ted , giving together the minus sign before the determinant .

**) The indices mean anew the arguments to apply, e . g . G' a f lPa -

G' ( V 3 0 ) .

Page 27: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 23 -

This "discriminant equation", which maybe developed just ac­

cording to the general rule of (2.7), has the infinitely many

single zeros σ (n=1, . . . ,<»).

They must be determined for the given set of parameters q,ß,

a, λ, ρ by computer. All elements are then known numerical va­

lues if the function values of the G, G', ψ, ψ' are furnished

from elsewhere or are directly furnished by the computer through

a BESSEL function subroutine.

σ = 0 is in no case a zero. There is the special (pathologi­

cal) case q_± = q& = 0; a± = a& = 1 ; \± = λ& = 1 ; ß1 = ß& = 0.

Here, factors G_ ψ' ­G' ψ (or with p3 or p*. resp.) occur P2 P2 Pa P2

which apparently give further zeros. However, these expressions are the WRONSKIan determinants which are zeroless in the finite

1 1 1 domain; they have the values — ­ , — ­ , — ­ , respectively.

6. Computation of the Residues

The coefficients of the partial fraction series (4.10) to

(4.18) are the residues at the poles of the respective transfer

functions.

Generally, we compute these residues according to the rule

(6.1) ZT ..F . + ZT . .Φ , I i i ai la i ai

a in " dA ds σ

2

- ν *

and correspondingly also the other coefficients a , . . . , e tc . ,

by comparison of the respective terms from (4.1) to (4.5) with

(4.10) to (4.18).

The derivative of the system determinant (5.7) i s , because of

σ = ¿ Ι Λ / V S :

dA(o) _ dA do _ + 1çTA d ,­—· _ .dA «Jv dA v dA ν d s : do ds : ­ do ds : : ­^"ds 2*/s : ­ do õJvs ~ " do 2 .¿Vvs

dA v / . " " do 2o ( · η ο slSn ambiguity),

Page 28: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

hence

- 24

dA ds 2 0.

s=—: n n

dA(o) do = A» s Δ η

σ=σ η

A determinant i s d i f f e r e n t i a t e d with respect to a parameter (here o) by success ive ly r ep lac ing the f i r s t column by i t s d e r i ­vate (the vector of the d i f f e r e n t i a t e d elements) and eva lua t ing the so r e s u l t i n g determinant, then by doing so for the second co­lumn, e t c . , and by f i n a l l y adding a l l r e s u l t s . This work can auto­mat ical ly be performed by the computer as soon as the parameters are numerically f i xed . Otherwise the prepara t ive work in a mul t i ­dimensional parameter space would b e qui te boundless .

When d i f f e r e n t i a t i n g the elements of ( 5 . 7 ) , the occurring s e ­cond de r iva t i ve s can be el iminated by means of the d i f f e r e n t i a l equations for G and ψ, e . g . G* „ = - G „ - ———- G' „ , e t c .

ajPa a^pa a ^ a O a jPa ' Thus, the d i f f e r en t i a t ed column vec to r s a r e :

Page 29: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 25

k = 1

( - q 1 + a i + l ) G a i + a i 0 G a

+ τ£ ΐ „ + a P2G o a g 2 ** a i p 2

( ­ ß i ­ a i p 2 + 1 )G' +a.,p2oG

: -

o

k = 3

-λιΗ*-λΐΡ2°ρ2 + P s G p 2

+naG' Pa · \ , τ £ ' ~ λ Pa G ao p 3 aya p 3

O

k = 5

O

O

O

( + ß a ­ a a p 3 ­ l ) G a ­aapeOQ.

1 a

+^a ap 3

+ aa^G a & p 3

V(+q

a+aaP4­l)G

a.p,­aap*0Gaap4 aaP4

k = 2

idem as for k = *· ,

but G replaced b.v ψ

k = 4

idem as for k = 3,

but G replaced by ψ

>

k = 6

idem as for k = 5,·

but G replaced by ψ

(6.2)

/

Por o, one must always put o , also in the arguments of G and ψ;

i.e. all elements are numerically known values.

The terms containing — are proportional to the corresponding ο jt

elements in Δ. Therefore, the factor pertaining to — i n t n e de

~ η

velopment of Δ' is just ­Δ(σ ) which vanishes. One can thus omit

Page 30: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

26

1 a l l terms with — and wr i t e more simply:

n

k =.1

( ­q^a j+1 )Ga +a i0G

+a.p2G a iPa

j r ü j . a p 2 | (­β ­a p2+l)G' +a,psoG

1 1 a . p 2 1 '

0

0

0

k = 3

0

-V2Gp2

+ P 2 GP 2

+p3G'

P3 ­λ p3G aFO P3

0

0

0

0

( + ß­a p3­l)G' ­a p3oG a a a P3 a a p3 d d

+a P 3G „ & a a p 3

(+q +a P4­1)G' ­a p40G ­a a^ anP4 &y

aQP4 et d

k = 2

idem as for k = 1

but G replaced by ψ

idem as for k = 3, \ >

but G replaced bv ψ

k = 6

'idem as f o r k = 5,

but G replaced by ψ

(6 .3)

In order to pass over in the t r a n s f e r function numerators from

the functions Ρ and Φ to the modified functions G and ψ, and a t

the same time in the arguments from X to o, we give the behaviour

for a l l matrix elements of (2.6) or (2 .7) in the following l i s t :

Page 31: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

27

1k(X)

2k(X)

3k(x)

4k(x)

5k(X)

6k(X)

->

->

->·

->

->

-»·

1k(o)

- i .2k(o)

3k(o)

4k(o)

- i .5k(o)

6k(o)

Only the second and f if th line furnish a factor - i , each, so that

A(X) -> - Δ(σ) (see footnote to 5.7) ,

Z..(x)-> - Z..(o) (for a l l Z..)

and hence

z . . ( x ) _> Δ(Χ)

, Z . . ( o ) Δ(ο)

Fur thermore :

F(X) ->

P ' (X) ->

F(X) ~>

F(X) -*

P(X) -*

+ G(o)

- i G ' ( o )

- G(o)

- G(o) s

- G( o)

(no cha nge ) .

Φ(Χ)

Φ' (χ)

Φ(Χ)

Φ(Χ)

Φ(Χ)

->

->

-*

- >

- >

+ Ψ(σ)

- i t ' ( ο )

- ψ(σ)

- f (ο)

- Ψ(σ)

By considering a l l these ru l e s , one is now prepared to t rans­pose the transfer functions into the modified function notation with argument ο , and gets for the residues:

a. ' in

ZT .(a ).G(a.o ) + ZT (o ).\|r(a.o ) I i i η v ι η ' I2V η YV ι η

A7

η

a Zx (o ).G(a.o ) + Ζτ (ο ).ψ(β4σ ) ΙιΡν η v ι η Iapv ny v ι η

p n

a n

A' η

ZT „(σ ).G(a.o ) + Zx (o ).\]/(a.o ) I iav η ' v ι n' Iaav η' τ ν ι η Δ'

η

(6.4)

/

Page 32: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

28 -

' i n

Pn

ZT . ( o I i i v n

ZT (o

"bo = + an ZT ( o I i a v n

c i n

pn

a n

d i n

pn

an

Ζ τ Λ o I i i v η

Ζτ (o

Ζ τ ( o I i a v η

Ζττ ^ ( σ

U i i v η

Ζττ ( σ U i P v η

Ζττ „ ( σ U i a v η

e . = + i n Z U i j ( ° n

pn

Ζττ ( o + u i P n

e = + an

f i n

Ζττ ( ° U i a v η

U i i v η

Ζττ ( ο U^P η • ρ η

a n Ζττ ( ο U t a v η

G(o ) + Ζ_ , ( σ ) . ψ ( σ ) ν η ' l a i η ν η Δ' η

G(o ) + Ζ- ( ο ) . ψ ( σ ) ν η ' I a P η η Δ " 7 -

η

,G(o ) + Ζ τ α ( σ ) .ψ(σ ) ι_ η ' I 2 a v η 7 γ ν η ' Δ ή

. G ( a i P a O n ) + Z I a l ( o n ) »H^Vaση) Δ"7" η

l G ( a i p a O n ) + Ζ ( σ η ) . ψ ( & 1 ρ 2 σ η ) Δ' η

, G ( a . p 2 o n ) + Z I s a ( o n ) . t ( a l P 2 o n ) Δ' η

,G(paO n ) + Ζ υ 2 . ( 0 η ) . ψ ( ρ 8 σ η ) Δ7

η

■°(P»°n> + Ζ υ 8 Ρ ( σ η ) ' ψ ( ρ 8 σ η )

Δη

G ( p 2 0 n ) + Z U g a ( O n ) . t ( p a O n )

η

β(°η> +

^1^η)'*Κ) Δ '

η

G(o ) + Ζττ ( ο ) . ψ ( σ ) η U 2 p η η

Δ' η

,G(paO n ) + ζυ 2 ΐ ( σ η ) . ψ ( ρ 3 0 η )

Δ' η

. G ( p 3 o ) + Ζττ ( ο ) . ψ ( ρ 3 σ )

Δ' •η

. G ( p a O n ) + Ζ υ 2 β ( ο η ) . ψ ( ρ 3 ο η ) Δ' η

f ( 6 . 5 )

> ( 6 . 6 )

> ( 6 . 7 )

> (6 .8)

^

> (6 .9)

Page 33: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

29

g ^il^n^y»80!!* + ZAti^n )'^ aa P a 0n )

in

^ n

^

Z. (o ).G(a p30 ) + Z. (o ).\Jf(a p3o ) Aipv n v a^ n Aap v n v a^ n n

g. Z. (o ).G(a p3o ) + Z. (o ).\|r(a p3o ) Aiav n7 v a^ n' A2a^ n' Y^ a^ n

an Δ Γ

(6.10)

hin = +

h = + pn

h = + an

Z. .(o ).G(o ) + Ζ. ,(σ ).ψ(σ ) Aiiv η v η Aai η η Δ7" η

ΖΛ (σ ).G(o ) + Ζ. (ο ).ψ(σ ) Αιρ χ η 7 ν η ΑΒρ η ν η η

ΖΛ (Ο ).G(O ) + ΖΑ (Ο ).ψ(σ ) Aiav η' κ η' Aaav η' γν η 7 Δ7^ η

> (6 .11 )

Z A 1 ^ ° n ) ' G ( a a p * ° n ) + Z A s i ( °n } ' ψ ( a a ^ ° n )

' i n

'pn

'an

Δ' η

W^'-^V^n' + Ζ Α 8 ρ ( σ η ) ' ψ ( &&

Ρ ^ σ η )

Δ' η

Ζ. (ο ) .G(a ρ4θ ) + Ζ. (ο ).\|f(a ρ 4 σ ) Aiav η ' ν &.* η' Aaa η a^ η Δ7

η

> (6 .12 )

7 . The· I n v e r s e Trans format ion

When t r a n s f o r m i n g back the e q u a t i o n s (4 .10 ) to ( 4 . 1 8 ) , one o b t a i n s

'n t σ2

©i(X, t ) = a l o . ® l k ( t ) + Yain e v ƒ ¿ 1 ] £ ( τ )β v dT +

G n ° t

+ a M t l +ya e'TTf AWM e+ v^

p o ( p c ) u /_, pn J (pc) e ΰ τ +

+ a a o ® a k ( t ) V

Jn t η .

© a k ( t ) e v d t ( 7 . 1 )

0

Page 34: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 30

e t c . , w h e r e the c o n v o l u t i o n i n t e g r a l s a re c a l l e d : o2 . o2

n t . n . e V / ®ik ( , c ) e V ά τ a r i n ( t ) ' ( ? · 2 )

0 o2 , o2

_n t η V [fí&eV a - V ( t ) ' (7.3) c ' u 0

o2 . o2

η t η. e"V ƒ J a W e » άτ , ran( t ) . (7Λ)

Obviously, the s o - d e f i n e d " t r a n s i e n t complement f u n c t i o n s " obey the d i f f e r e n t i a l e q u a t i o n s :

Kn^ + hm^ ■ V * > ; rln(o) = o (7.5)

y*> + ? v ( t ) = füfè ■' V 0 5 - ° (7-6>

W') + Λη** ' = 6ak") S ran(°> - ° > (7.7)

with t h e p s e u d o - s o l u t i o n s (needed l a t e r o n ) :

rmW = 7 t ^ W - Γ^*)] - (7.8)

η

Γβη<*> - b [ * Λ ( * > - r a n ( t ) ] · (7.10) η

Note that only these three functions Γ can occur, and no other

ones.

Hence, one has:

Page 35: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

31

*~~* r* τ -

Is-

— Ρ

s ^ ^

^

C Λ

o3

+

fe <

Π

o CL,

—' o PH

ce +

^ s

- P

^ " ^ •H

.© O

• H

CO

+ »—*. - P

^ ^ β co

P H

C CO

» - 1 ^Ό +

Ρ

w p Pn

P I C Ρ

cc

/O + Ρ

%^ tí

• H

F-v Ρ

• Η

Ctí

>0 II

'—-Ρ

•\ *

• H

• ë )

* ■ — *

CAJ 1_

Is-

^ " - N

+J

^ ^

· © O

Ρ

+

Ρ

fe <

Ρ

ο Q .

O Pi

Ρ +

Ρ

v- ^ !

Ή

. # O

• Η Ρ +

• — ■ »

Ρ V -

Ρ CO

Ρ. Ρ 05

Ρ

Κ) +

Ρ S -

Ρ Ρ»

Ρ Η

Ρ Pt

Ρ

ΚΙ +

Ρ ν ,

Ρ • Η

Ρ Η

Ρ •Η

Κ II

• — Ν

Ρ

• Η

. η >

*-—--s

Γ<Λ

Γ^

« ■ — -

Ρ ν _ ^

Χ ~ f l

. ©

ο CO

CJ

+

Ρ ν _

s <

^_Ρ

ï ο Ρ-

CJ

+ ^-> Ρ>

ν ^ ^

Λ: •Η

. © Ο

•Η Ο

+ * — ν

Ρ1

^_^ Ρ CO

P H

Ρ tí

O

κ +

Ρ

^"p

n * Ρ Ρ

ο

κ • + •Ρ

β •ri

Ρ Η

pj •ri

Ο

w II

Ρ1

·» χ

0)

»♦

—«-ι ·<§ )

J - -

Γ-ν ^

.—. Ρ

Λ « . ©

ο co

Ό

+ ι Ί

τ - 1

^ - <

^ Ρ

υ ο.

*—■*

ν -

+ Ο

-Ρ* -tí

»~-^

+ *—s

-Ρ V <·

• Η

· ® „ Ο •Η

+ y — · . Ρ

»—^ Ρ

co P H

Ρ α Ό

W +

■ Ρ

^ Ρ

Ρ Η ^

Ρ ΡΗ

κ +

- Ρ

^"Ρ • Η

Ρ Η

Ρ •ri

T j

κ II

Ρ • t

Χ «

PH

^ Ρ . ci >

*·—* LTX

τ -

Is-

w

•"—•ν

■ Ρ

ν ^ /

Λ! ^

r o

. © c cc·

OJ

+ ; Λ

Ή '

g ^ j

_ P

α CL

. Ν

V

+ O PH

OJ v, ^

+ -P *~k

• H

• ® r . O •ri

OJ

+ *"""» Ρ

S ι

Ρ co

P H

Ρ OJ

K + P>

^_^ ρ PH

^ P PH

ω

Kl + P

^ P • H

P H

Ρ • H

OJ

K II

**"-"» -P

Ρ •n <ε )

MD T"

* Is-*—-^ - v

-P

Λ; ^co

. © O CÖ

<H

+

■ p

Ì

P

SL • - " V

v-

+ O Ρ

<H v _ ^

+ y — s .

-P K^ --

• H

. © O

•H «H

+ ^—ν

-P N •

Ρ CO

P H ^

Ρ co

<H

K] + -Ρ

^ P

^ Ρ Pi

<H

W + Ρ

1

""""c. • Η

P H ^

Ρ • Η

<ÍH

KJ II

t—>

Ρ

» χ

CS

PH

_ P

«e )

*~-**.

r-■ τ -

r-**"'

^—s

- P v „ ^

J¿

~<ö . ©

o CÖ

+

Ρ V

^ <

Ρ

υ α

Ο Ρ

+ *—^ Ρ>

>^_^

£ . ©

ο •π

ω +

+J. ^ /

Ρ co

P H

Ρ CO

ω

W + -Ρ

^~Ρ

ΐ Ρ . Ρ ­ω

W + Ρ

^^Ρ • Η

Ρ Η ^

Ρ • Η

bO

Kl II

Ρ> 9\

Χ co

P Ì

. €

— co t —

Γ^

^ — χ

Ρ ν ^ ^

J . ©

ο

Ρ

+

*^-t >

<:

r-<

CJ CL

c Ρ

ρ +

Ρ

*~U • Η

. © Ο

• Η

Ρ +

^ ^ - χ

Ρ

ρ tí

P H

Ρ co

Λ

Κ] + -Ρ

ν ·

ρ Ρ<

Ρ Η

Ρ

Λ

Κ +

Ρ ^_^s

Ρ • Η

^ Ρ •Η

Ρ

κ II

^-^ Ρ

„ CO

• m

* - — Ν

c^ "-

r-v _ ^

*—^ +3

v - /

^ ^$

. © o

• T 3

+

P ,^-^ '<

Ρ

ο α.

o PH

1 - 3

+ ^-^ H-5

^ •

. © O

•H •rs

+ Ρ

ν _ ^

Ρ CO

Ρ Η _

Ρ CO

•1-3

κ + Ρ

►Ρ Ρ Η ^

Ρ Ά

' Π

Κ + Ρ

^ Ρ • Η

Ρ<_ Ρ

• Η τ - 3

Κ II

- Ρ •ν

χ ■ *

Ρ:

^ . ©

. . ,—^

ο

• ο-\ ^

ο Ρ

co •

Is-

C0

Ρ Ο •Η CD

CO

OJ

Ρ Ρ

0J

0J Γ«

Í 0J ρ> d

■ Ρ

•Η -Ρ "Κ

Ρ Ρ co

OJ

> ■

η

OJ Ρ OJ

Κ

^

O ^ - Ν

O O CO cv

+ Is-

^ 1 " w

o p.

CD

+ M

. «H

. © O

• H

+ p co

• P H

I ^ CÖ

. © i '

c Cö

C S . P

κ >

+ I I

Ρ p.

• PH

I

£ : | θ <a|Q.

I !

Ρ Ρ

Ρ c v ^

w >

+

' " ρ • H

. P H

ι* • Η

. ©

Ρ • Η f M Ρ

co " t o '

Κ > II

^—» Η Ρ

^

* •ι-Ι +3

.<Σ ) OJ

Page 36: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

When i n t e g r a t i n g once t he se e q u a t i o n s t o o b t a i n the t empera tu res themse lves , i t i s not a l lowed

to g e t i n t e g r a l s over r r ~ T > because such e x p r e s s i o n s would no t f u l f i l l FOURIER's e q u a t i o n . T h e r e ­

f o r e , c e r t a i n sums must v a n i s h , e . g . (a +v ­ pn) = 0, which a r e to be enumerated a t once . P ° z­­' o2

n

«iCx.t) = (a lo­[^)^(t) t(V^|)Prt(t)­v^>JJt)+VrJt)Mmrnn(t)]

with a " + v V ^ = Π , <7.?1)

η η η ^

with b _+ν\ ­sa = o, (7.22) "po ¿_ 02

n

r—v c Vp2X,t) = (c io+v£^)e ik(t) + ( c a o + v £ ^

η η n _ c

with c p o + v \ ­ f 1 = 0 , ( 7 . 2 3 )

η

η η η .

w i t h . â +1 + v V ­52­ = 0 , (7.2U)

®»(t) ■ Κ ο + ν Σ ^ ^ ( * ) + ( W ^ ^ « W * ^ 7 [ e i n r i n ( 1>+%ηΓρη(ΐ)+ββη(O 1 'Σ 3 11 η η V ^ e

'λ 7 with e +1+ν> - § η = o » ( 7 . 2 5 )

00 co

σ η

Page 37: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

(paX.t) . ( f l 0 + v ^ ^ ) Vt)

+(

+í ^

)*

k ( t )'

WL 7

r f l»

r t a ( t ) + fi » V

t ) + fa n

r« i (

t' J

f. _1

n n XL

with fpo+1 + v V ­ ^ H = D , (7.26)

η

-s .

®a(p3X,t) = ( B l o + v ^ ^ ) e i k ( t ) + ( g a o + v ^ J n ) e a k ( t ) . v ^ ^r S . n r i n ( t ) + g p n r p n ( t ) + f f a n r a n f t ) 1

n ν— Κ with g ^ + v ^ ­ f û = 0 f ( 7 # 2 7 )

η

i(t»=(^o

+VE^

)%(

t)

+(

hao

+v^f

1'V(

t)­^7rhlnrin(t)+hpnrpn(t)+hanron(t)]

n n n h

with h p o + v ^ ­ j p = ο , (7.28)

η

η η η

We subs t i t u t e once more the exnressions (7.8) to (7 .10) :

with ,­j + v y 2 p = ο β f 7 t 2 9 )

r­^ a. r— a

00 00

M X . t ) = (a . +v) ­¿Π)© ( t ) + ( a + v \ ­ΑΒ)Θ ( t J ­ v ^ W C a ( ¿ ­ f Wa f ^L - τ V a f© ­ f )1 1 1 0 Δ o2 l k a o · L o2 a k λ?L ik^Uik ' i n ; + V A PC i n i + \ r , ( V a n J J

n n n "(7.30)

Page 38: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 34 -

Therefore, by writing di rec t ly R instead of X in the tempe­ra tures ' argument and by replacing v2 / \ \ ' by ν—\—'— :

(P=)U xu

el(E.t) . (a10+v^^)elk(t) - νγ^Μψ£+ (aao+vV^)Sak(t). η n u η

+ va

+ «anlW*)-^*»] f7·31' e t c . , by simply exchanging a by b , . . . , for the respective other temperatures.

When taking the i n i t i a l values ®JV 0»w0> a n d ® k 0 for the in­

puts, the f i r s t line of expression (7.31) represents just the s ta­tionary solution ©. . + ( R ) , and correspondingly for the other temperatures, because a l l dotted quant i t ies of the second line vanish for th i s s t a t e .

As the coefficients a , . . . , j are s t i l l f ree , the conditions po' ' ϋρο '

mentioned with (7.21) to (7.29) can always be fulfilled. It is how­ever not necessary to compute them because they do not appear af­terwards.

u The f actors of ® i k ( t ) , namely ( a i o + v V - j p ) , . . . , ( j ^ + v V _ | £ ) ,

and those of ® a k( t ) , namely (a&Q+vV - | ^ ) , . . . , ( j ^ + v V ­ â S )

η j η

are

"η "η

obtained by comparison with the stationary solution, to be com­

puted in the next chapter directly. The a. ,..., j. and a

ao»»··»

j being still free, this evaluation is always possible without ao contradiction.

WR8 r

*——* apn \ ' nn

However, the factors of , namely ­v V —tL-,..., ­v ) —'—,

λ L-i a i—i a u η η

must also correspond with those of the stationary solution.

Page 39: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

35 -

We h a v e h e r e no d e g r e e o f f r eedom, a s t h e s i n g l e c o e f f i c i e n t s

a , . . . . 3 a s w e l l as t h e i r i n f i n i t e sums a r e known. T h i s l e a d s p n ' pn

t o c e r t a i n summat ion f o r m u l a s w h i c h may b e c h e c k e d n u m e r i c a l l y .

8 . The S t a t i o n a r y S o l u t i o n

I n t h i s c h a p t e r , we o m i t t h e s u b s c r i p t " s t a t " ; t h e t e m p e r a ­

t u r e s i n q u e s t i o n a r e a l w a y s t h e s t a t i o n a r y o n e s .

The s t a t i o n a r y p a r t o f t h e b a s i c e q u a t i o n s (1 .1 ) t o ( 1 . 3 ) i s

d 2 ®. , d©, ' + — — ­ = 0

d r a r d r

( 8 . 1 )

d 2 @ u + l ^ + j v = 0

d r s r d r

u

( 8 . 2 )

d2© , d©

— + 1 r r ^ = 0 , d r 2 r d r

( 8 . 3 )

w i t h t h e b o u n d a r y c o n d i t i o n s ( c f . 1 . k t o 1.9 o r 1 .19 t o 1 ,2k)

d®. « r = R : •q,R ®4v ­ ®,(R)

d© r = P 2 R : X l 5 ? ä

iLV d r w i k

r=R

d©.

d r

r=p 2 R r=p 2 R

d©.

® u (p 2 R) = ©¿(P2R) + ß ­ ^ a r ^

r=p 2 R

r = p 3 R: © (psR) = ® (PsR) ­ ß0R d©

u a a d r

r=p3R

d© u

a d r

d© a

~ d r | »

r=p3R r=p 3 R

d© r = p*R: + q R

a d r ®ak ­ ® a ^ R ) '

r=p 4 R

(8Λ)

( 8 . 5 )

(8.S)

( 8 . 7 )

( 8 . 8 )

( 8 . 9 )

Page 40: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

36 -

ι» We introduce the dimensionless variable y = — and denote

d » α2 , . ^ " ' dy2 " '

Θί + y®í = ° » (8.10)

©» + i®i + W R l = 0 (8.11) u y u ^ '

u © · + ! © ' = 0 , (8.12) a y a ' v '

with the boundary conditions:

y = 1: ­ q.©^(t) = ®±¡¿"®i^) , (8.13)

y = Pa: λ.Θ·*ι(ρ2) = ®^(ρ2) , (8.1U)

©u(p2) = © i(p2) + ß i©i(p2) , (8.15)

y = ρ 3 : ®u(p3) = ©a(ps) ­ ßa©a(P3) , (8.16)

λ&©;(ρ3) = ©;(ρ3) , (8.17)

y = ρ*: + <la©a(p4) = ®ak ­ ®a(p*) . (8.18)

The general form of the solutions being known, we try, with

unknown coefficients Α., A , A , Β., Β , Β :

ι ' u ' a' ι u ' a

©.(y) = A i In y + Β. , (8.19)

®u(y) = A In y + Β ­ ^ ­ y2 , (8.20) u u

k^

* u ©a(y) = Aa In y + Ba , (8.21)

with the der ivat ives

A A

ej(y) = y 1 , ej(y) = ­ ­ i , (8.22)

e ; ( y ) = ^ ­ ^ y , S ; ( y ) = ­ ^ ­ E i , ( 8 . 2 3 ) u y 2 X u y2 2 λ

u J u

©a(y) = , ©;(y) = _ t a . ( 8 . 2 U )

Page 41: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 37 -

Hence, the s e l e c t e d s t a t i o n a r y t e m p e r a t u r e s assume the f o l l o w ­

ing form:

® i(R) = + B i , ( 8 .25 )

= + A 7 P I l n p g A + B1 , (8.26)

p i ­ 1 2

= + A i l n p2 + B. t ( 8 . 27 )

= + A tap, + Β ­ Ï S l p S , ( 8 . 2 8 )

@ i

Ø­j/psR)

® u (p 2 R)

»

© u

© u (p 3 R)

® a (p 3 R)

B

®a

e a (P4,E)

ui « ­ o 2 J + u , , r 2 ^ ö · ^ v P3 ­ P2 / 4 ^ u

WR 2

+ A l n pa + B„ ­ ~ - p | , ( 8 . 30 ) u U 4K

u

+ A a I n P3 + B a , ( 8 .31 )

+ A / p i l n ρ , ­ VÎ i n P3 ­ 1 ) + B a , ( 8 . 32 ) \ P4r ­ P a / P4 ­ p 3

+ Aa I n P* + B a . ( 8 . 3 3 )

In t h i s case, a l so t h e maximum tempera ture i s computable , b u t

i t i s no t ve ry u s e f u l because t h e comparison with the n o n ­ s t a ­

t i o n a r y s o l u t i o n i s no t p o s s i b l e :

,2

© = + A l n p + B ­ ^ ­ p 2 (8.3*1.) u,max u *max u . ^ ^max V^­­H­V

*" u

w i t h pmax = + / \ ' ( 8 * 3 5 )

max ^ ^ga

^ u

so t h a t

© = + A ( l n ρ ­ ¿0 + Β . (P .36) u,max u^ ^max 2 y u v. . . y

Page 42: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

- 38

The boundary c o n d i t i o n s g ive now the fo l lowing l i n e a r equa­

t i o n system to de t e rmine the s i x c o e f f i c i e n t s Α . , Α , Α , Β . , Β ,

and Β : a

­ * i A i = @ik ­ B i ( δ · 3 7 >

+ J J 1 ­ ! ¿ J =+tl (8.38) ^ 2% J P2

u 2 A .

+ Au I n p 2 + Bu ­ ïï|­ p i = + Ai l n p 2 + Β. + β. ^ ( 8 . 3 9 ) ^ u

' + Au i n P 3 + B u ­ ^ p i = + A a i n P3 + B a ­ β& ^ (8.1+0)

+ X / tu .WRl \ = + \ ( 8 Λ 1 ) a^P3 2 ^ P V P3

u

+ ^apT = 0 a k ­ A a l n p ­ ­ B a ( 8 · ^

or i n ma t r ix n o t a t i o n :

Page 43: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

­ < l ·

­1

+ 1

o

o

+ λ,

o

o

lnp:

P2 *

0

O

O

­1

O

O

O

+lnp2 +1 O

a ­lnp3 +1 + lnp3 ­1

+ λ_ a

O

O

O

­1

+—­flnp4

P4·

+ 1

(t

^iPi 2

2

¿ U­

V*

í k

WRa

·*· λ IX

WR2

λ

WR^

X u

WR2

© u

ak

Omitting all intermediate calculations, we get for the system determinant:

β, \ A q. 1VPS (-L + lnPs+q.^ + Xa^S­ ­ lnp3 + ­| + i n p ^ + ^ n p 3 ­ lnp2) ,

and for the coefficients the lengthy expressions:

_i Γ λ

<Γ . 9 9 . /Ρ« q A =— ­ λ · © +r­A i Δ l U i k 1+

ΒΓ* 4 [[

Ai(pf

f lnpg)

+\(pf ­mp3+^lnp4)+(lnP3­lnp2) Q

i k +

f^V = Δ­λι qt

2 2 Ν / P a l T m pa

P 3 ­ p 2 ) ( p 3 " l n P 3 + q7 ­lnp^+(p23­p

22)­2p

22(lnp3­lnpa)J^l + χ^^Ι

u '

(ΟΛ3)

(8.2+1+)

2λ & (ρ1 -ρ | ) ^ -1ηρ 3 -Γ ·^ .1ηρΑ( Ρ 1-ρ 2 ) -2ρ | ( ΐηρ 3 -1ηρ 2 ) Ί^ - + *i®ak] (8.45) u

(8.1+6).

00 CD

Page 44: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

Au=Ã

- ι 2

L L ν / u

Ce.J+7)

V i [ [\(pf ­lnP 3^lnp4) 3 + ^ l n P 4 > l n p 3 f^ ik+¿ [ p i ( ­ 2 X ^ l n p e + q 1 ) + ^ X a ( ^ ­ l n p e + ^ l n p 4 ) + l n T i a )

+Ρ«ίλΐ^1ηΡ^+ P 2 u

r Aa=Â

λ r-

­ \ ® i k + i r 2 _2N/£¡

OP 2

2 2N „ 2 ­ 2 X i ( p i ­ p 2 ) ( ^ f l n p 2 + ( l i ) + ( p 3 ­ p 2 ) ­ 2 p 3 ( l n p 3 ­ l n p 2 )

ß.

— + λΑνί <-8.1+9) r a akj-u

1 [Xa(pî + ln"0 e^g^lnp^X^I­pl i^lnp^aiyfr l ­pl i^pldnps­ ln^)]^­ +

+ Γλi(ρt,·lnΓ2+c^i)+λa(îí■lnT,3) + ( lnE°­ lnT">J eak_

• Δ " λ β ( ρ ^ 1 η Ρ

o

(8 .50 )

With given parameters, a l l these coe f f i c i en t s are of course simple numerical va lues .

When s u b s t i t u t i n g the coe f f i c i en t s in to the formulas (8.25) to (8 .33) , one ¿ e t s

(for Δ, see 8.1+1+ ) :

® i ( R > ( 1 ­ ^ ) ® i k + ^ Γ 2 λ3 ( ρ 3 ­ Ε ? ) ( ρ 7 ­ i n p a + ^ l n p * ) + ( p l ­ p f ) ­ 2 r l ( l n p 3 ­ l n p ) ^

- , 2

k\ u

λ .q.

Δ ak (8.51)

Page 45: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

τ JJL (åln&L _^£ -f £, V 2 . 2 " i p 2 ­ 1

ik

λ. /„2-/P^IUPJL ­4+4i)["2Xa^­P8)(57 ­1ηρ3+ρΤ + : n p 4 ) +(P?­Ps)­2pl(lnp3­lnP2)

- i 2 1 wr 4λ

u

λ. / 2 , h /Palnp2 _i + λ Θ + A { ?2_Λ 2 +*ί) °ak

©i(paR)= [i—I ( ΐ η ρ β + ^ ΐ ] ® ^ *

(8.5a)

( lnp2+q. )^ a (p?-p i ) (^ | -1ηρ3+^-τ-1ηρ*) +(p?-pf)-2pl(lnp3-lnpa)J^y- + ^ u

ι

Δ ( i » p » + * i > ® a k (8.53)

1 Γ /ß °* Ν ~~ ®u(p2R)= ^ Xa(p7 ­lnp3+^+lnp4:J + ( lnp 3 ­ lnp 2 ) °ik

+

i (h Δ I pa

"4 f^T+lnP2+ÇLi 2 \ ( p 3 ­ p l ) ( r j ­ l n p 3 + ­ J +lnp*J +(p3­pf)­2pl(lnp»­lnTte) 2 2v ­ 2

n\mi + 4 λ

u

■A f—^­lnp2 + q . ] ® ,, Δ yp 2 ' * *ij ak Ce-54)

Page 46: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

1= ι u Λ

r , / a ­, °"a ­, \ ­, p 3 l n n 3 ­ p g l n p ? 1 ] ^ KÍ^T ­ I n p s + ^ T + l n p * J + l n p 3 ­ *—g 2 2* í k

/ Γ3 -Ρ ί> -ayp3 Ρ * pa­Píí

2

♦ í ^ ^ X ^ *%^^^yia(£-in*.^.y**'i ^g 2 2

Η I n p 3 ­ I n p 2 2_P3­pa P 3 2

2._2> ,_2 Jt\-\*m?-+ 2λ

+ Δ

w 2 2 N / P Í , \ / P a Ί τ ι „ J V . . „ N ( l n P 3 - l r a > a ) ( p ã + n a ) - ( p 3 - T i á ) i \ ( p a - P a ) ( ^ + l n p 2 + q i A p T - ^ - ^ l n p ^ + - * 2 Ά u

λ 1 n ^ l n p 2 + q i ) " l n p VP2

2 2 ρ31η·η3-ρ21ητ>2 1

»2+1 § 2 2 p 3 - p 2

Θ ak ( 8 .55 )

λ_/β e u (p3R)=-^( i f - l n p a + ^ l n p * ) ® ^ +

X a / ß a q a + ­ T Í ­ 2 , ­ l n p a + r ^ l n p *

Δ\,Ρ3 P4 2X i (p i ­p Í )^ ­ |+ lnp2+q i j ­ ( p l ­ P a ) + 2 p 3 ( l n p 3 ­ 3 m ^ ) J -z-

u

+ ι λ/­is­lnpa+q^ ) + (lnp3­lnp2) Θ ak

(8.56)

co

0a(p3R)=­f ( ­ lnP3 + ^­ lnp*)Q i k +

+­ |Γ­1ηρ 3+­^1ηρΛΓ2λ j ( p i ­ p i ) ( ' ^ ­ l n p 2 + q i J ­ ( p l ­ p l ) + 2 p l ( l n p 3 ­ l n p a ) J ^ | ~

r λ >­ α

¡J­­^(­m.3+^inp, ak ( 8 .57 )

Page 47: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

■ V ρ|ΐηΡ4-υ231ηρ3 1 Λ ^ λ η

Ja~ Δ 2 2 P 4 - p 3 g- +—+mr.i«lk

^.ρξΐηυγίΐητ, . + Λ_ > ^ n p ^ x ^ ^ ) ^ , , , , ^ .(„?.„» )+2p§ (,ηρ.-ΐηρ,)] =£ +

~ ι U

+ AV 2 2 +2 ρ* ΐ η ρ · V Ρ 4 - Ρ 3 ^ *

Θ ak

Ø a(p*R) =

a p *

Δ í ? l k +

a p 4

2λ· (pi­pi)^^+ lnp2+q i ' ) ­ (p i ­p i )+2pi(lnp3­lnp2)~]V­%­ +Λ­

u

( 8 . 5 8 )

% ap­t

Λ 6 ak

(θ­5"9)

9. The final ­presentation of the solutions 00

By s u b s t i t u t i n g the s t a t iona ry so lu t ions (6.51) to (8.59) ­ the input be ing aga in

time­dependent ­ into (7.31) e t c . , one ¿ e t s the f i n a l p resen ta t ion of the searched so lu t i ons :

%(^t)=@ik(t)+^[@ak(t)­®lk(t)+[2Xa(pi­p2)(^ ­Inp.^lnp*) + ( p 2 ­ p i ) _ 2 p I ( l n p 3 _ l n ? 0 ] ^ ¿ }

+ ^Zì [^ [ Ϊ1η (^*)^νν*Κ„ίβη(ΐ)-·βκ(ί)]] C9.1)

ë i ( t ) = e ( t ) + ­ | ( P î i2

L n p a ­ ^ α Λ curved bracket equal t o the f i r s t one in ( ^ ( R . t ) ] λ, , 2

¿Ζ

P 2 +

¿, J ^iJ'inCtì-eirftìl+VVCtÌH-Vt^Ctì^t)]] C9.2)

Page 48: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

® i ( p r P , t ) = © j k ( t ) + ­ ~ ( l n p 2 + q j ) | curved b r a n k e t equal to the f i r s t one in R . ( R , t ) ) +

+ ^)-ric- [P. (t)­©.. (t)]+c f (t)+c rf ( t ) ­ è , ( t ) ] ì (ci A) /j^­J­ ^ m L i n v ' ík ­ pn p r r y a n L anv ' akv y j j \?·!)

3 q ©,(pt>R,t)= τ) M Ja ^

tU ρ 3 U

­lnp3+r—f­lnp* J + ( ] n p 3 ­ l n p 2 ) 0 i icCt) +

h ^(^·1πρ2^.)[2λα(ρ23­­ρ1)^ ­ l n p a + îs+ ln3^ + (p 2 ­p I ) ­2pf ( ]n P 3­ lnp2) ]^¿ +

( " . ' , )

r /ß V*»= í X a ( í 7 - ΐηρβ^ ΐηρ*) + Inj.- P^p^arn,, + Π ( t )

7 P a - D s —I +

^ ( J i . m p ^ o . . ) -top, ,piinp3-glimg . i P 3 - P 2

% ( * > +

í\fr­p­^)(2^ '-Tj^ ­ ^ ^ H é -^h^)(: 2rii m p 3 ­ l n p 2 2 nÍ­r,?A

p 3 ­ p 2

I n r i t ,, η 4 *y\ ° 2 Ρ

Τ ) 3 ­ ρ 2

2X1Xa(p|­pl)/îi tlnpa+qiY^. ­lnpa+Xlnp.) ^(ΐ"Ρ3-1πΡ;!)(ρ1+ρ|)-(ρ1-ρ1)

+ v2V-J-H [^»^"^'"^^^^pnV^'^an^an^'-V^j]

w ( t ) P ' 1+λ u

( 9 . 5 )

Page 49: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

©u(f3R,t)= ¿ _ λ1 ( ^ +lnp2+qiV(lnp3­lnp2) %*M

+

KrA Δ

Κ/

a P3

Π

■lnp*l 2X1(pi­pi)^^i+inpa+qiJ ­(pi­pi)+2p3(lnps­lnpa) _a

P4 WÍt. )R

¿

ux u

+ ­Í(p7 ­ l n P ­ ^ » P * ) ^ k ( t ) + ' T Í [fin^n^)­^ik(t)]+fTnrpn(t) + fan[ran(t)­®ak(t)J

(9.6)

©a(p3R,t)=©ak(t)+­|C­lnp3Ålnp4)j®ik(t)­®, (t)+, P 4

2X^1^2)^-^+^ ¿¿λ ~ u

+ ^ S [smfrin(t)­ei!5(t)3 + gi)nrpn(t) + eantî"an(t)­èa)t(t)3] (9.7)

fí­en

λ / _2. Θ3^^"^^^+^( 'Ρ* n24"23 n P ß + 2 + lnP4jj curved bracket equal to the f i r s t one in O (paE.t)ì

v P4­P3 / I A a J +

•m r[h in[r i n(t)­e l k(t)]+ h p nrp n(t)+h a n[;­ a n(t)­e a k(t) j Ί (9.8)

©a(p*P,t)=øak(t)+

% ap* r

λ -2.

Δ L

+ v2V-¿fi. rf

curved bracket enual to the f i rs t one in Θ (p3R,t) ( + a

Y£h¿h¿^-k^) +3pnipn(t) + ieniían(t)4ak(t)]] (9.9)

Page 50: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

46 -

Δ is here always defined by (8.1+U) and must not be confused with the Δη in (2.7), (5.7), and in Chapter 6.

; Reference

[1 ] WUNDT, H., Transient Heat Conduction Through Heat Producing Layers, EUR U83U (e), 1972.

Page 51: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

C O R R I G E N D U M

EUR 4862 e TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL THREE-LAYER HOLLOW FUEL ELEMENT WITH INTERNAL AND EXTERNAL COOLING by H. Wundt

In the ABSTRACT please read EUR 4818 instead of EUR 4834

This corrigendum cancels and replaces the one previously distributed

Page 52: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method
Page 53: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

^ fw f iflmlra^siÇî·­ -■Kirnut

llllilfi 'Pm

Émtfmê

I To disseminate knowledge is to disseminate prosperity ­ ­ I mean

general prosperity and not individual riches — and with prosperity

disappears the greater part of the evil which is our heritage from M ■ ff '* ¡ p i l i » . . . I .

darker times. ° Α.,­et"βι­­i

1*! •••'Uni'«'

^ . f r e d Kobe.

iü «ntlHw må

Page 54: TRANSIENT HEAT CONDUCTION THROUGH A CYLINDRICAL …aei.pitt.edu/91695/1/4862.pdf · cient to integrate the;.heat conduction equation for the respec tive configuration "by any method

The Office for Official Publications sells all documents published by the Commission of the European Communities at the addresses listed below, at the price given on cover. When ordering, specify clearly the exact reference and the tit le of the document.

i Ί Ι Λ Φ Γ Γ M r ^ f f l B i i r W H H l í / t 'M ' i ' i i i iiiíW!Tiii'*'fiír a l l í f i f i a

„ . , Uttice Libreria dello Stato

P.O. Box 569 Piazza G. Verdi 10

London S.E1 00!98 Roma - Tel. (6) 85 09

CCP 1/2640

Agencies:

r:*»J M-l ' t j . iÜl l f rr f i i l i lC;

UNITED STATES OF AMERICA

european Community Information Service

2100 M Street, N.W.

1st J»Ï

00187 Roma —Via del Tritone 61/A e 61 /Β

00187 Roma — Via XX Settembre (Palazzo

Ministero delie finanze)

§20121 Milano — Galleria Vittorio Emanuele 3

80121 Napoli —Via Chiaia 5

50129 Firenze — Via Cavour 46/R

16121 Genova — Via XII Ottobre 172

40125 Bologna — Strada Maggiore 23/A

Suite 707

Washington, D.C. 20 037

ä'icih'nflliüs· BELGIUM

Moniteur belge — Belgisch Staatsblad

Rue de Louvain 40-42 — Leuvenseweg 40-42

1000 Bruxelles — 1000 Brussel — Tel. 12 00 26 's-Gravenhage — Tel. (070) 81 45 11

CCP 50-80 — Postgiro 50-80 Giro 425 300 CCP 50-80 — Postgiro 50-80

Agency :

Librairie européenne — Europese Boekhandel

Rue de la Loi 244 — Wetstraat 244

1040 Bruxelles — 1040 Brussel

Office for off ¡c

of

OF LUXEMBOURG

IRELAND

it St'a'i Office for official publications

the European Communities

Case postale 1003 — Luxembourg 1

and 29, rue Aldringen, Library

I. 4 79 41 — CCP 191-90

Compte courant bancaire: BIL 8-109/6003/200

•β»Hûm fMitaili^wfís FRANCE

Service de vente en

des Communautés ei

26, rue Desaix

75Pa r i s -15 - -Te l . l»TIi .* ' « ' «·

1*· ' l ' i «

r r P Parie OQ.QR

FRANCE

Service de vente en France des publications

des Communautés européennes

(1) 306.5100

CP Paris 23-96

Stationery Office

Beggar's Bush

SWITZERLAND

Librairie Payot

6, rue Grenus

1211 Genève

CCP 12-236 Genève

'm SWEDEN

va- *'·'**»,Λ wwSíSii Librairie CM. Fritze

2, Fredsgatan

Stockholm 16

NETHERLANDS

Staatsdrukkerij- en uitgeversbedrijf

Christoffel Plantijnstraat

lift·

w * Mitΐΐ' ■

luti m

fil

■· •EnCini'fe'if ' î«! f ¿Litiii '».-i^'Y '3>' ι ν* ' " i í W r l »"Τ

iSiilÉiiil GERMANY (FR)

Verlag Bundesanzeige/

5 Köln 1 — Postfach 108 006

Tel . (0221)2103 48

Telex : Anzeiger Bonn 08 882 595

Postscheckkonto 834 00 Köln C

5'W' * Post Giro 193, Bank Giro'73/4015

IMl! IXBVW' >»M»KÍfilt|i|)· SPAIN ¡«.jf,|4aji;'!lf

Castello, 37

Madrid 1

Ή

OTHER COUNTRIES Sales Office for official publications of the European Communities Case postale 1003 — Luxembourg 1 Tel. 4 79 41 — CCP 191 90 Compte courant bancaire: BIL 8-109/6003/200

OFFICE FOR OFFICIAL PUBLICATIONS OF THE EUROPEAN COMMUNITIES — Luxembourg 1

OFFICE FOR OFFICIAL Ρ

illlilie _ _ _

CDNA04862ENC