13
IKP15N60T TrenchStop ® Series q Power Semiconductors 1 Rev. 2.1 May 06 Low Loss DuoPack : IGBT in TrenchStop ® and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode Very low V CE(sat) 1.5 V (typ.) Maximum Junction Temperature 175 °C Short circuit withstand time – 5µs Designed for : - Frequency Converters - Uninterrupted Power Supply TrenchStop ® and Fieldstop technology for 600 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior - very high switching speed Positive temperature coefficient in V CE(sat) Low EMI Pb-free lead plating; RoHS compliant Very soft, fast recovery anti-parallel EmCon HE diode Qualified according to JEDEC 1 for target applications Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type V CE I C V CE(sat),Tj=25°C T j,max Marking Code Package IKP15N60T 600V 15A 1.5V 175°C K15T60 PG-TO-220-3-1 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage V CE 600 V DC collector current, limited by T jmax T C = 25°C T C = 100°C I C 30 15 Pulsed collector current, t p limited by T jmax I Cpuls 45 Turn off safe operating area (V CE 600V, T j 175°C) - 45 Diode forward current, limited by T jmax T C = 25°C T C = 100°C I F 30 15 Diode pulsed current, t p limited by T jmax I Fpuls 45 A Gate-emitter voltage V GE ±20 V Short circuit withstand time 2) V GE = 15V, V CC 400V, T j 150°C t SC 5 µs Power dissipation T C = 25°C P tot 130 W Operating junction temperature T j -40...+175 Storage temperature T stg -55...+175 Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s 260 °C 1 J-STD-020 and JESD-022 2) Allowed number of short circuits: <1000; time between short circuits: >1s. G C E PG-TO-220-3-1

Transistor IKP15N60T IGBT N 600V 15A TO-220 - Manual Sonigate

Embed Size (px)

DESCRIPTION

1 Rev. 2.1 May 06 q Low Loss DuoPack : IGBT in TrenchStop ® and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode Power Semiconductors TrenchStop ® Series 1 J-STD-020 and JESD-022 2) Allowed number of short circuits: 1s. V GE = 15V, V CC ≤ 400V, T j ≤ 150°C 260 A °C G C PG-TO-220-3-1 E 2)

Citation preview

IKP15N60T TrenchStop® Series q

Power Semiconductors 1 Rev. 2.1 May 06

Low Loss DuoPack : IGBT in TrenchStop® and Fieldstop technology

with soft, fast recovery anti-parallel EmCon HE diode

• Very low VCE(sat) 1.5 V (typ.) • Maximum Junction Temperature 175 °C • Short circuit withstand time – 5µs • Designed for :

- Frequency Converters - Uninterrupted Power Supply

• TrenchStop® and Fieldstop technology for 600 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior - very high switching speed

• Positive temperature coefficient in VCE(sat) • Low EMI • Pb-free lead plating; RoHS compliant • Very soft, fast recovery anti-parallel EmCon HE diode • Qualified according to JEDEC1 for target applications

• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type VCE IC VCE(sat),Tj=25°C Tj,max Marking Code Package

IKP15N60T 600V 15A 1.5V 175°C K15T60 PG-TO-220-3-1

Maximum Ratings

Parameter Symbol Value Unit

Collector-emitter voltage VC E 600 V DC collector current, limited by Tjmax TC = 25°C TC = 100°C

IC 30 15

Pulsed collector current, tp limited by Tjmax IC p u l s 45 Turn off safe operating area (VCE ≤ 600V, Tj ≤ 175°C) - 45

Diode forward current, limited by Tjmax TC = 25°C TC = 100°C

IF 30 15

Diode pulsed current, tp limited by Tjmax IF p u l s 45

A

Gate-emitter voltage VG E ±20 V

Short circuit withstand time2)

VGE = 15V, VCC ≤ 400V, Tj ≤ 150°C tS C 5 µs

Power dissipation TC = 25°C P t o t 130 W

Operating junction temperature T j -40...+175 Storage temperature T s t g -55...+175 Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s

260

°C

1 J-STD-020 and JESD-022 2) Allowed number of short circuits: <1000; time between short circuits: >1s.

G

C

E

PG-TO-220-3-1

IKP15N60T TrenchStop® Series q

Power Semiconductors 2 Rev. 2.1 May 06

Thermal Resistance

Parameter Symbol Conditions Max. Value Unit

Characteristic IGBT thermal resistance, junction – case

R t h J C 1.15

Diode thermal resistance, junction – case

R t h J C D 1.9

Thermal resistance, junction – ambient

R t h J A 62

K/W

Electrical Characteristic, at Tj = 25 °C, unless otherwise specified

Value Parameter Symbol Conditions

min. Typ. max. Unit

Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S VG E=0V, IC=0.2mA 600 - - Collector-emitter saturation voltage VC E ( s a t ) VG E = 15V, IC=15A

T j=25°C T j=175°C

- -

1.5 1.9

2.05

-

Diode forward voltage

VF VG E=0V, IF=15A T j=25°C T j=175°C

- -

1.65 1.6

2.05

-

Gate-emitter threshold voltage VG E ( t h ) IC=210µA,VC E=VG E 4.1 4.9 5.7

V

Zero gate voltage collector current

IC E S VC E=600V, VG E=0V T j=25°C T j=175°C

- -

- -

40 1000

µA

Gate-emitter leakage current IG E S VC E=0V,VG E=20V - - 100 nA Transconductance g f s VC E=20V, IC=15A - 8.7 - S Integrated gate resistor RG i n t - Ω Dynamic Characteristic Input capacitance C i s s - 860 - Output capacitance Co s s - 55 - Reverse transfer capacitance C r s s

VC E=25V, VG E=0V, f=1MHz - 24 -

pF

Gate charge QG a t e VC C=480V, IC=15AVG E=15V

- 87 - nC

Internal emitter inductance measured 5mm (0.197 in.) from case

LE - 7 - nH

Short circuit collector current1) IC ( S C ) VG E=15V, tS C≤5µs VC C = 400V, T j ≤ 150°C

- 137.5 - A

1) Allowed number of short circuits: <1000; time between short circuits: >1s.

IKP15N60T TrenchStop® Series q

Power Semiconductors 3 Rev. 2.1 May 06

Switching Characteristic, Inductive Load, at Tj=25 °C

Value Parameter Symbol Conditions

min. Typ. max. Unit

IGBT Characteristic Turn-on delay time td ( o n ) - 17 - Rise time t r - 11 - Turn-off delay time td ( o f f ) - 188 - Fall time t f - 50 -

ns

Turn-on energy Eo n - 0.22 - Turn-off energy Eo f f - 0.35 - Total switching energy E t s

T j=25°C, VC C=400V, IC=15A,VG E=0 /15V, RG=15Ω , Lσ

1 )=154nH, Cσ

1 )=39pF Energy losses include “tail” and diode reverse recovery. - 0.57 -

mJ

Anti-Parallel Diode Characteristic Diode reverse recovery time t r r - 34 - ns Diode reverse recovery charge Q r r - 0.24 - µC Diode peak reverse recovery current I r r m - 10.4 - A Diode peak rate of fall of reverse recovery current during tb

di r r /d t

T j=25°C, VR=400V, IF=15A, diF /d t=825A/µs

- 718 - A/µs

Switching Characteristic, Inductive Load, at Tj=175 °C

Value Parameter Symbol Conditions

min. Typ. max. Unit

IGBT Characteristic Turn-on delay time td ( o n ) - 17 - Rise time t r - 15 - Turn-off delay time td ( o f f ) - 212 - Fall time t f - 79 -

ns

Turn-on energy Eo n - 0.34 - Turn-off energy Eo f f - 0.47 - Total switching energy E t s

T j=175°C, VC C=400V, IC=15A,VG E=0/15V, RG= 15 Ω Lσ

1 )=154nH, Cσ

1 )=39pF Energy losses include “tail” and diode reverse recovery. - 0.81 -

mJ

Anti-Parallel Diode Characteristic Diode reverse recovery time t r r - 140 - ns Diode reverse recovery charge Q r r - 1.0 - µC Diode peak reverse recovery current I r r m - 14.7 - A Diode peak rate of fall of reverse recovery current during tb

di r r /d t

T j=175°C VR=400V, IF=15A, diF /d t=825A/µs

- 495 - A/µs

1) Leakage inductance Lσ and Stray capacity Cσ due to dynamic test circuit in Figure E.

IKP15N60T TrenchStop® Series q

Power Semiconductors 4 Rev. 2.1 May 06

I C, C

OLL

EC

TOR

CU

RR

EN

T

10Hz 100Hz 1kHz 10kHz 100kHz0A

10A

20A

30A

40A

TC=110°C

TC=80°C

I C, C

OLL

EC

TOR

CU

RR

EN

T 1V 10V 100V 1000V

0.1A

1A

10A

10µs

50µs

1ms

DC

tp=2µs

10ms

f, SWITCHING FREQUENCY VCE, COLLECTOR-EMITTER VOLTAGE Figure 1. Collector current as a function of

switching frequency (Tj ≤ 175°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 15Ω)

Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤175°C; VGE=15V)

P tot, P

OW

ER

DIS

SIPA

TIO

N

25°C 50°C 75°C 100°C 125°C 150°C0W

20W

40W

60W

80W

100W

120W

I C, C

OLL

EC

TOR

CU

RR

EN

T

25°C 75°C 125°C0A

10A

20A

30A

TC, CASE TEMPERATURE TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of

case temperature (Tj ≤ 175°C)

Figure 4. Collector current as a function of case temperature (VGE ≥ 15V, Tj ≤ 175°C)

Ic

Ic

IKP15N60T TrenchStop® Series q

Power Semiconductors 5 Rev. 2.1 May 06

I C, C

OLL

EC

TOR

CU

RR

EN

T

0V 1V 2V 3V0A

5A

10A

15A

20A

25A

30A

35A

40A

15V

7V

9V

11V

13V

VGE=20V

I C, C

OLL

EC

TOR

CU

RR

EN

T

0V 1V 2V 3V0A

5A

10A

15A

20A

25A

30A

35A

40A

15V

7V

9V

11V

13V

VGE=20V

VCE, COLLECTOR-EMITTER VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic

(Tj = 25°C) Figure 6. Typical output characteristic

(Tj = 175°C)

I C, C

OLL

EC

TOR

CU

RR

EN

T

0V 2V 4V 6V 8V0A

5A

10A

15A

20A

25A

30A

35A

25°C

T J=175°C

V CE(

sat),

CO

LLE

CTO

R-E

MIT

T S

ATU

RA

TIO

N V

OLT

AG

E

0°C 50°C 100°C 150°C0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

IC=15A

IC=30A

IC=7.5A

VGE, GATE-EMITTER VOLTAGE TJ, JUNCTION TEMPERATURE Figure 7. Typical transfer characteristic

(VCE=20V) Figure 8. Typical collector-emitter

saturation voltage as a function of junction temperature (VGE = 15V)

IKP15N60T TrenchStop® Series q

Power Semiconductors 6 Rev. 2.1 May 06

t, S

WIT

CH

ING

TIM

ES

0A 5A 10A 15A 20A 25A

1ns

10ns

100ns

t r

td(on)

t f

td(off)

t, S

WIT

CH

ING

TIM

ES

10Ω 20Ω 30Ω 40Ω 50Ω10ns

100ns

t r

td(on)

t f

td(off)

IC, COLLECTOR CURRENT RG, GATE RESISTOR Figure 9. Typical switching times as a

function of collector current (inductive load, TJ=175°C, VCE = 400V, VGE = 0/15V, RG = 15Ω, Dynamic test circuit in Figure E)

Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ = 175°C, VCE= 400V, VGE = 0/15V, IC = 15A, Dynamic test circuit in Figure E)

t, S

WIT

CH

ING

TIM

ES

25°C 50°C 75°C 100°C 125°C 150°C

10ns

100ns

t r

td(on)

t f

td(off)

V GE(

th),

GA

TE-E

MIT

T TR

SH

OLD

VO

LTAG

E

-50°C 0°C 50°C 100°C 150°C0V

1V

2V

3V

4V

5V

6V

7V

min.

typ.max.

TJ, JUNCTION TEMPERATURE TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a

function of junction temperature (inductive load, VCE = 400V, VGE = 0/15V, IC = 15A, RG=15Ω, Dynamic test circuit in Figure E)

Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.21mA)

IKP15N60T TrenchStop® Series q

Power Semiconductors 7 Rev. 2.1 May 06

E, S

WIT

CH

ING

EN

ER

GY

LO

SSE

S

0A 5A 10A 15A 20A 25A0.0m J

0.4m J

0.8m J

1.2m J

1.6m J

E ts*

E off

*) E on and E tsinc lude losses

due to diode recovery

E on*

E, S

WIT

CH

ING

EN

ER

GY

LO

SSE

S

0Ω 10Ω 20Ω 30Ω 40Ω 50Ω 60Ω 70Ω 80Ω0.2 mJ

0.4 mJ

0.6 mJ

0.8 mJ

1.0 mJ

1.2 mJ

1.4 mJ

1.6 mJ

E ts*

Eon*

*) Eon and E ts include losses

due to diode recovery

Eoff

IC, COLLECTOR CURRENT RG, GATE RESISTOR Figure 13. Typical switching energy losses

as a function of collector current (inductive load, TJ = 175°C, VCE = 400V, VGE = 0/15V, RG = 15Ω, Dynamic test circuit in Figure E)

Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ = 175°C, VCE = 400V, VGE = 0/15V, IC = 15A, Dynamic test circuit in Figure E)

E, S

WIT

CH

ING

EN

ER

GY

LO

SSE

S

25°C 50°C 75°C 100°C 125°C 150°C0.2mJ

0.3mJ

0.4mJ

0.5mJ

0.6mJ

0.7mJ

0.8mJ

0.9mJ

E ts*

Eon*

*) Eon and E ts include losses

due to diode recovery

Eoff

E, S

WIT

CH

ING

EN

ER

GY

LO

SSE

S

300V 350V 400V 450V0.0mJ

0.2mJ

0.4mJ

0.6mJ

0.8mJ

1.0mJ

1.2mJ

E ts*

Eon*

*) E on and E ts include losses

due to diode recovery

E off

TJ, JUNCTION TEMPERATURE VCE, COLLECTOR-EMITTER VOLTAGE Figure 15. Typical switching energy losses

as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/15V, IC = 15A, RG = 15Ω, Dynamic test circuit in Figure E)

Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, TJ = 175°C, VGE = 0/15V, IC = 15A, RG = 15Ω, Dynamic test circuit in Figure E)

IKP15N60T TrenchStop® Series q

Power Semiconductors 8 Rev. 2.1 May 06

V GE, G

ATE

-EM

ITTE

R V

OLT

AG

E

0nC 20nC 40nC 60nC 80nC 100nC0V

5V

10V

15V

480V

120V

c, C

AP

AC

ITA

NC

E

0V 10V 20V 30V 40V 50V10pF

100pF

1nF

C rss

C oss

C iss

QGE, GATE CHARGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 17. Typical gate charge

(IC=15 A) Figure 18. Typical capacitance as a function

of collector-emitter voltage (VGE=0V, f = 1 MHz)

I C(s

c), s

hort

circ

uit C

OLL

EC

TOR

CU

RR

EN

T

12V 14V 16V 18V0A

50A

100A

150A

200A

t SC, S

HO

RT

CIR

CU

IT W

ITH

STA

ND

TIM

E

10V 11V 12V 13V 14V0µs

2µs

4µs

6µs

8µs

10µs

12µs

VGE, GATE-EMITTETR VOLTAGE VGE, GATE-EMITETR VOLTAGE Figure 19. Typical short circuit collector

current as a function of gate-emitter voltage (VCE ≤ 400V, Tj ≤ 150°C)

Figure 20. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C, TJmax<150°C)

IKP15N60T TrenchStop® Series q

Power Semiconductors 9 Rev. 2.1 May 06

Z thJ

C, T

RA

NS

IEN

T TH

ER

MA

L R

ESI

STA

NC

E

1µs 10µs 100µs 1ms 10ms 100ms10-2K/W

10-1K/W

100K/W

single pulse0.01

0.020.05

0.1

0.2

D=0.5

Z thJ

C, T

RA

NS

IEN

T TH

ER

MA

L R

ESI

STA

NC

E

1µs 10µs 100µs 1ms 10ms 100ms10-2K/W

10-1K/W

100K/W

single pulse

0.01

0.02

0.05

0.1

0.2

D=0.5

tP, PULSE WIDTH tP, PULSE WIDTH Figure 21. IGBT transient thermal resistance

(D = tp / T) Figure 22. Diode transient thermal

impedance as a function of pulse width (D=tP/T)

t rr, R

EV

ER

SE R

EC

OVE

RY

TIM

E

400A/µs 600A/µs 800A/µs0ns

40ns

80ns

120ns

160ns

200ns

TJ=25°C

TJ=175°C

Qrr, R

EV

ER

SE

RE

CO

VE

RY

CH

ARG

E

400A/µs 600A/µs 800A/µs0.0µC

0.2µC

0.4µC

0.6µC

0.8µC

1.0µC

TJ=25°C

TJ=175°C

diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery time as

a function of diode current slope (VR=400V, IF=15A, Dynamic test circuit in Figure E)

Figure 24. Typical reverse recovery charge as a function of diode current slope (VR = 400V, IF = 15A, Dynamic test circuit in Figure E)

R , ( K / W ) τ , ( s ) 0.06991 1.11*10-1 60.43036 2.552*10-2

0.53839 3.914*10-3 0.58718 4.92*10-4 0.23695 7.19*10-5 0.03700 7.4*10-6

C 1=τ1 /R 1

R 1 R2

C 2=τ2 /R 2

R , ( K / W ) τ , ( s ) 0.13265 5.67*10-2 0.37007 1.558*10-2

0.30032 2.147*10-3 0.34701 2.724*10-4

C 1=τ1 /R 1

R 1 R2

C 2=τ2 /R 2

IKP15N60T TrenchStop® Series q

Power Semiconductors 10 Rev. 2.1 May 06

I rr, R

EV

ER

SE

RE

CO

VE

RY

CU

RR

EN

T

400A/µs 600A/µs 800A/µs0A

2A

4A

6A

8A

10A

12A

14A

16A

TJ=25°C

TJ=175°C

dirr/

dt, D

IOD

E P

EAK

RAT

E O

F FA

LL

OF

REV

ER

SE

RE

CO

VE

RY

CU

RR

EN

T

400A/µs 600A/µs 800A/µs0A/µs

-100A/µs

-200A/µs

-300A/µs

-400A/µs

-500A/µs

-600A/µs

-700A/µs

TJ=25°C

TJ=175°C

diF/dt, DIODE CURRENT SLOPE diF/dt, DIODE CURRENT SLOPE Figure 25. Typical reverse recovery current

as a function of diode current slope (VR = 400V, IF = 15A, Dynamic test circuit in Figure E)

Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=400V, IF=15A, Dynamic test circuit in Figure E)

I F, F

OR

WA

RD

CU

RR

EN

T

0V 1V 2V0A

10A

20A

30A

40A

175°C

TJ=25°C

V F, F

OR

WA

RD

VO

LTAG

E

0°C 50°C 100°C 150°C0.0V

0.5V

1.0V

1.5V

2.0V

15A

IF=30A

7.5A

VF, FORWARD VOLTAGE TJ, JUNCTION TEMPERATURE Figure 27. Typical diode forward current as

a function of forward voltage

Figure 28. Typical diode forward voltage as a function of junction temperature

IKP15N60T TrenchStop® Series q

Power Semiconductors 11 Rev. 2.1 May 06

PG-TO-220-3-1

IKP15N60T TrenchStop® Series q

Power Semiconductors 12 Rev. 2.1 May 06

Figure A. Definition of switching times

Figure B. Definition of switching losses

Ir r m

90% Ir r m

10% Ir r m

di /dtF

tr r

IF

i,v

tQS Q

F

tS

tF

VR

di /dtr r

Q =Q Qr r S F

+t =t tr r S F

+

Figure C. Definition of diodes switching characteristics

p(t)1 2 n

T (t)j

τ11

τ22

nn

τ

TC

r r

r

r

rr

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Leakage inductance Lσ =60nH and Stray capacity Cσ =40pF.

IKP15N60T TrenchStop® Series q

Power Semiconductors 13 Rev. 2.1 May 06

Edition 2006-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 11/20/06. All Rights Reserved. Attention please! The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.