6
Relaying Quantities During Swings The performance of protective relaying during electro-mechanical oscillations and out-out-step conditions illustrated by considering the following system: (a) Schematic diagram (b) Equivalent circuit Fig. 13.36 Two machine system The current I is given by The voltage at bus C is T B A Z E E I 0 ~ δ = I Z E E A A C ~ ~ ~ =

TSA8

  • Upload
    adau

  • View
    218

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TSA8

7/27/2019 TSA8

http://slidepdf.com/reader/full/tsa8 1/6

Page 2: TSA8

7/27/2019 TSA8

http://slidepdf.com/reader/full/tsa8 2/6

The apparent impedance seen by animpedance relay at C looking towards the

line is given by 0 E E 

E Z Z 

I ~

I ~

Z E ~

I ~

E ~

B A

AT A

AAC C 

∠∠∠∠−

−−−∠

∠∠∠

∠∠∠∠++++−−−−====

−−−−========

δ  δδ  δ  

δ  δδ  δ  

−−−−∠∠∠∠−−−−∠∠∠∠++++−−−−====

10 1

Z Z Z  T 

AC δ  δδ  δ  

If EA=EB=1.0 pu

(((( ))))(((( ))))

      

      −−−−

      

       −−−−====

   

      

    ++++−−−−++++−−−−====

++++++++++++−−−−====

++++∠∠∠∠++++∠∠∠∠−−−−∠∠∠∠−−−−∠∠∠∠

++++∠∠∠∠++++∠∠∠∠++++−−−−====

2 cot 

2 Z  j Z 

2 Z 

sin 2 

cos 1 j 

1Z Z 

sin  j 2 

sin  j cos 1Z Z 

10 110 1

10 1

Z Z 

T A

T A

T A

T A

δ  δδ  δ  

δ  δδ  δ  

δ  δδ  δ  

δ  δδ  δ  

δ  δδ  δ  δ  δδ  δ  

δ  δδ  δ  δ  δδ  δ  

Page 3: TSA8

7/27/2019 TSA8

http://slidepdf.com/reader/full/tsa8 3/6

During a swing, the angle δ changes.Fig. 13.37 shows the locus of Z C as a

function of δ on an R-X diagram, whenEA=EB

Fig. 13.37 Locus of Z C  as a function of δδδδ, with E A=E B 

Page 4: TSA8

7/27/2019 TSA8

http://slidepdf.com/reader/full/tsa8 4/6

• When E A and E B are equal, the locus of Z C  is seen to be a straight line which is theperpendicular bisector of the total system impedance between A and B, i.e., of theimpedance ZT

 – the angle formed by lines from A and B to

any point on the locus is equal to thecorresponding angle δ

• When δ=0, the current I is zero and Z C  is infinite

 • When δ=180°, the voltage at the electrical centre is zero

 – the relay at C in effect will see a 3-phasefault at the electrical centre. The electricalcentre and impedance centre coincide inthis case.

• If E A is not equal to E B , the apparent impedance loci are circles, with their centres onextensions of the impedance line AB 

• When E A>E B , the electrical centre will be above the impedance centre; when E A<E B ,

the electrical centre will be below the impedance centre. Fig. 13.38 illustrates theshape of the apparent impedance loci for three different values of the ratio E A / E B .

Page 5: TSA8

7/27/2019 TSA8

http://slidepdf.com/reader/full/tsa8 5/6

Fig. 13.38 Loci of ZC with different values of EA/EB

Page 6: TSA8

7/27/2019 TSA8

http://slidepdf.com/reader/full/tsa8 6/6

• For generators connected to the main system through a weak transmission system (high external impedance), the electrical centre may appear on the transmission line

• When a generator is connected to the main system through a strong transmission system , the electrical centre will be in the step up transformer or possibly within the

generator itself• Electrical centres in effect are not fixed points: effective machine reactance and the

magnitudes of internal voltages vary during dynamic conditions.

• Voltage at the electrical centre drops to zero as δ increases to 180°and thenincreases in magnitude as δ increases further until it reaches 360°

  – when δ reaches 180 , the generator willhave slipped a pole ; when δ reaches theinitial value where the swing started, one

slip cycle will have been completed.