293
2017 Integrated Resource Plan Page ‐ 1   2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company

Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

Embed Size (px)

Citation preview

Page 1: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐1

   

2017 Integrated Resource Plan

April 3, 2017

Tucson Electric Power Company

Page 2: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐2

 

Page 3: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐3

Acknowledgements 

TucsonElectricPowerCompanyIRPTeamJeffYockey,Manager,EnvironmentalandLong‐TermPlanningVictorAguirre,Manager,ResourcePlanningKevinBattaglia,LeadResourcePlannerLucThiltges,LeadResourcePlannerLeeAlter,SeniorResourcePlannerErnestoBlancoJr,Fuels,SeniorPortfolioAnalystHenryCattan,FuelsandResourcePlanningGregStrang,LeadForecastingAnalystStephanieBrowne‐Schlack,SeniorForecastingAnalystDebbieLindeman,Supervisor,EnergyEfficiencyPlanningAnalysis&ReportingRonBelval,Manager,RegionalTransmissionPlanningGaryTrent,Manager,TransmissionPlanningChristopherLindsey,Manager,DistributionEngineering&TechnicalEnergyServicesRichardBachmeier,PrincipalRateDesigner,Rates&RevenueRequirementsLaurenBriggs,Manager,BalancingAuthorityFunctionSamRugel,Director,SystemControl&ReliabilityMichaelBowling,Director,WholesaleMarketingNicoleBell,RenewableForecastingandTradingAnalystMichaelBaruchSupervisor,ResidentialEnergyEfficiencyPrograms&ServicesJeffKrauss,Manager,RenewableEnergyTedBurhans,Manager,RenewableEnergyJoeBarrios,Supervisor,MediaRelations&RegulatoryCommunicationsCarmineTilghman,SeniorDirector,EnergySupply&RenewableEnergyErikBakken,SeniorDirector,TransmissionandEnvironmentalServicesMikeSheehan,SeniorDirector,FuelsandResourcePlanning

IRPConsultantsandForecastingServicesPaceGlobalhttp://www.paceglobal.com/GaryW.Vicinus,ExecutiveVicePresident‐ConsultingServicesMelissaHaugh‐ConsultingServicesAnantKumar‐ConsultingServicesBrianKwak–ConsultingServiceChuckFan–ConsultingServicesWoodMackenzie‐ConsultingServiceshttp://public.woodmac.com/public/homeEPIS‐AuroraXMPSoftwareConsultingServiceshttp://epis.com/

Page 4: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐4

TableofContentsACKNOWLEDGEMENTS.......................................................................................................................3 TucsonElectricPowerCompanyIRPTeam........................................................................................................................................3 IRPConsultantsandForecastingServices...........................................................................................................................................3 

ACRONYMS............................................................................................................................................13 FORWARD..............................................................................................................................................17 CHAPTER1............................................................................................................................................19 EXECUTIVESUMMARY.......................................................................................................................19 Introduction....................................................................................................................................................................................................19 CoalPlantRetirements...............................................................................................................................................................................20 RenewableEnergyIntegrationandDiversification......................................................................................................................21 GridBalancingResources.........................................................................................................................................................................22 SmartGridOperations................................................................................................................................................................................22 RegionalInfrastructureProjects............................................................................................................................................................23 TransformationofDesertSouthwestWholesalePowerMarkets...........................................................................................23 RegionalTransmissionOrganizations.................................................................................................................................................24 MarketFundementals.................................................................................................................................................................................24 EnergyEfficiency..........................................................................................................................................................................................25 ANewIntegrationApproachtoResourcePlanning......................................................................................................................26 Summaryofthe2017IRPReferenceCasePlan..............................................................................................................................27 PlannedCoalPlantRetirements.............................................................................................................................................................27 PlannedRenewableResourceAdditions...........................................................................................................................................27 PlannedGridBalancingResources.......................................................................................................................................................27 PlannedEnergyEfficiencyCommitments..........................................................................................................................................27 TEP’s2017IRPReferenceCasePlan...................................................................................................................................................28 

CHAPTER2............................................................................................................................................31 ENERGYDEMANDANDUSEPATTERNS.......................................................................................31 LoadForecast.................................................................................................................................................................................................31 GeographicalLocationandCustomerBase.......................................................................................................................................32 CustomerGrowth..........................................................................................................................................................................................33 RetailSalesbyRateClass..........................................................................................................................................................................34 ReferenceCaseForecast............................................................................................................................................................................35 Methodology...................................................................................................................................................................................................35 ReferenceCaseRetailEnergyForecast...............................................................................................................................................36 ReferenceCaseRetailEnergyForecastbyRateClass..................................................................................................................37 ReferenceCasePeakDemandForecast..............................................................................................................................................38 DataSourcesUsedinForecastingProcess........................................................................................................................................39 RiskstoReferenceCaseForecastandRiskModeling...................................................................................................................39 FirmWholesaleEnergyForecast...........................................................................................................................................................40 SummaryofReferenceCaseLoadForecast......................................................................................................................................41 FutureDriversthatMayInfluencetheLong‐TermLoadForecast.........................................................................................42 ElectricVehicles............................................................................................................................................................................................43 FutureAdoptionRateInfluencers.........................................................................................................................................................45 

Page 5: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐5

Policy..................................................................................................................................................................................................................45 BatteryTechnology......................................................................................................................................................................................45 GridImpacts....................................................................................................................................................................................................46 SmartGrid........................................................................................................................................................................................................47 TheFutureoftheDistributionGrid......................................................................................................................................................47 

CHAPTER3............................................................................................................................................49 OPERATIONALREQUIREMENTSANDRELIABILITY................................................................49 LoadandResourceAdequacy.................................................................................................................................................................49 Future Load Obligations .......................................................................................................................................... 51 

System Resource Capacity ....................................................................................................................................... 52 

TypicalDispatchProfiles...........................................................................................................................................................................53 BalancingAuthorityOperations.............................................................................................................................................................55 Control Performance Standard (CPS) ...................................................................................................................... 58 

Balancing Authority ACE Limit (BAAL) ..................................................................................................................... 58 

Disturbance Control Standard (DCS) ....................................................................................................................... 58 

Frequency Response Measure (FRM) ...................................................................................................................... 58 

Reserves ................................................................................................................................................................... 59 

Load Following ........................................................................................................................................................ 59 

Adjustments to Operating Reserve .......................................................................................................................... 61 

Frequency Response ................................................................................................................................................ 61 

Inertia ...................................................................................................................................................................... 62 

Voltage Support ....................................................................................................................................................... 62 

Power Quality .......................................................................................................................................................... 63 

DISTRIBUTIONSYSTEMENHANCEMENTS.................................................................................64 DistributionCapacityExpansion...........................................................................................................................................................64 New 138kV Substations ........................................................................................................................................... 64 

Benefits Realized from New Substations ................................................................................................................. 64 

Existing Substation Upgrades .................................................................................................................................. 65 

4kV System Conversion ............................................................................................................................................ 65 

4KV System Conversion Benefits ............................................................................................................................. 65 

CLEANENERGYSTANDARDS...........................................................................................................66 RenewableEnergyStandardCompliance..........................................................................................................................................66 EnergyEfficiencyStandardCompliance.............................................................................................................................................66 Utility‐SpecificStandardDerivedThroughtheIRPProcess.....................................................................................................67 

RENEWABLEENERGYINTEGRATION...........................................................................................68 OperationalChallenges..............................................................................................................................................................................68 ShiftingNetPeak...........................................................................................................................................................................................70 WeatherForecastingtoSupportSystemDispatch........................................................................................................................71 

ENVIRONMENTALREGULATIONS..................................................................................................73 Overview...........................................................................................................................................................................................................73 Regional Haze .......................................................................................................................................................... 73 

Clean Power Plan ..................................................................................................................................................... 74 

CPP Overview .......................................................................................................................................................... 75 

Arizona .................................................................................................................................................................... 76 

Page 6: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐6

Navajo Nation ......................................................................................................................................................... 76 

New Mexico ............................................................................................................................................................. 76 

PACE Global Arizona CPP Analysis ........................................................................................................................... 77 

National Ambient Air Quality Standards ................................................................................................................. 79 

PowerGenerationandWaterResources...........................................................................................................................................80 PowerGenerationandWaterImpactsofResourceDiversification......................................................................................81 

CHAPTER4............................................................................................................................................83 ANEWINTEGRATIONAPPROACHTORESOURCEPLANNING.............................................83 LoadModifyingResources........................................................................................................................................................................84 RenewableLoadServingResources.....................................................................................................................................................84 ConventionalLoadServingResources................................................................................................................................................84 GridBalancingResources.........................................................................................................................................................................84 TypicalSummerDayCategorizedbyResourceRequirements................................................................................................85 TypicalWinterDayCategorizedbyResourceRequirements...................................................................................................86 

RESOURCESMATRIX..........................................................................................................................87 ResourceBenchmarking............................................................................................................................................................................87 SourceData......................................................................................................................................................................................................88 Lazard’sLevelizedCostofEnergyAnalysis......................................................................................................................................89 OverviewonConventionalandAlternativeEnergyTechnologies.........................................................................................89 Lazard’sLevelizedCostofStorageAnalysis.....................................................................................................................................90 OverviewonEnergyStorageTechnologies......................................................................................................................................90 CostCompetitiveStorageTechnologies.............................................................................................................................................90 FutureEnergyStorageCostDecreases...............................................................................................................................................91 2017IntegratedResourcePlanLevelizedCostComparisons..................................................................................................92 LCOEAssumptions–AllResources......................................................................................................................................................92 2017LevelizedCostofAllResources..................................................................................................................................................93 Load Modifying Resources – Cost Assumptions ...................................................................................................... 94 

LCOE Assumptions for Load Modifying Resources .................................................................................................. 95 

Renewable Load Serving Resources – Cost Assumptions ........................................................................................ 96 

LCOE Assumptions for Load Serving Resources – Renewables ................................................................................ 97 

Conventional Load Serving Resources – Cost Assumptions ..................................................................................... 98 

LCOEAssumptionsforLoadServingResources–Conventional............................................................................................99 Grid Balancing Resources – Cost Assumptions ...................................................................................................... 100 

LCOE Assumptions for Grid Balancing Resources .................................................................................................. 101 

RenewableElectricityProductionTaxCredit(PTC)..................................................................................................................102 EnergyInvestmentTaxCredit(ITC).................................................................................................................................................103 Solar Technologies ................................................................................................................................................. 103 

Impacts of Declining Tax Credits and Technology Installed Costs ......................................................................... 104 

Impacts of Declining PTC and Technology Installed Costs ..................................................................................... 105 

CHAPTER5.........................................................................................................................................107 LOADMODIFYINGRESOURCES....................................................................................................107 EnergyEfficiency.......................................................................................................................................................................................107 2017 Implementation Plan, Goals, and Objectives ................................................................................................ 107 

Planning Process .................................................................................................................................................... 108 

Page 7: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐7

Program Screening ................................................................................................................................................ 108 

Utility Resource Cost Test ...................................................................................................................................... 109 

Total Resource Cost ............................................................................................................................................... 109 

Participant Cost Test ............................................................................................................................................. 109 

Rate Impact Measure Test .................................................................................................................................... 110 

Societal Cost Test ................................................................................................................................................... 110 

CurrentEnergyEfficiencyandDSMPrograms.............................................................................................................................110 

RESOURCEPLANNINGINTEGRATION.......................................................................................112 DSMForecasting........................................................................................................................................................................................112 LoadShapeResults...................................................................................................................................................................................114 EnergyEfficiencyTechnologySummary.........................................................................................................................................117 

DISTRIBUTEDENERGYRESOURCES..........................................................................................118 SolarPhotovoltaicDGSystemsOverview.......................................................................................................................................119 TypicalSystemComponents:...............................................................................................................................................................119 ConfigurationofTypicalPVSystems................................................................................................................................................120 SolarHotWaterHeaters.........................................................................................................................................................................121 IntegralCollectorStorage(ICS)PassiveDirectSystem............................................................................................................122 ThermosiphonPassiveDirectSystem..............................................................................................................................................122 TypicalInstallations.................................................................................................................................................................................123 DistributedGenerationTechnologySummary.............................................................................................................................123 

CHAPTER6.........................................................................................................................................125 LOADSERVINGRESOURCES.........................................................................................................125 RenewableEnergy.....................................................................................................................................................................................125 Solar PV Technology .............................................................................................................................................. 126 

Solar Resource Characteristics .............................................................................................................................. 127 

PhotovoltaicSolarPowerTechnology.............................................................................................................................................128 Flat‐PlatePVSystems..............................................................................................................................................................................129 SolarPVTechnologySummary...........................................................................................................................................................131 U.S. Solar Map ....................................................................................................................................................... 132 

Arizona Solar Power Map ...................................................................................................................................... 133 

ConcentratingPhotovoltaics(CPV)...................................................................................................................................................135 CPVTechnologySummaryandCosts...............................................................................................................................................135 ConcentratingSolarPowerTechnology(CSP).............................................................................................................................136 Power Tower CSP Systems ..................................................................................................................................... 136 

CSP Technology Summary and Costs ..................................................................................................................... 137 

IvanpahSolarElectricGeneratingStation......................................................................................................................................138 StirlingEngineDishTechnology.........................................................................................................................................................140 ParabolicTroughPowerPlants(PTPP)...........................................................................................................................................142 ParabolicTroughPowerPlantTechnology...................................................................................................................................144 Mojave PTPP Project ............................................................................................................................................. 144 

HybridizedConfigurationwithNaturalGasCo‐Firing..............................................................................................................145 StorageConfigurationbasedonTwo‐TankMoltenSaltSystem...........................................................................................145 SolanaGeneratingStation......................................................................................................................................................................146 WindPower..................................................................................................................................................................................................148 Resource Characteristics ....................................................................................................................................... 148 

Page 8: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐8

U.S. Wind Resource Map ....................................................................................................................................... 148 

ArizonaWindResourcePotential......................................................................................................................................................151 NewMexicoWindResourceMap.......................................................................................................................................................152 NewMexicoWindResourcePotential.............................................................................................................................................153 Wind Technology Summary ................................................................................................................................... 155 

Bioenergy/Bio‐Resources......................................................................................................................................................................156 Arizona Biomass Map ............................................................................................................................................ 157 

New Mexico Biomass Map .................................................................................................................................... 158 

Biomass Technology Overview .............................................................................................................................. 159 

Biomass Technology Summary and Costs ............................................................................................................. 160 

NaturalGasResources.............................................................................................................................................................................160 NGCC Technology Summary .................................................................................................................................. 161 

CoalResources............................................................................................................................................................................................162 Pulverized Coal Technology Summary and Costs .................................................................................................. 163 

Integrated Gasification Combined‐Cycle (IGCC) .................................................................................................... 163 

Coal Market Prices ................................................................................................................................................ 164 

NuclearResources.....................................................................................................................................................................................165 Small Modular Nuclear Reactors ........................................................................................................................... 165 

PermittingandTimetoCommercialOperation...........................................................................................................................167 SMR Technology Summary .................................................................................................................................... 167 

CHAPTER7.........................................................................................................................................169 GRIDBALANCINGANDLOADLEVELINGRESOURCES..........................................................169 EnergyStorage............................................................................................................................................................................................169 PumpedHydro‐Power .......................................................................................................................................... 169 CompressedAirEnergyStorage(CAES) .............................................................................................................. 170 Batteries ................................................................................................................................................................ 170 Flywheels ............................................................................................................................................................... 170 

Energy Storage Applicability ................................................................................................................................. 171 

Energy Storage Technology Summary ................................................................................................................... 173 

Batteries ................................................................................................................................................................ 173 

Pumped Hydro ....................................................................................................................................................... 173 

Compressed Air Energy Storage ............................................................................................................................ 173 

FastResponseThermalGeneration..................................................................................................................................................174 Reciprocating Internal Combustion Engines .......................................................................................................... 174 

RICE Technology Summary .................................................................................................................................... 176 

Large Frame Combustion Technology Summary ................................................................................................... 176 

Aeroderivative Combustion Turbine Technology Summary .................................................................................. 177 

DemandResponse.....................................................................................................................................................................................177 Demand Response Technology Summary.............................................................................................................. 178 

Utilityinstalledthermostatsandswitchesatcustomersiteusedtocontrolcustomerdemand...........................178 RateDesign...................................................................................................................................................................................................178 DemandRates.............................................................................................................................................................................................179 Time‐VaryingRates..................................................................................................................................................................................179 DistributedGeneration...........................................................................................................................................................................179 TEPRateDesign.........................................................................................................................................................................................180 

Page 9: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐9

DesertSouthwestWholesalePowerMarkets‐Transformation..........................................................................................181 WholesalePowerMarketOverview..................................................................................................................................................181 Non‐DispatchableRenewableMustRunResources..................................................................................................................181 ImpactsonBaseloadGenerationResources..................................................................................................................................182 Reduction in Overall Natural Gas Demand and Commodity Prices ....................................................................... 183 

ArizonaGasStorageProject..................................................................................................................................................................184 KinderMorgan2017OpenSeason....................................................................................................................................................184 

CHAPTER8.........................................................................................................................................185 REGIONALTRANSMISSIONPLANNING.....................................................................................185 Overview........................................................................................................................................................................................................185 Ninth Biennial Transmission Assessment .............................................................................................................. 185 

Reliability Must Run (RMR) Assessment ................................................................................................................ 185 

Ten Year Snapshot Study ....................................................................................................................................... 185 

Extreme Contingency Study ................................................................................................................................... 185 

Effects of Distributed Generation and Energy Efficiency Programs ...................................................................... 185 

WestConnect................................................................................................................................................................................................186 WECC...............................................................................................................................................................................................................187 Multi‐Regional&Interconnection‐WideTransmissionPlanning........................................................................................188 EvolvingResourceMixChallenges.....................................................................................................................................................188 KeyIssues:....................................................................................................................................................................................................189 OtherRegionalTransmissionProjects.............................................................................................................................................190 NogalesDCIntertie...................................................................................................................................................................................190 SunziaSouthwestTransmissionProject.........................................................................................................................................191 TheSouthlineTransmissionProject.................................................................................................................................................192 WesternSpiritCleanLine......................................................................................................................................................................193 EnergyImbalanceMarkets....................................................................................................................................................................194 CAISO – Energy Imbalance Market EIM ................................................................................................................ 194 

RegionalTransmissionOrganizations(RTOs).............................................................................................................................197 

CHAPTER9.........................................................................................................................................199 TEPEXISTINGRESOURCES...........................................................................................................199 TEP’sExistingResourcePortfolio......................................................................................................................................................199 CoalResources............................................................................................................................................................................................201 SpringervilleGeneratingStation.........................................................................................................................................................202 SanJuanGeneratingStation..................................................................................................................................................................203 NavajoGeneratingStation.....................................................................................................................................................................204 FourCornersPowerPlant.....................................................................................................................................................................205 H.WilsonSundtGeneratingStation..................................................................................................................................................206 LunaEnergyFacility.................................................................................................................................................................................207 GilaRiverGeneratingStation...............................................................................................................................................................208 CombustionTurbines..............................................................................................................................................................................209 FuturePlantoMovetoCyclingOperations...................................................................................................................................210 ExistingRenewableResources............................................................................................................................................................211 

EXISTINGFIXEDAXISSOLARPVPROJECTS............................................................................212 Springerville Solar .................................................................................................................................................. 212 

Page 10: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐10

Solon / TEP UASTP II .............................................................................................................................................. 213 

Gato Montes .......................................................................................................................................................... 213 

Solon Prairie Fire ................................................................................................................................................... 214 

Ft. Huachuca – Phase I .......................................................................................................................................... 215 

Ft. Huachuca Phase‐II ............................................................................................................................................ 215 

EXISTINGSINGLEAXISTRACKINGPROJECTS........................................................................216 Cogenera ............................................................................................................................................................... 216 

Solon UASTP I ........................................................................................................................................................ 216 

E.ON UASTP ........................................................................................................................................................... 217 

Picture Rocks ......................................................................................................................................................... 217 

E.ON Valencia ........................................................................................................................................................ 218 

Avalon Solar I and II ............................................................................................................................................... 218 

Red Horse Solar II .................................................................................................................................................. 219 

NRG Solar .............................................................................................................................................................. 220 

EXISTINGCONCENTRATINGPVPROJECTS..............................................................................221 Amonix UASTP II .................................................................................................................................................... 221 

White Mountain .................................................................................................................................................... 222 

EXISTINGCONCENTRATINGSOLARPOWERPROJECTS......................................................222 Areva Solar ............................................................................................................................................................ 223 

EXISTINGWINDRESOURCES........................................................................................................224 Macho Springs ....................................................................................................................................................... 224 

Red Horse 2 Wind Project ...................................................................................................................................... 225 

EXISTINGBIOMASSPROJECTS.....................................................................................................226 Sundt Biogas .......................................................................................................................................................... 226 

TEP’sEnergyStorageProjects.............................................................................................................................................................227 DistributedGenerationResources.....................................................................................................................................................228 Davis Monthan Air Force Base Distributed Generation Project ............................................................................. 229 

TRANSMISSION.................................................................................................................................230 Overview........................................................................................................................................................................................................230 TEP’sExistingTransmissionResources..........................................................................................................................................230 Pinal Central to Tortolita 500 kV Transmission Upgrade ...................................................................................... 231 

Pinal West to South Upgrade Project .................................................................................................................... 232 

CHAPTER10.......................................................................................................................................233 FUTURERESOURCEREQUIREMENTS........................................................................................233 FutureEnergyEfficiencyAssumptions............................................................................................................................................233 FutureRenewableEnergyAssumptions.........................................................................................................................................234 Technology Considerations .................................................................................................................................... 236 

Diversity of Resources ........................................................................................................................................... 236 

Utility Scale Project Ownership ............................................................................................................................. 236 

FutureGridBalancingResources.......................................................................................................................................................237 Energy Storage ...................................................................................................................................................... 237 

Fast Response Thermal Generation ....................................................................................................................... 238 

DemandResponse.....................................................................................................................................................................................239 FutureTransmission................................................................................................................................................................................240 

Page 11: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐11

Ten‐Year Transmission Plan .................................................................................................................................. 240 

Transmission Substation Reconfiguration Projects ............................................................................................... 240 

Conceptual Future Local Area 345 kV EHV Transmission Projects ........................................................................ 240 

Transmission Resources Needed for New Generating Resources .......................................................................... 241 

CHAPTER11.......................................................................................................................................243 ALTERNATIVEFUTURESCENARIOSANDFORECASTSENSITIVITIES............................243 PACE Alternative Future Scenarios ........................................................................................................................ 243 

NaturalGasPrices.....................................................................................................................................................................................245 CoalPrices.....................................................................................................................................................................................................246 CapitalCosts.................................................................................................................................................................................................247 PaloVerde(7x24)MarketPrices........................................................................................................................................................249 LoadGrowthScenarios...........................................................................................................................................................................250 High Load Scenario ................................................................................................................................................ 251 

Low Load Scenario ................................................................................................................................................. 251 

FUEL,MARKETANDDEMANDRISKANALYSIS......................................................................252 Permian Natural Gas Prices ................................................................................................................................... 253 

Permian Natural Gas Price Distributions ............................................................................................................... 254 

Palo Verde (7x24) Wholesale Power Prices ........................................................................................................... 255 

Palo Verde (7x24) Market Price Distributions ....................................................................................................... 256 

Load Variability and Risk ....................................................................................................................................... 257 

CHAPTER12.......................................................................................................................................259 REFERENCECASEPLAN..................................................................................................................259 Resource Diversification ........................................................................................................................................ 259 

Loads and Resource Assessment ........................................................................................................................... 260 

Addition of Resources to Meet System Requirements ........................................................................................... 261 

Addition of Load Serving Resources ...................................................................................................................... 261 

Addition of Grid Balancing and Load Leveling Resources ...................................................................................... 261 

Reference Case Plan Summary and Timeline ........................................................................................................ 261 

ReferenceCasePlanAttributes...........................................................................................................................................................264 Existing Renewable Integration Requirements ..................................................................................................... 265 

Reference Case Plan Renewable Integration Requirements .................................................................................. 266 

Clean Power Plan Compliance ............................................................................................................................... 267 

ReferenceCasePlanRiskDashboard................................................................................................................................................269 

LOADGROWTHSCENARIOANALYSIS.......................................................................................271 High Load Scenario ................................................................................................................................................ 271 

Low Load Scenario ................................................................................................................................................. 272 

CHAPTER13.......................................................................................................................................273 ALTERNATIVEPORTFOLIOS........................................................................................................273 OverviewoftheEnergyStoragePortfolio......................................................................................................................................274 OverviewoftheSMR‐FullCoalRetirementPortfolio..............................................................................................................276 OverviewofExpandedEnergyEfficiency.......................................................................................................................................277 OverviewoftheExpandedRenewablePortfolio.........................................................................................................................279 

Page 12: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐12

OverviewofMajorIRPAssumptionsbyPortfolio......................................................................................................................281 SummaryofNPVRevenueRequirementsbyScenario.............................................................................................................282 SummaryofNPVRevenueRequirements–BaseCaseScenario..........................................................................................283 SummaryofNPVRevenueRequirements–HighEconomyScenario................................................................................284 SummaryofNPVRevenueRequirements–HighTechnologyScenario...........................................................................285 DistributionofNPVRevenueRequirementsbyPortfolio.......................................................................................................286 DistributionofNPVRevenueRequirementsbyPortfolio.......................................................................................................287 NPVRRMeanandWorstCaseRisk....................................................................................................................................................288 

CHAPTER14.......................................................................................................................................289 FIVE‐YEARACTIONPLAN..............................................................................................................289  

PACEGLOBALFUTURESTATESOFTHEWORLD.................................................APPENDIXA 2017FLEXIBLEGENERATIONTECHNOLOGYASSESSMENT.............................APPENDIXB 

Page 13: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐13

ACRONYMS  ACC–ArizonaCorporationCommissionACE–AreaControlErrorANPR–AdvancedNoticeofProposedRulemakingAPS–ArizonaPublicServiceCompanyBA–BalancingAuthorityBART–BestAvailableRetrofitTechnologyBcf–BillionCubicFeetBES–BulkElectricSystemBEV–BatteryElectricVehiclesBTA–BiennialTransmissionAssessmentBtu–BritishThermalUnitC&I–CommercialandIndustrialCAES–CompressedAirEnergyStorageCBM–CoalBedMethaneCC–CombinedCyclePlantTechnologyCCCT–CombinedCycleCombustionTurbineCCR–CoalCombustionResidualsCCS–CarbonCaptureandSequestration;CarbonCaptureandStorageCFL–CompactFluorescentLightBulbCAISO‐CaliforniaIndependentSystemOperatorCO2–CarbonDioxideCPP–CleanPowerPlanCSP–ConcentratingSolarPowerCT–CombinedTurbineDER–DistributedEnergyResourcesDG‐DistributedGenerationDOE–U.S.DepartmentofEnergy(Federal)DLC–DirectLoadControlDMS–DistributionManagementSystemDR–DemandResponseDSM–DemandSideManagementEAF–EquivalentAvailabilityFactorEE–EnergyEfficiencyEIA‐EnergyInformationAdministrationEIM–EnergyImbalanceMarketELCC–EffectiveLoadCarryingCapacityEMS–EnergyManagementSystemEPA‐EnvironmentalProtectionAgencyEPRI–ElectricPowerResearchInstituteEPS–EmissionPerformanceStandard

ListofAcronyms

Page 14: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐14

ERC–EmissionRateCreditESS–EnergyStorageSystemEV–ElectricVehiclesFERC–FederalEnergyRegulatoryCommissionFIP–FederalImplementationPlanGIS–GeographicInformationSystemGHG–GreenhouseGasGW–Gigawatt,GWh–Gigawatt‐HourHAPS–HazardousAirPollutantsHEV–HybridElectricVehicleHRSG–HeatRecoverySteamGeneratorIGCC–IntegratedGasificationCombinedCycleIRP–IntegratedResourcePlanISCC–IntegratedSolarCombinedCycleITC–InvestmentTaxCreditkW–KilowattkWh–Kilowatt‐HourkWyr–Kilowatt‐YearLCOE–LevelizedCostofElectricityLNG–LiquefiedNaturalGasMACT–MaximumAvailableControlTechnologyMcf–MillionCubicFeetMMBtu–MillionBritishThermalUnits,alsoshownasMBtuMBtu–MillionBritishThermalUnits,alsoshownasMMBtuMW–MegawattMWh–Megawatt‐HourNAAQ–NationalAmbientAirQualityStandardsNaS–SodiumSulphurNASNRC–NationalAcademiesofScienceNationalresearchCouncilNEC–NavopacheElectricCooperativeNERC‐NorthAmericanElectricReliabilityCorporationNGCC–NaturalGasCombinedCycleNGS–NavajoGeneratingStationNMED–NewMexicoEnvironmentalDepartmentNNT–No‐NoticeTransportationNOX–NitrogenOxide(s)NPV–NetPresentValueNPVRR–NetPresentValueRevenueRequirementNRC–NuclearRegulatoryCommissionNREL–NationalRenewableEnergyLaboratoryNSPS–NewSourcePerformanceStandardsNTUA–NavajoTribalUtilityAuthorityO&M–OperationsandMaintenancePEV–Plug‐inElectricVehiclesPM‐ParticulatematterPNM–PublicServiceCompanyofNewMexicoPPA‐PurchasedPowerAgreement

Page 15: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐15

PTC–ProductionTaxCreditPSD–PreventionofSignificantDeteriorationR&D–ResearchandDevelopmentRCRA–ResourceConservationandRecoveryActREC–RenewableEnergyCreditRES–RenewableEnergyStandardRICE–ReciprocatingInternalCombustionEngineRFP–RequestforProposalROB–ReplaceonBurnoutROD–RecordofDecisionROW–RightofWayRTO‐RegionalTransmissionOrganizationRTP–RenewableTransmissionProjectRUCO‐ResidentialUtilityConsumerOfficeSAT–Single‐AxisTrackingSCADA–SupervisoryControlandDataAcquisitionSCE–SouthernCaliforniaEdisonSCR–SelectiveCatalyticReductionSCT–SocietalCostTestSCCT–SimpleCycleCombustionTurbineSGS–SpringervilleGeneratingStation(akaSpringerville)SIP–StateImplementationPlanSJCC–SanJuanCoalCompanySJGS–SanJuanGeneratingStationSMR–SmallModular(Nuclear)ReactorSNCR–SelectiveNon‐CatalyticReductionSRP–SaltRiverProjectSRSG–SouthwestReserveSharingGroupSO2–SulfurDioxideSTG–SteamTurbineGeneratorSWEEP–SouthwestEnergyEfficiencyProjectTEP–TucsonElectricPowerCompanyTOU–Time‐of‐UseTOUA‐TohonoO’odhamUtilityAuthorityTRICO–TricoElectricCooperativeUES–UniSourceEnergyServices(ParentCompanyofUNSElectric)UAMPS‐UtahAssociatedMunicipalPowerSystemVAR–Volt‐AmpereReactive;ReactivePowerWECC‐WesternElectricityCoordinatingCouncil

Page 16: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐16

 

Page 17: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐17

Forward As our community grows and changes, Tucson Electric Power (TEP) must evolve to continue satisfying the energy needs of our customers with a more flexible and responsive resource portfolio. Our 2017 Integrated Resource Plan (IRP) reflects our ongoing transformation from a traditional utility to a more technology and consumer‐focused provider of energy products and services – a shift that must be accomplished without sacrificing reliability, convenience or affordability.   TEP will continue to diversify its generation portfolio and reduce its significant reliance on coal by expanding cost‐effective renewable resources, particularly solar. Our goal is to serve at least 30 percent of our retail load from renewable resources by 2030 – twice the level TEP must achieve by 2025 under Arizona's Renewable Energy Standard. We also will continue to rely on energy efficiency measures while investing in cleaner burning natural gas resources.  We anticipate making significant progress toward that goal by adding approximately 800 megawatts (MW) of renewable energy capacity by 2030. We recently signed an agreement with NextEra Energy Resources LLC., to purchase power from a new 100 MW wind facility. We’re also evaluating proposals for a new 100 MW‐dc solar facility that would be built and owned by a project partner. Both projects are scheduled for completion in 2019.  Amid such change, we also must maintain access to and control of reliable, cost‐effective conventional generating resources. To that end, TEP recently replaced a long‐term lease with full ownership and control of Unit 1 at the Springerville Generating Station – Arizona’s newest, most efficient coal plant. This will allow our resource portfolio to remain appropriately balanced during planned reductions of coal‐fired resources at the San Juan and Navajo Generating Stations.  Our increasingly diverse, sustainable generation portfolio will create operational challenges that require new ways of managing the intermittency and variability of renewable resources. Through a partnership with the University of Arizona, we are using unique and highly customized forecasting models to predict our solar and wind systems’ next‐day production. These predictions help us make more informed decisions about real‐time system dispatch.  We’re also making greater use of energy storage systems, which can boost power output levels more quickly than conventional generating resources to maintain the required balance between energy demand and supply. Such systems are expected to rapidly decline in cost over the next several years. TEP recently completed three energy storage projects with a combined capacity of 22 MW that are designed to provide grid‐balancing resources such as frequency response and regulation and voltage support. We also are planning investments in flexible, fast‐responding reciprocating internal combustion engines that will provide capacity and assist in mitigating power fluctuations associated with renewable resources. Such systems can run efficiently at varying loads without regard to frequent starts and cycling operations.  Renewable resources, energy efficiency measures and demand response technologies will play increasingly prominent roles in our future resource plans. Renewable resource costs are becoming competitive with conventional generation, while energy efficiency remains the lowest‐cost option. That said, building the most reliable and cost‐effective portfolio requires us to consider the price, benefits and feasibility of each resource option in relation to existing infrastructure, environmental factors and other operating conditions unique to our company.  That’s why we believe utility‐specific clean energy standards should be determined through the IRP process instead of mandatory, numeric‐driven statewide standards.  This report also describes how new smart grid technologies identified in TEP’s 10‐year transmission and distribution plans would improve service reliability by providing increased system capacity and contingency support for the distribution network. These network upgrades will support the grid of the future with integration of technologies like remote switching that can help prevent and minimize service interruptions.  New technologies will continue to create new energy choices for consumers and new options for utilities. TEP must remain flexible and focused on managing resources in ways that adapt to such changes while maintaining progress toward achieving a sustainable portfolio that preserves safe, reliable and affordable service.  David G. Hutchens President and CEO 

Page 18: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐18

 

Page 19: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐19

 

CHAPTER 1 

 EXECUTIVE SUMMARY Introduction

Forthelast50years,TucsonElectricPower(TEP)hasreliedonafleetofbaseloadcoalplantstomeetthemajorityofcustomers’energyneeds.CustomerusageandpeakdemandsteadilyandoftenrapidlyincreasedasmoreandmorepeoplemovedtoTucsonforitsfavorableclimate.Naturalgasfiredsteamboilersandcombustionturbines,aswellaspurchasedpower,providedtheadditionalcapacityneededtomeetsummerpeakdemand.Duringthistimetheprimaryresourceplanningchallengewastomeetthiseverincreasingsystempeakeconomicallygivenhighvolatilityinnaturalgasandwholesalepowerprices.

Presently,manynewfactorshavecomeintoplay,somecompeting,somecomplimentary,thatnecessitatevaryingfromthestatusquo.Changingcustomerusepatternshaveresultedinlowerloadgrowth,yetthereexiststhepotentialfornewopportunitiesthatwillrequirecommunicationandcoordinationbetweencustomersandthegrid.Operatingrequirementsrelatingtoreliability,gridsecurity,cleanenergystandards,andenvironmentalcompliancearebecomingcontinuouslymorestringentatthesametimethatwepreparefortheoperatingchallengesrelatingtointegratinghigherlevelsofrenewableenergy.Resourceeconomicsandenvironmentalconsiderationshaveshiftedthehistoricallystrongpreferenceforcoal,toamorebalanceduseofcoal,naturalgas,andrenewableresources.Givenallthesechanges,weneedtoviewresourcesdifferently,tobebetteralignedwiththeroleeachresourceplaysinmeetingtheeconomicalandreliabledeliveryofenergytoourcustomers.

Furthermore,thetraditionalroleofresourceplanningitselfhaschanged.Whilewestillmustprovideforreliableandsafepowerataffordablerates,ourstakeholdersexpectustoachievethoseobjectiveswhileimprovingenvironmentalperformanceandmitigatingrisk.Tomeettheseexpandedobjectives,TEPmustbepreparedtomakesignificantchangeswhilemaintainingoptionalitytoaccountfortheuncertaintyinherentinalong‐termoutlook.

TEP’s2017IntegratedResourcePlanidentifiesthecurrentandanticipatedchangesfacingtheutilityindustry,andTEPspecifically,andoutlinesaplantomeetourcustomers’energyneedsinlightofthesechanges.TheIRPpresentsasnapshotofcurrentloadsandresourcesandprojectsfutureenergyandcapacityneedsthrough2032.TEPpresentsthe2017ReferenceCasePlanthatprovidesareasonablepathforwardintermsofreliability,affordability,environmentalperformanceandrisk.

Page 20: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐20

CoalPlantRetirements

AspartofTEP’slonger‐termportfoliodiversificationstrategy,theCompanyisreducingitssignificantrelianceoncoaltoapproximately38%ofretailenergydeliveries.Overthenextfiveyears,TEPwillreduceitscoal‐firedcapacityby508MWthroughplannedretirements.TEPplanstoexitSanJuanGeneratingStation(“SanJuan”)Unit2attheendof2017,exittheNavajoGeneratingStation(“Navajo”)attheendof2019,andexitSanJuanUnit1attheendofJune20221.TheseplannedcoalretirementswillenableTEPtotakeadvantageofnear‐termopportunitiestoreducecostsandrebalanceitsresourceportfoliooverthelonger‐term.Thisreductionincoalresourceswillresultinsignificantcostsavings2forTEPcustomersandwillresultinmeaningfulreductionsinairemissionsandwaterconsumption3.Finally,TEP’slong‐termcommitmentstocleanenergyresourceswillhelpminimizetheCompany’slong‐termenvironmentalriskwhilelockinginlower‐costsustainablesourcesofenergyfordecadestocome.

Figure1‐TEP2017IRPReferenceCaseTimelineforCoalUnitRetirements

1OnMarch16,2107,PNMannouncedthattheircurrentIRPanalysisconcludedthatretiringtheremainingtwounitsattheSanJuanGeneratingStationintheFarmingtonareain2022couldprovidelong‐termbenefitsforitscustomers.https://www.pnm.com/031617‐irp2Aspartofthe2014IRPanalysis,TEPavoidedapproximately$165inpollutioncontrolswithitscommitmenttoretireSanJuanUnit2attheendof2017.Inthe2017IRPanalysis,TEP’scustomerswillrealizeanadditionalnetpresentvaluesavingsofapproximately$179millionrelatedtotheretirementofTEP’sownershipinterestinNavajoattheendof2019andtheretirementofTEP’sownershipinterestinSanJuanUnit1attheendofJune2022.3TheretirementofbothNavajoandSanJuanUnits1and2resultsinreductionsinTEP’stotalsystememissionsof15.8%forcarbondioxide(CO2),29.8%fornitrousoxides(NOx),and9.8%forsulfurdioxide(SO2).Inaddition,theretirementoftheNavajoandSanJuanunitsshowwaterconsumptionisreducedbyapproximately2,599acrefeetperyear,anoverallsavingsof16.18%.

Page 21: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐21

RenewableEnergyIntegrationandDiversification

TEPwillcontinuetoexpanditsportfolioofrenewableenergyresourcesasacomponentofouroverallresourcediversificationplanaswellasourtargetedgoalofserving30%ofretailloadwithrenewableenergyby2030.AsTEPexpandsitsrenewableenergyportfolio,theCompanycontinuestoevaluatethemostcost‐effectiveoptionsavailable.TheCompanyexpectstohaveahigherpercentageofsolarresources,primarilyduetofavorableproductioncurves,lowcosts,andlackofavailabletransmissiontoimportotherresources.TEP’sresourcemixwillalsoincludelargescalewindresourcesineasternArizonaandNewMexicothatareabletoutilizeexistingtransmissionfacilities,includingexpectedavailablecapacityfromplannedplantretirements,andnewlargeregionaltransmissionprojects.

TEP’srenewableenergytargetwillcomewithitsownsetofchallengesandwillrequireTEPtotransitiontoamoreflexibleandresponsivegenerationportfolio.Utility‐scalesolarPVthatistiedtothedistributiongridhassubstantialbenefits,andifproperlyplannedandsitedmaycontributetoreducedlinelosses,apportionedcapacityreductions(generationandtransmission),alongwithenvironmentalbenefits.However,alargeaccumulationofsolarPVinTEP’sportfoliointroducesoperationalchallengesatcertaintimesoftheyearasillustratedinthefigurebelow,showingahypothetical2030winterday.

TEP’sportfoliomusthavethecapabilitytoaccommodatetherapidrampingrequirements(upanddown)thatoccuroncertaindays,andstrategiesareneededtotakeadvantageoftheovergenerationthatmayoccur.

Initially,Arizona’scleanenergystandardsrelatingtorenewableenergyandenergyefficiencyprovidedthecatalystforthesedramaticchanges.Goingforward,futurecleanenergytargetsshouldbedevelopedonautility‐by‐utilitybasis.Whilethesestandardshaveproducedrealandtangiblebenefits,cleanenergystandardsappliedatastatewidelevelareinherentlyinflexible,andfailtotakeintoaccounttheuniquecircumstancesofeachutility.Thisinflexibilitycreatesinefficienciesinresourceacquisitionsandsystemdispatch,whichultimatelyresultsinhighercostspassedontocustomers.TEPbelievesthattheIRPisabettermechanismtodeveloputility‐specificcleanenergytargetsthanastate‐wide,“onesizefitsall”rulemaking.TheIRPprovides

Page 22: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐22

themostholisticconsiderationoftheverygoalsthatcleanenergystandardsaimtoachieve,whilebalancingthecostofachievingthosegoalsforourcustomers.

GridBalancingResources

AspartofTEP’s2017ReferenceCasePlan,plannedenergystoragesystemswillplayagreaterroleintheintegrationofmorerenewableenergyintoTEP’sresourceportfolio.Theseenergystoragesystemswillbereadilyavailabletoprovideancillarypowerservicessuchasfrequencyresponse,regulationandvoltagesupportthataremorechallengingtomaintainunderthedemandsofasystemwithhighlevelsofrenewableenergypenetration.

Inaddition,newfaststart,fastrampingthermalresourceswithmechanicalinertiawillalsohavetobeaddedinordertohelpbalancegridoperations.Reciprocatinginternalcombustionengines(RICEs)arefastresponseresourcesdesignedtoflexiblydispatchtomeetchangesinloadandcanprovide100%oftheireffectiveloadcarryingcapability(ELCC)duringpeakperiods.Theseunitsarenotdegradedbythenumberofstart‐ups,asarecombustionturbines,andtheyarecapableofrunningatanefficientheatrateevenat30%oftheirdesignedcapacity.A10MWunitcanidledownto3MWsunderspinandstandreadytoreacttosystemdisturbancesorrenewableintermittentvariabilityasneeded.4

Undertoday’sDirectLoadControl(DLC)programs,TEPisabletorelyonapproximately12MWofinterruptiblecommercialandindustrialloadstoreducesummerpeakingcapacityrequirements.Aspartofthe2017IRPReferencePlan,TEPplanstoevaluatethecost‐effectivenessoffutureDLCprograms.FutureDLCprogramswillbeproposedaspartoftheCompany’sannualEEimplementationfilings.InordertoachievehigherlevelsofDLC,TEPwouldlikelyneedtoexpanditsDLCprogramdesignbeyondtheCommercialandIndustrialsectors.Goingforward,ratherthanfocusingspecificallyonsummerpeakingrequirements,TEPintendstotransitionfromconventionalpeakshavingdemandresponse(DR)programstomoreadvancedDRprograms5thatarecapableofcost‐effectivelyaddressinggridbalancingneedssuchasshort‐runrampsanddisturbancesattimescalesrangingfromsecondsuptoanhour,throughouttheyear.

SmartGridOperations

TheadoptionofnewgridbalancingresourceswillplayamajorroleinprovidingTEP’sBalancingAuthority(BA)withthetoolsneededtomaintainsystemreliabilitywithhigherlevelsofintermittentresources.Inaddition,aspartofthe2017ReferenceCasePlan,TEPispreparingitsfuturegridoperationstoaccommodatehigherlevelsofdistributedenergyresourcesandothersmartgridinnovationsthroughtheuseofsmartdigitalnetworks.Thisstrategyismuchdifferentthanhowthedistributionsystemhasbeenmanagedinthepast.Atthecoreofthesesmartnetworkchangesistheneedforadigitalcommunicationsnetworkthatwillallowforintelligentelectronicdevicestobeinstalledonthedistributionsystembybothcustomersandtheutility.Thiscommunicationnetworkwillbemanagedthroughtheuseofadistributionmanagementsystem(DMS)thatwillprocesstheinformationfromthesedevicesandmakedecisionsinamannerthatoptimizesgridoperationsforthebenefitoftheutilityanditscustomers.

4Aspartofthiscurrentresourceplanningcycle,TEPconductedaFlexibleGenerationTechnologyAssessment(SeeAppendixB).TheresultsofthisstudyindicatethattheRICEtechnologyisthepreferredresourcethatwillprovidecapacityandassistinmitigatingrenewableenergyintermittencyandvariability.TEPplanstomoveforwardwithageneratingresourcemodernizationplanatSundtoverthenextfewyearstointegratethesefaststart,fastresourcesinthe2020and2022timeframes.5LawrenceBerkeleyNationalLaboratory.CaliforniaDemandResponsePotentialStudy‐ChartingCalifornia’sDemandResponseFuture,November2016.http://www.cpuc.ca.gov/WorkArea/DownloadAsset.aspx?id=6442451541

Page 23: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐23

RegionalInfrastructureProjects

TEPispoisedtotakeadvantageofseverallargeenergy‐relatedinfrastructureprojectsthataredevelopinginthesouthwesternUnitedStates.TherearethreelargetransmissionprojectsproposedforinterconnectionineasternandsoutheasternArizonathatmayinfluenceTEP’slong‐termresourceplanningdecisions.

TheSunZiaSouthwestTransmissionProject(“SunZia”)isaproposeddouble‐circuit500kVlinethatwilloriginateincentralNewMexicoataproposedsubstationnearAncho,NewMexicoandterminateattheproposedPinalCentralsubstationnearCasaGrande,Arizona.Anotherproposedproject,theSouthlineTransmissionProject,hasanewbuildportionandanupgradeportion.Thenewbuildsectionwouldinvolvetheconstructionofapproximately240milesofnew345kVdouble‐circuitelectrictransmissionlinesinNewMexicoandArizona.Theupgradesectionisadouble‐circuit230‐kVlinesconnectingtheApacheSubstationtotheexistingSaguaroSubstationnorthwestofTucson,Arizona.Additionally,theproposedWesternSpiritCleanLinewillcollectrenewablepowerfromeast‐centralNewMexicoanddeliveritviaanapproximately140‐miletransmissionlinetotheexistingelectricgridinnorthwesternNewMexicowhereitinterconnectswiththeTEPtransmissionsystematSanJuan.

Eachoftheseprojects,shouldtheybebuilt,wouldofferTEPanopportunitytotapintohighcapacitywindsitesinNewMexicoaswellaslargesolarfacilitieslocatedalongtheroute.

Inaddition,TEPandUNSElectricareinvolvedinthedevelopmentoftheNogalesInterconnectionProject,aproposeddirectcurrentinterconnection,whichwillallowforanasynchronousinterconnectionbetweentheelectricgridsinsouthernArizonaandthenorthwestregionofMexico.Theprojectwillsupportthereliabilityoftheelectricsystem,includingprovidingbidirectionalpowerflowandvoltagesupport,aswellasemergencyassistance,asneeded,fortheelectricsystemsbothnorthandsouthoftheborder.

TransformationofDesertSouthwestWholesalePowerMarkets

EnergyImbalanceMarkets(EIMs)aredesignedtocreateamarketopportunityforbalancingloadsandresourcesgiventheintermittentcharacteristicsofwindandsolarresources.AnEIMcanaggregatethevariabilityofresourcesacrossmuchlargerfootprintsthancurrentbalancingauthoritiesandacrossmultiplebalancingauthorityareas.Thesubhourlyclearing,insomecasesdownto5minutes,potentiallyprovideseconomicadvantagetoparticipantsinthemarket.

In2014,PacifiCorpjoinedtheCaliforniaIndependentSystemOperator(CAISO)EIM,andsincethattimeseveralotherutilitiesincludingArizonaPublicServicehavejoinedorcommittedtojoinbyacertaindate.ParticipantsintheEIMexpecttorealizeatleastthreebenefits: 

Produceeconomicsavingstocustomersthroughlowerproductioncosts ImprovevisibilityandsituationalawarenessforsystemoperationsintheWesternInterconnection Improveintegrationofrenewableresources

TEPcontractedwiththeenergyconsultingfirmE3toperformastudytoevaluatetheeconomicbenefitsofTEPparticipatingintheenergyimbalancemarket.TheprojectanalysisbeganinFebruary2016andwascompletedinDecember,2016.BasedontheresultsoftheE3studyTEPestimatesanannualbenefitofapproximately$2.5million.However,itisexpectedthatthisbenefitwilldiminishovertime.TEPhasstartedtheprocessofdeterminingtherelevantcostsassociatedwithjoiningtheCAISOEIMmarketaswellasevaluatingwhatotherwesternEIMmarketoptionsmaybeavailable.

Page 24: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐24

RegionalTransmissionOrganizations

Seeinganeedforgreatercoordination,a“WorkingGroup”consistingofinvestorownedutilities,cooperativepowerprovidersandpublicpowerentitieswasformedtoconsiderandanalyzepotentialalternativestojoiningtheCAISOEIM.TheobjectivesoftheWorkingGroupareasfollows:

Determineeconomicbenefitsofpotentialalternativesandweighopportunitiesformarketparticipation

DetermineiftheCAISOEIMandregulatedmarketsintheMidwestandMountainwestoffercertaineconomicbenefitsrelatedtomoreefficientutilizationofgeneratingassetsandtransmissioninfrastructure

Evaluateoperationalbenefitsespeciallyastheyrelatetorenewableresourceintegrationandsystemregulation

EstablishifEIM/RegulatedMarketsandcertainalternativesmayofferreliabilitybenefitsrelatedtothegridoperations

Considergovernancestructureandimplicationsforresourcecontrol

TheWorkingGroupdiscussedvariousoptionswiththeCAISO,theSouthwestPowerPool,andtheMountainWestTransmissionGroup.Currentlythereisrecognizablevaluetoestablishingaregionalmarket.However,thecostofjoiningorestablishingaregionalmarkethaveyettobedeterminedorfullyevaluated.TEPwillcontinuetoengagewithmarketoperatorstodeterminethebestpathforwardforitscustomers.

MarketFundamentalsWiththerapidincreaseinrenewableresourcepenetrationthroughouttheregion,atransformationofmarketfundamentalsiscurrentlyunderwayandischanginghowbothload‐servingentitiesandwholesalemerchantstransact.Asshowninthefigurebelow,surplussolaroutputiscausingadownwardshiftinmarketpricesfromthehoursof8AMto4PM.

Page 25: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐25

Inadditiontosurplusrenewablegeneration,lowcostshalegasproductionhasalsoplayedasignificantroleintransformingthesupplyanddemandeconomicsofnaturalgas.Aswesawin2015and2016,expandednaturalgasproductionfromshaleformationsisdirectlyimpactingtheeconomicviabilityofmanybaseloadcoalandnuclearresources.Unlikerenewables,mostthermalplantslikecoalandnuclear,havehigheroperatingcoststhatcannotbefullyrecoveredinthewholesalemarket.Thus,theultimateeffectofhighpenetrationsofrenewablesandlowcostnaturalgaswilllikelybeanacceleratedretirementofolderandhighercostcoalandnuclearresources.Alternatively,resourceslikenaturalgascombinedcycle(NGCC)unitsthathavemuchlowercapitalandfixedcostsaremorecompetitivethancoalandnuclearintoday’swholesalepowermarkets.ThiscompetitiveadvantagewilllikelyresultinNGCCunitsdisplacingmanycoalandnuclearasbaseloadresourcessincetheyarebetterpositionedtomaintainprofitabilityinamarketdrivenbylownaturalgasprices.

EnergyEfficiency

TEPrecognizesenergyefficiency(EE)asacost‐effectivewaytoreduceourrelianceonfossilfuels.ToevaluateEEintermsofTEP’soverallresourceportfolio,TEPdeterminedthehourlysavingsofeachindividualEEmeasureusingwidelyusedandrecognizedthird‐partyloadshapes,andthenaggregatedthemattheportfolio‐levelbycustomerrateclass.Fromthesecompositeprogram‐levelsavings,TEPisabletoanalyzepeakperiodstodeterminecoincidentandnon‐coincidentpeakdemandsavings.ThelevelofenergysavingswasbasedoncompliancewiththeEEstandardthrough2020,excludingprogramcredits,andanestimateof“achievable”EEdevelopedbytheElectricPowerResearchInstitute(EPRI)forallyearsafter2020.Then,toevaluateEEasaresourceforreplacementofgeneration,thespecifictypesofmeasuresbeingimplementedaremodeledlikeotherresourcesagainsttheforecastedsystemload.ThefigurebelowprovidesasampleofhowcurrentEEmeasuresinteractwithTEP’ssystemloadsduringatypicalsummerday.Usingtheseresults,TEPcantargetmeasuresthatcoincidewithperiodsofhighramprate,perioddominatedbyhighcostresources,orthesystempeaks,bothdailyandannually.

Page 26: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐26

ANewIntegrationApproachtoResourcePlanning

Withtheincreasingcost‐competivenessofcertainrenewableresources,manyresourceplannersareintheprocessofintegratinghigherlevelsofrenewabletechnologiesasacomplementtotheirexistingconventionalgenerationfleet.Becauseoftheuniquechallengesthathighlevelsofrenewableenergyplaceongridoperations,the2017IRPtakesanewapproachincategorizingthecapabilitiesforeachtypeofresourceinordertobetterreflecttheroletheseresourceswillplayastheCompanytransformsitsresourceportfoliooverthenextdecade.

LoadModifyingResources–includesEE,distributedgeneration,andtimeofusetariffs,whoseeffectsareprimarily“behindthemeter”andaretherefore,largely,ifnotentirelybeyondtheviewandcontrolofthebalancingauthority.

RenewableLoadServingResources–includebothutilityscalesolarandwindtechnologies. ConventionalLoadServingResources–includecoal,nuclearandnaturalgastechnologiesthatare

fullydispatchableandareusedtosupplythevastmajorityoftheenergyneededtomeetload GridBalancingResources–includenaturalgascombustionturbines,demandresponse,naturalgas

reciprocatingenginesandstoragetechnologiesthatarefastrampingandflexible,asneededtomaintaingridreliability.

Thetablebelowprovidesabriefoverviewofthetypesofresourcesthatwillbeincludedandevaluatedintheresourceplanningprocesswithinthe2017IRP.

Category  Type Zero Carbon Production 

State of Technology 

Primary Use Dispatchable by 

Balancing Authority 

Load  Modifying  Resources 

Energy Efficiency  Yes  Mature Base  

Load Reduction No Distributed Generation 

Yes  Mature Intermediate  Load Reduction No

Rate Design  (1)  Mature Targeted Load  

Usage / Reductions No 

Load Serving  Renewable  Resources  

 Wind    Yes    Mature  Intermediate  Generation No 

 Solar   Yes   Mature  Intermediate  Generation 

No

Load Serving  Conventional Resources 

Natural Gas Combined Cycle 

No  Mature Base Load  Generation Yes

Pulverized Coal  No  Mature Base Load  Generation Yes

Small Modular Nuclear (SMR)   

Yes  Emerging Base Load  Generation 

Yes

Grid  Balancing  Resources 

Reciprocating Engines 

No  Mature  5 ‐ 10 Minute Ramping

YesCombustion Turbines  

No   Mature  10 ‐ 15 Minute 

Ramping Yes 

Pumped Hydro Storage 

(1)  Mature 1 Minute  Ramping 

Yes 

Demand Response   Yes    Mature  1 Minute  Ramping 

Yes 

Battery Storage  (1)  Emerging 1 Second  Ramping

Yes

(1) Carbon intensity is dependent upon the resources that would be displaced by this rate tariff or storage technology net of charging. 

Page 27: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐27

Summaryofthe2017IRPReferenceCasePlan

TEP’s2017IRPReferenceCasePlancontinuestheCompany’slong‐termstrategyofresourcediversificationbytakingadvantageofnear‐termopportunitiestoreduceitscoalcapacity,expandingthedeploymentofrenewableenergyresourceswithatargetofserving30%ofitsretailloadusingrenewableenergyby2030,continueddevelopmentandimplementationofcost‐effectiveEEmeasures,andtheadditionofhigh‐efficiencynaturalgasresources.

PlannedCoalPlantRetirements

InSeptember2016,TEPacquiredtheremaining50.5%shareofSpringervilleGeneratingStation(“Springerville”)Unit1,bringingourtotalcapacityatSpringervilleto793MWwithfullownershipandoperationalcontrolofUnits1and2.By2018,TEPanticipatesthatitwillreduceitscoalcapacityatSanJuanfrom340MWto170MWwiththeretirementofSanJuanUnit2.TEPwillfurtherreduceitsoverallcoalcapacityby168MWwiththerecentlyannouncedretirementoftheNavajoattheendof2019.6Finally,TEPplanstoexitSanJuanentirelywhenthecurrentcoalsupplyagreementendsinJune2022.

PlannedRenewableResourceAdditions

The2017ReferenceCasePlanincludestworenewableenergyprojectsthatareplannedtocomeonlinein2019.Theseprojectsconsistof100MWofwindand100MWdcofsolarPVthatarecurrentlyinprocurementas20‐yearPurchasedPowerAgreements(PPAs).Anadditional800MWofrenewablecapacityisplannedtobeaddedtothesystembetween2023and2030,consistingofadiversifiedmixofsolarPV(fixedaxisandsingle‐axistracking),andwind.

PlannedGridBalancingResources

Tosupportthesysteminlightofthishighpenetrationinintermittentrenewableenergy,andtoprovidereplacementcapacityfortheretirementofolder,lessefficientnaturalgassteamunitsatSundt(Units1and2),itisassumedthatTEPconstructsapproximately192MWofnaturalgasfiredRICEsbetween2020and2022.Moreover,anumberenergystorageprojectsareplannedtocomeonlinebetween2019and2021toprovideadditionalrenewableenergysupportandotherancillaryservices.Thesesystemswouldlikelybesizedas50MWprojectswithastoragedischargecapacityof50MWh.

PlannedEnergyEfficiencyCommitments

TEP'sEEprogramswillcontinuetocomplywiththeArizonaEnergyEfficiencyStandardthattargetsacumulativeenergysavingsof22%by2020.From2021throughtheendoftheplanningperiod,theestimatedannualsavingsinthe2017ReferenceCasePlanarebasedonanassessmentof“achievablepotential”inenergysavingsfromEEprogramsconductedbytheEPRI.By2032,thisoffsettofutureretailloadgrowthisexpectedtoreduceTEP’sannualenergyrequirementsbyapproximately1,894GWhandreduceTEP’ssystempeakdemandby318MW.AtimelineofTEP’sReferenceCasePlanispresentedbelow.

6 The2019retirementdateisdependentuponreceivinganextensionoftheleaseagreementtoallowforplantdecommissioningpriortoexpirationofthelease.Withoutanextensionofthecurrentlease,plantclosurewouldneedtotakeplaceasearlyasthisyeartoallowfordecommissioningbytheendof2019.

Page 28: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐28

TEP’s2017IRPReferenceCasePlanMilestoneTimeline

Page 29: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐29

TEP’s2017ReferenceCasePlan‐EnergyMixbyYear(GWh)

TEP’s2017ReferenceCasePlan‐CapacityMixbyYear(MW)

Page 30: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐30

TEP’s2017ReferenceCasePlan–PortfolioEnergyMix

Coal Generation, 

69%Natural Gas, 11%

Market Purchases, 9%

Utility Scale Renewable Resources, 7%

Distributed Generation (DG), 4%

2017 Portfolio Energy Mix

Coal Generation, 

50%Natural Gas, 28%

Market Purchases, 3%

Utility Scale Renewable Resources, 14%

Distributed Generation (DG), 5%

2023 Portfolio Energy Mix

Coal Generation, 

38%

Natural Gas, 26%Market Purchases, 5%

Utility Scale Renewable Resources, 26%

Distributed Generation (DG), 5%

2032 Portfolio Energy Mix

The portfolio energy charts shown above represents the energy resource mix to serve TEP’s retail customers.  Wholesale 

market sales are excluded from these results.  By 2030, TEP’s retail customers will be served from 30% renewables.  This is 

based on a combination of utility‐scale and distributed generation resources. 

Page 31: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐31

 

CHAPTER 2 

ENERGY DEMAND AND USE PATTERNS 

LoadForecastIntheIRPprocessitiscrucialtoestimatetheloadobligationsthatexistingandfutureresourceswillberequiredtomeetforbothshortandlongtermplanninghorizons.Asafirststepinthedevelopmentoftheresourceplan,alongtermloadforecastwasproduced.ThischapterprovidesanoverviewoftheanticipatedlongtermloadobligationsatTEP,adiscussionofthemethodologyanddatasourcesusedintheforecastingprocess,andasummaryofthetoolsusedtodealwiththeinherentuncertaintysurroundinganumberofkeyforecastinputs.

Thesectionsinthischapterinclude:

CompanyOverview:TEPgeographicalserviceterritory,customerbase,andenergyconsumptionbyrateclass

ReferenceCaseForecast:AnoverviewoftheReferenceCaseforecastofenergyandpeakdemandusedintheplanningprocess

WholesaleObligations:Anoutlineofthefirmsystemrequirementsforwholesaleelectricitysales

Summary:Compilationofresultsfromthisanalysis

Page 32: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐32

GeographicalLocationandCustomerBaseTEPcurrentlyprovideselectricitytomorethan420,000customersintheTucsonmetropolitanarea(PimaCounty).PimaCountyhasmaintainedpositivegrowthoverthelastdecadeandisnowestimatedtohaveapopulationofapproximately1,000,000people.

Map1‐ServiceAreaofTucsonElectricPowerandUESUtilities

Page 33: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐33

CustomerGrowthInrecentyearspopulationgrowthinPimaCountyandcustomergrowthatTEPhavesloweddramaticallyasaresultofthesevererecessionandweakrecovery.Whilecustomergrowthiscurrentlyreboundingfromitsrecessionarylows,itisnotexpectedtoreturntoitspre‐recessionlevel.Chart1outlinesthehistorical(bluebars)andexpected(greenbars)customercountandcorrespondinggrowthintheresidentialrateclassfrom2000‐2032.AscustomergrowthisthelargestfactorbehindgrowthinTEP’sload,thecontinuingcustomergrowthwillnecessitateadditionalresourcestoservetheincreasedloadinthemediumterm.

Chart1‐EstimatedTEPCustomerGrowth2000‐2032

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

200,000

250,000

300,000

350,000

400,000

450,000

500,000

2000 2003 2006 2009 2012 2015 2018 2021 2024 2027 2030

Average Annual Residential Customers % Growth

Page 34: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐34

RetailSalesbyRateClassIn2016,TEPexperiencedapeakdemandofapproximately2,278MW,withapproximately8,900GWhofretailsales.Approximately66%of2016retailenergywassoldtotheresidentialandcommercialrateclasses,withapproximately34%soldtotheindustrialandminingrateclasses.Customerclassessuchasmunicipalstreetlighting,etc.accountedfortheremainingsales.Chart2givesadetailedbreakdownoftheestimated2017retailsalesbyrateclass.

Chart2–Estimated2017RetailSales(GWh)%byRateClass

Residential41.5%

Commercial24.1%

Industrial22.3%

Mining11.7%

Other0.4%

Page 35: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐35

ReferenceCaseForecast

MethodologyTheloadforecastusedintheTEPIRPprocesswasproducedusinga“bottomup”approach.Aseparatemonthlyenergyforecastwaspreparedforeachofthemajorrateclasses(residential,commercial,industrial,andmining).Asthefactorsimpactingusageineachoftherateclassesvarysignificantly,themethodologyusedtoproducetheindividualrateclassforecastsalsovaries.However,theindividualmethodologiesfallintotwobroadcategories:

1) Fortheresidentialandcommercialclasses,forecastswereproducedusingstatisticalmodels.Inputsincludefactorssuchashistoricalusage,weather(e.g.averagetemperatureanddewpoint),demographicforecasts(e.g.populationgrowth),andeconomicconditions(e.g.GrossCountyProductanddisposableincome).

2) Fortheindustrialandminingclasses,forecastswereproducedforeachindividualcustomer.Inputsincludehistoricalusagepatterns,informationfromthecustomersthemselves(e.g.timingandscopeofexpandedoperations),andinformationfrominternalcompanyresourcesworkingcloselywiththeminingandindustrialcustomers.

Aftertheindividualmonthlyforecastswereproduced,theywereaggregated(alongwithanyremainingmiscellaneousconsumptionfallingoutsidethemajorcategories)toproduceamonthlyenergyforecastforthecompany.

Afterthemonthlyenergyforecastforthecompanywasproduced,theanticipatedmonthlyenergyconsumptionwasusedasaninputforanotherstatisticalmodelusedtoestimatethepeakdemand.Thepeakdemandmodelisbasedonhistoricalrelationshipbetweenhourlyloadandweather,calendareffects,andsalesgrowth.Oncetheserelationshipsareestimated,60+yearsofhistoricalweatherscenariosaresimulatedtogenerateaprobabilisticpeakforecast.

Page 36: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐36

ReferenceCaseRetailEnergyForecastAsillustratedinChart3,afteraperiodofrelativelyrapidgrowthfrom2005–2008,TEP’sweather‐normalizedretailenergysalesfellsignificantlyfrom2008–2016.Ascommoditypricesremainweak,retailsalesareexpectedtocontinuetodeclinethrough2017.Ascommoditypricesbegintoreturntohistoricalaveragesin2020,miningloadisexpectedtoreturntohistoricalvaluesandexpandwiththeRosemontmineproject.After2024thegrowthinsalesisdominatedbyresidentialandcommercialsalesgrowthatalevelthatisfarslowerthanthepre‐greatrecessionhistoricalaverage.

Chart3‐ReferenceCaseRetailEnergySales,WeatherNormalizedHistorical

6,000

7,000

8,000

9,000

10,000

11,000

12,000

2005 2008 2011 2014 2017 2020 2023 2026 2029 2032

GWh

Long Term Growth Average Annual Rate of 0.9% 

(2024 – 2032) 

Page 37: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐37

ReferenceCaseRetailEnergyForecastbyRateClassAsillustratedinChart4,theReferenceCaseforecastassumessignificantshorttermchangesforthenextfewyearsfollowedbyslow,steadygrowthstartingin2024.However,thegrowthratesvarysignificantlybyrateclass.TheenergysalestrendsforeachmajorrateclassaredetailedinChart4.

Chart4‐ReferenceCaseRetailEnergySalesbyRateClass(GWh)

Afterexperiencingconsistentyearoveryeargrowththroughoutthepast,bothresidentialandcommercialenergysalesfellorremainedflatfrom2008‐2016.BothareassumedintheReferenceCasetoincreasesteadilyafter2017.However,industrialenergysalesareassumedtoincreasemuchmoreslowlythanthoseineithertheresidentialorcommercialclasses.Inaddition,miningsalesareassumedtosignificantlyfallinthecomingyearsduetolowcommodityprices.Asthesepricesreturntomorehistoricalaverages,thecurrentminingcustomersareforecasttoreturntonormaloperations,aswellasexpandduetotheRosemontmineproject.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

2005 2008 2011 2014 2017 2020 2023 2026 2029 2032

Residential Commercial Industrial Mining

Page 38: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐38

ReferenceCasePeakDemandForecastAsshowinChart5below,demandisexpectedtodropin2017.Thisislargelycausedbytheminingclasscurtailingloadandanexpectedreturnofmorenormalpeakweather.Astheminingclassreboundsandtheresidentialandcommercialclassesgrowslowlyandsteadily,theretailpeakdemandisexpectedtogrow.Theredandbluedashedlinesrepresentextremeweathercasesandaresetataone‐in‐tenyearweatheranomaly.

Chart5‐ReferenceCasePeakDemand(MW)

1,400

1,600

1,800

2,000

2,200

2,400

2,600

2,800

2002 2005 2008 2011 2014 2017 2020 2023 2026 2029 2032

High Low Peak

Long Term Peak Growth Average of 0.7%

2020 ‐ 2030 

Page 39: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐39

DataSourcesUsedinForecastingProcessAsoutlinedabove,theReferenceCaseforecastrequiresabroadrangeofinputs(demographic,economic,weather,etc.)Forinternalforecastingprocesses,TEPutilizesanumberofsourcesforthesedata:

IHSGlobalInsight TheUniversityofArizonaForecastingProject ArizonaDepartmentofCommerce U.S.CensusBureau NationalOceanicandAtmosphericAdministration WeatherUndergroundForecastingService

RiskstoReferenceCaseForecastandRiskModelingAsalways,thereisalargeamountofuncertaintywithregardtoprojectedloadgrowth.Some,butcertainlynotall,ofthekeyriskstothecurrentforecastinclude:

Strengthandtimingoftheeconomicrecovery Possiblestructuralchangestocustomerbehavior(i.e.dopost‐recessioncustomershaveconsumptionpatternsdifferentfromthoseseenpre‐recession?)

Volatilityinindustrialmetalpricesandassociatedshiftsinminingconsumption EfficacyofEEprograms(i.e.whatpercentageofloadgrowthcanbeoffsetbydemandsidemanagement?)

Technologicalinnovations(e.g.pluginhybridvehiclepenetration) Volatilityindemographicassumptions(e.g.muchhigherorlowerpopulationgrowththancurrentlyassumed)

Becauseofthelargeamountofuncertaintyunderlyingtheloadforecast,itiscrucialtoconsidertheimplicationstoresourceplanningifTEPexperiencessignificantlylowerorhigherloadgrowththanprojected.Forthisreason,loadgrowthisoneofthefundamentalfactorsconsideredintheriskanalysisprocessundertakenaspartofthe2017IRP.Specifically,theperformanceofeachpotentialresourceportfolioisanalyzedthrough100simulationsofpotentialloadgrowth(alongwithcorrelatednaturalgasandwholesalepowerprices).AmoreindepthdiscussionofthisriskanalysisprocessisprovidedinChapter11.Inadditiontothesimulationanalysis,amorespecificdiscussionofhowresourcedecisionsandtimingwouldbeaffectedinthecaseofsustainedhigherorlowerloadsisprovidedintheLoadGrowthScenariosdiscussedinChapter12.

Page 40: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐40

FirmWholesaleEnergyForecastTEPiscurrentlyundercontracttoprovidefirmwholesaleenergyandcapacitytofiveutilitycustomers.ThesefirmobligationsareinadditiontoTEP’scommitmenttoserveitsretailcustomers.Thecontractsstipulateenergyservicestothefourentitiesbelow:

NavajoTribalUtilityAuthority(NTUA)throughDecember2022 TRICOElectricCooperative(TRICO)throughDecember2024 NavopacheElectricCooperative(NEC)throughDecember2041 TohonoO’odhamUtilityAuthority(TOUA)throughDecember2019 ShellEnergyNorthAmericaL.P.(“Shell”)throughDecember2017

TEPexpectedfirmwholesaleobligationsareshowninTable1below.ThecontractwithSaltRiverProject(SRP)expiredinthespringof2016;itwasnotrenewed.TEPsignedafirmwholesaleagreementwithNECinthefallof2015.DeliveryservicesforNECbeganinJanuary2017.Ashort‐termcontractwithShellexpiresattheendof2017.Itisimportanttonotecontractextensionshavenotbeenassumed.However,thereisapossibilitythatanyorallagreementscouldbeextended.Thiswouldobviouslyrequirecurrentresourceplanstoberevisedtoaccountfortheadditionalenergysalesandpeaksummerloadrequirements.

Table1‐FirmWholesaleRequirements

Firm Wholesale, GWh  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026 

NTUA  106   110   115   120   125   125   0   0   0   0  

TRICO  30   74   75   136   187   229   254   284   0   0  

NEC  315   401   401   402   401   401   401   402   401   401  

Shell  112   0   0   0   0   0   0   0   0   0  

TOUA  26  26  17  0  0  0  0  0  0  0 

Total Firm Wholesale  589  611  608  658  713  755  655  686  401  401 

  Peak Demand, MW  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026 

NTUA  25   25   25   25   25   25   0   0   0   0  

TRICO  50   85   85   85   85   85   85   85   0   0  

NEC  44   44   44   44   44   44   44   44   44   44  

Shell  100   0   0   0   0   0   0   0   0   0  

TOUA  4   4   4   0   0   0   0   0   0   0  

Total Firm Demand  223   158   158   154   154   154   129   129   44   44  

Page 41: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐41

SummaryofReferenceCaseLoadForecastTable2belowexcludestheeffectsofdistributedgeneration(DG)andEE.

Table2‐TEPReferenceCaseForecastSummary

Retail Sales, GWh  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032 

 Residential  3,627   3,673   3,722   3,766   3,816   3,877   3,947   4,018   4,078   4,122   4,168   4,215   4,269   4,329   4,386   4,444  

 Commercial  2,103   2,128   2,151   2,171   2,201   2,243   2,287   2,331   2,375   2,417   2,458   2,500   2,544   2,586   2,631   2,677  

 Industrial  1,949   1,962   1,957   1,953   1,946   1,943   1,941   1,941   1,935   1,948   1,950   1,956   1,960   1,965   1,970   1,976  

 Mining  1,022   1,022   1,022   1,077   1,249   1,617   1,778   1,783   1,778   1,778   1,778   1,783   1,778   1,778   1,778   1,777  

 Other  33   33   33   33   33   33   33   33   33   33   33   33   33   33   33   33  

Total Retail  8,734  8,818  8,885  9,000  9,245  9,713  9,986  10,106  10,199  10,298  10,387  10,487  10,584  10,691  10,798  10,907  

Residential Sales Growth %  ‐2.1%  1.3%  1.3%  1.2%  1.3%  1.6%  1.8%  1.8%  1.5%  1.1%  1.1%  1.1%  1.3%  1.4%  1.3%  1.3% 

Commercial Sales Growth %  ‐0.6%  1.2%  1.1%  0.9%  1.4%  1.9%  2.0%  1.9%  1.9%  1.8%  1.7%  1.7%  1.8%  1.7%  1.7%  1.7% 

Industrial Sales Growth %  ‐2.5%  0.7%  ‐0.3%  ‐0.2%  ‐0.4%  ‐0.2%  ‐0.1%  0.0%  ‐0.3%  0.7%  0.1%  0.3%  0.2%  0.3%  0.3%  0.3% 

Mining Sales Growth %  2.2%  0.0%  0.0%  5.4%  16.0%  29.5%  10.0%  0.3%  ‐0.3%  0.0%  0.0%  0.3%  ‐0.3%  0.0%  0.0%  ‐0.1% 

Other Sales Growth %  6.5%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0%  0.0% 

Total Retail Sales Growth %  ‐1.3%  1.0%  0.8%  1.3%  2.7%  5.1%  2.8%  1.2%  0.9%  1.0%  0.9%  1.0%  0.9%  1.0%  1.0%  1.0% 

Customer Count, 000  424   429   434   439   444   448   453   458   463   467   472   477   481   486   491   496   

Firm Wholesale, GWh  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032 

NTUA  106   110   115   120   125   125   0   0   0   0   0   0   0   0   0   0  

TRICO  30   74   75   136   187   229   254   284   0   0   0   0   0   0   0   0  

NEC  315   401   401   402   401   401   401   402   401   401   401   402   401   401   401   402  

Shell  112   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  

TOUA  26  26  17  0  0  0  0  0  0  0  0  0  0  0  0  0 

Total Firm Wholesale  589  611  608  658  713  755  655  686  401  401  401  402  401  401  401  402                                                  

Retail Peak Demand, MW  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032 

Retail Demand  2,220   2,230   2,243   2,280   2,319   2,429   2,440   2,452   2,485   2,495   2,506   2,504   2,515   2,531   2,549   2,565  

Retail Demand Growth %  ‐2.8%  0.5%  0.6%  1.6%  1.7%  4.7%  0.5%  0.5%  1.3%  0.4%  0.4%  ‐0.1%  0.4%  0.6%  0.7%  0.6%  

Firm Wholesale Peak Demand, MW  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032 

NTUA  25   25   25   25   25   25   0   0   0   0   0   0   0   0   0   0  

TRICO  50   85   85   85   85   85   85   85   0   0   0   0   0   0   0   0  

NEC  44   44   44   44   44   44   44   44   44   44   44   44   44   44   44   44  

Shell  100   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  

TOUA  4   4   4   0   0   0   0   0   0   0   0   0   0   0   0   0  

Total Firm Demand  223   158   158   154   154   154   129   129   44   44   44   44   44   44   44   44  

 

Total Retail & Firm Wholesale  2,443   2,388   2,401   2,434   2,473   2,583   2,569   2,581   2,529   2,539   2,550   2,548   2,559   2,575   2,593   2,609  

Page 42: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐42

FutureDriversthatMayInfluencetheLong‐TermLoadForecastInadditiontothemacro‐economicfactorsthatareinherentinlong‐termloadforecasts,futureloadgrowthwillbeinfluencedbydevelopmentofemergingtechnologiesandtheadoptionofcustomer‐driventechnologies.Onesuchtechnologyiselectricvehicles(EVs).EVscouldplayasignificantroleinfutureyearsasbothaloadrequirement(chargemode)andasystemenergyresource(dischargemode).Toachievethemostbenefitfromelectricvehiclesintermsofgridoperationsandemissionreductions,incentivesareneededfordaytimeworkplacecharging.Adaytimechargingincentivewouldenablecustomerstotakeadvantageoflowcostsolarresourcesduringthedaywhilesimultaneouslyprovidingsystemdischargebenefitstohelpmanagereal‐timegridrequirements.

Furthermore,theutilityofthefuturewillberequiredtoaccommodatehigherlevelsofdistributedenergyresourcesandothergridinnovationsasthecompanytransitionstoasmartdigitalnetwork.Thisstrategyismuchdifferentthanhowthedistributionsystemhasbeenmanagedinthepast.Atthecoreofthesesmartnetworkchangesistheneedforadigitalcommunicationsnetworkthatwillallowforintelligentelectronicdevicestobeinstalledonthedistributionsystembybothcustomersandtheutility.ThiscommunicationnetworkwillbemanagedthroughtheuseofaDMSthatwillprocesstheinformationfromthesedevicesandmakedecisionsinamannerthatoptimizesgridoperationsforthebenefitoftheutilityanditscustomers.

Finally,ratedesignwillalsoneedtoevolvetooffercustomersmoreoptionsandchoices.Customersmaywanttohaveaccesstoreal‐timepricingtariffsinordertominimizetheirenergyusageduringhighcostperiods.Othercustomersmaywantsignupforcleanenergytariffsthatincentivetheuseofzero‐emissionresourcessuchasrenewables,DR,andEE.Othercustomersmaywantademand‐andenergy‐basedratetariffthatwouldenablethemtotakeadvantageofdistributedenergyresourcesandstoragetechnologies.Inanycase,theabilitytocollectandmanagereal‐timegriddatawillbeacriticalmilestoneforutilitiestoachieveinordertoprovidethesetypesofservicesforcustomersinthefuture.

ThisnextsectionsdiscussessomeoftheseevolvingtechnologiesanddiscusseshowtheCompanyplanstointegratethemoverthenextfewyearsaspartoftheon‐goingIRPplanningprocess.

Page 43: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐43

ElectricVehiclesNationwide,2016pluginelectricvehiclesaleswere159,139units7of1.1millionlightvehiclessold8fora14%marketshare.Pluginelectricvehiclespredominantlyfallintotwocategories:

BatteryElectricVehicles(BEV)fullyelectric,batteryonlyvehiclesthatdonotconsumefossilfuel Plug‐inElectricVehicles(PEV)whichhavebothanelectricmotorandaninternalcombustionenginethatburnsfossilfuel

Figure2–TeslaModel3

7http://insideevs.com/monthly‐plug‐in‐sales‐scorecard/8http://online.wsj.com/mdc/public/page/2_3022‐autosales.html

Page 44: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐44

Anadditionalclassofvehicle,theHybridElectricVehicle(HEV),incorporateselectricbatterytechnologysimilartoaPEVbutnotablyreceivesitschargeviaregenerativebrakingandon‐boardchargingviaaninternalcombustionengine.HEVsrepresentthelargestshareofelectrifiedvehiclesoperatinginArizonaat1.1%,butdonotplugintotheelectricalgridforchargingandthereforarenotconsideredafactorinfutureloadgrowthscenarios.

OfactivevehiclesregisteredinthestateofArizona,just0.09%(6,260vehicles)arePEVsorBEVs.BasedonthelowadoptionrateandtotalnumberofEVsinArizona,itisreasonabletoassumethatEVadoptioninthestatewillcontinuetolagnationalhigh,medium,andlowmarketpenetrationprojections.ThisIRPcontemplatestwoscenarios,anaggressivegrowthscenarioandmoderatebasecasescenario.UnderthebasecasescenarioEVloadprojectionsremainbelow1%through2024andreach2.5%ofloadby2030.Themoreaggressivescenarioreaches1%by2021andrampsupto5%by2030.

Figure3‐ElectricVehicleDemandScenarios

Page 45: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐45

FutureAdoptionRateInfluencersMuchresearcharoundthecountryhasgoneintounderstandingthefactorsthatunderlieBEVandPEVadoption.WhilemanyinnovativeprogramsandinitiativeshavebeenlaunchedtosupportEVadoption,thetwomostsignificantinfluencersofadoptionratesare:

Policy Futureadvancesinbatterytechnology

PolicyThemostclearlydemonstrableinfluencerofEVadoptiontodatehasbeenfederalandstatepolicycreatingincentivesdirectlyreducingthecostofEVpurchases.Stateswithhighestincentives,suchasCalifornia,OregonandGeorgia,havereachedEVadoptionrates2to4timesabovethenationalaverage.Atthestatelevel,incentivepoliciesaredependentonpublicsupportandmaybecomplimentedbyregulationssuchasCalifornia’sZeroEmissionVehicleprogramrequiringautomakerstoachievevolumetricEVsalesgoalstiedtotheirtotalfleetsalesnumbers.

BatteryTechnologyTheopportunitythatholdsthegreatestpromisetoincreasefutureEVadoptionratesisimprovementstobatteryandmanufacturingtechnologythatreducethecostofbatteriesmeasured,in$/kWh.IndustryanalysistiesthepricepointatwhichEVsareonparitywithcontemporaryinternalcombustionenginevehiclestoabatterycostof$100/kWhcapacity.Thecurrentcostofbatteriesisaround$300/kWhcapacitywithclaimsthe2017TeslaandChevyBoltwillfeaturebatterycellsbelow$200/kWh.

Figure4–TeslaLithium‐IonBatteryProduction

Page 46: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐46

GridImpactsAdvancementsinEVbatterytechnologyaredramaticallyincreasingtherangeofthesevehiclesanddrivingchargingpatternstowardsevening,athomecharging,whichcanbeaccommodatedthroughexistinginfrastructurevialevel1tricklechargingusingastandard120vresidentialoutlet.ThispatternalignswithTEP’scurrenttimeofusebasedelectricvehiclechargingdiscountandcreatesaloadpatterncenteredonlateeveningoff‐peakpower.

Asecondchargingprofileoptionwouldcenteronworkplacechargingandpresentsafutureopportunitytoleveragepowerproducedduringlowgeneration‐costdaylighthours.Thisdaytimeworkplacechargingprofileisnotincentedunderthecurrentratestructurebutcouldbepromotedthroughafuturetariffdesignandaworkplacechargingstationsupportprogram.

Figure5‐EVChargingProfiles

Page 47: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐47

SmartGrid

TheFutureoftheDistributionGridChangesinthesupply,demand,anddeliveryofelectricityareremodelingelectricdistributionsystemsatmostNorthAmericanutilities.DistributedEnergyResources(DERs)areleadingmanyofthesechanges.

TEPisdevelopingandanalyzingstrategiestoenabletheseopportunities.TheoverarchingstrategywillhelpTEPadapttothechanginglandscapeforregulatedelectricutilities.

TEPenvisionsafuturethatwillaccommodateDERsandotherinnovationsintotheexistingnetworkwhiletransitioningtoadigitalnetwork.ToaccommodateDERsandotherinnovations,electricutilitiesneedtodomorethanmaketheirdistributionsystemsbigger.Instead,utilitiesneedtomaketheirdistributionsystemssmarter.Smartdistributionsystemsprovideflexibility,capability,speed,andresilience.Thesesmartdistributionsystemsincludenewtypesofsoftware,networks,sensors,devices,equipment,andresources.Toachievenewlevelsofeconomicvalue,thesesmartdistributionsystemsoperateaccordingtonewstrategiesandmetrics.WithmoreDGresourcesbeingdeployedonTEP’sdistributionsystem,higherdemandsandlowerpercapitaenergyconsumptionisoccurringtoday.Thisputsdemandsonthetransmissionanddistributionsystemsthatwerenotcontemplatedintheoriginaldesignsandrequirementsofthesystem.Tomeetthesenewdemands,newmethodsofoperationandtechnologyneedtobedevelopedandimplemented.TEPisinvestigatingtechnologytoaddmoresensingandmeasurementdevicesandnewmethodsformanagingandoperatingthedistributionsystem.Thisapproachturnsadistributionfeederintoaneffectivemicrogridsystem.

Figure6–SmartGridSystems

Page 48: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐48

Withincreaseddemandandlowerpercapitaenergyconsumption,newtechniquesandstrategiesneedtobedevelopedandimplementedtoeffectivelymanagecosts.Byaddingadditionalmeasurementandsensingcapabilities,thesituationalawarenessofthedistributionsystemwillbeincreased.Theincreasedsituationalawarenessallowsforrealtimeoperationsandplanningopportunitiesforefficiencyandproductivitychanges.Toutilizetheexistingdistributionsystemmoreefficiently,TEPisinvestigatingtheuseofDERs,energystorage,EE,andtargetedDRcapabilitiesinconjunctionwithoptimizationsoftware.Theseimprovementsmayreducetheinfrastructureadditionsrequiredinthepastascustomerdemandincreased.Thisstrategyismuchdifferentthanhowthedistributionsystemhasbeenmanagedinthepast.ItrequirestheuseofabottomupplanninganddesignprocessthatneedstobeintegratedwiththeIRPprocess.Newtoolsandcapabilitieswillberequiredasaresultofthenewopportunitiesenvisioned.

Atthecoreofthesechangesistheneedforacommunicationsnetworkthatallowsforintelligentelectronicdevicestobeinstalledonthedistributionsystem.Thecommunicationsnetworkallowsforthebackhaulofinformationfromtheintelligentelectronicdevicestocentralizedsoftwareandcontrolapplications.Simplycollectinganddisplayingmoresensingandmeasurementinformationwon’tprovidetheneededbenefits.Anintegratedapproachtotheinstallationoffielddevices,softwareapplications,andhistoricaldatamanagementwillbeneeded.ADMSisthecentralsoftwareapplicationthatprovidesdistributionSupervisoryControlandDataAcquisition(SCADA),outagemanagement,andgeographicalinformationintoasingleoperationsview.Bycombiningtheinformationfromallthreeofthesesystemsintoasingleview,anelectricaldistributionsystemmodelcanbecreatedforbothrealtimeapplicationsandplanningneeds.Thesingleviewprovidessituationalawarenessofthedistributionsystemthathasnotbeenpossibleinthepast.Italsocreatesaplatformfromwhichadditionalapplicationscanbelaunchedtocontinuetoprovidevalueandnewopportunities.Thehistoricalinformationalsocreatesanewopportunitytodrivevalueanddecisionsbasedonsystemperformanceanddynamicsimulations.

WiththedevelopmentofmultipledistributionmicrogridfeedersandDERsystems,thechallengeofresourcedispatchingwillbecomemorecomplex.Asolutiontodispatchacrossafleetofresourcesofexistingcentralizedgeneration,purchasedpowerfromthemarket,andtheintermittencyofDERsystemstocustomerdemandwillberequired.Thespeedwithwhichtheresourcepoolwillneedtochangeandoptimizeforefficiencyandcostwillrequirethesystemtobeautomated.Thedistributionmicrogridfeederconceptisintendedtohelpmanagethedistributionlevelintermittencybutwouldneedtobemonitoredandmanagedbytheautomatedsystemforresourcemanagement.Tomanagesuchalargeanddynamicsystemasoutlinedisasubstantialchallenge.Thistypeofautomatedsystemisnotcurrentlyavailablewithintheutilityindustry.

Page 49: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐49

 

CHAPTER 3 

OPERATIONAL REQUIREMENTS AND RELIABILITY 

LoadandResourceAdequacyAcriticalcomponentoftheIRPplanningprocessistheassessmentofavailablefirmresourcecapacitytomeetfirmloadobligationsandtomaintainaplanningmarginaboveautility’sforecastedload.AspartofTEP’slong‐termplanningprocess,theCompanytargetsa15%planningreservemargininordertocoverforforecastingvariancesandanysystemcontingenciesrelatedtounplannedoutagesonitsgenerationandtransmissionsystem.

Chart6‐TEP’s2017LoadsandResourceAssessment–ExistingResources

Chart6aboveillustratesTEP’sexistingresourceportfoliocomparedtoaretailloadforecastwhichincludesfirmwholesaleandplanningreserves.Thisloadsandresourceassessmentincludessignificantcoalandnaturalgasgeneratingunitretirements.SanJuanUnit2willceaseoperationsbyDecember31,2017.PreliminarystudiesperformedbyplantparticipantsatNavajoGeneratingStationindicatethatall3unitscouldberetiredasearlyasyear‐end2019.TEPisweighingitsoptionstocompletelyexitandterminateitsparticipationonSanJuanUnit1bytheendofJune2022.TEPisalsocommittedtoretiringandreplacingitsolderandlessefficientnaturalgassteamgeneratorsatSundtGeneratingStation.

ThecapacityreductionoftheseagingandcostlyunitswillrequireTEPtodiligentlysecurecost‐effectivereplacementcapacityinthenearfuture.Within5yearsTEPmayneed800MWsofreplacementcapacity.Thatshortfallincreasestoapproximately1,200MWsbytheendofthe15‐yearplanninghorizon.Theemergenceofrenewableresources,combinedwithevolvingoperationalrequirements,presentchallengesbutalsoanopportunitytobuildaresourceportfoliothatiseconomicallyandenvironmentallysound.TEPisresponsiveto

 ‐

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

MW

Coal Resources Natural Gas Resources Renewable Resources

Demand Response Market Purchases Net Retail, Firm & Reserves

San Juan Unit 2 

170 MW (Retired)

Navajo Units 1‐3168 MW (Retired)

San Juan  Unit 1170 MW(Retired)

Sundt Unit 3104 MW (Retired)

Sundt Unit 181 MW (Retired)

SundtUnit 281 MW (Retired)

Local CTs123 MW (Retired)

800 MW Capacity Shortfall

1,200 MW Capacity Shortfall

Page 50: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐50

itscustomersanddedicatedtoprovidethemsafe,clean,andreliablepower.ThisIRPpresentsaReferenceCasePlanthatachievesatargetof30%renewablegenerationby2030.TEPisalsocommittedtoitsEEprogramsandissupportiveofDG.TherenewablestargetandEE/DGprojectionswillbecomplimentedwithproposedinstallationsofEnergyStorageSystemsandRICEs.ThereductionofgenerationanticipatedfromTEP’straditionallybase‐loadedcoalunitsalsonecessitatestheadditionofnaturalgascombinedcyclegenerationasareplacement.

Table3summarizesTEPgrossretailpeakdemandsbyyearbasedonitsSeptember2016loadforecastprojections.ThesedemandsaresummarizedbycustomerclassandbytheCompany’sassumptionsoncoincidentpeakloadreductionsfromDGandEE.Inaddition,TEPincludesasummaryofprojectedfirmwholesalecustomerdemandsalongwithdemandassociatedwithsystemlosses.Table3alsosummarizestheCompany’sreservemarginpositionsbasedonthecapacityresourcesshowninTable4.

Table4summarizesTEP’sfirmresourcecapacitybasedonitscurrentplanningassumptionsrelatedtoitscoalandnaturalgasresources.Table4alsoreflectsTEP’splantosource30%ofitsretailenergyneedsfromrenewablegenerationresourcesby2030.AdditionalresourcessuchasDRprograms,short‐termmarketpurchases,alongwithcapacitysourcedfromitsproposedbatterystorageproject,arealsoshownintheTEPresourceportfolio.TheresourceportfolioalsoincludestheadditionofNGCCresourcestooffsetcoalunitretirementsandRICEstohelpmitigateintra‐hourintermittencyandvariabilitychallengesintroducedbyrenewableresources.

Page 51: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPowerCompany

Page‐51

FutureLoadObligationsThefollowingtwotablesprovideadatasummaryofTEP’sloadsandresources.Table3showsTEP’sprojectedfirmloadobligations,whichincluderetail,firmwholesale,systemlosses,andplanningreserves.

Table3‐FirmLoadObligations,SystemPeakDemand(MW)

 

Firm Load, Demand MW  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032 

Residential  1,284  1,304  1,326  1,356  1,379  1,411  1,425  1,439  1,464  1,474  1,487  1,492  1,503  1,519  1,534  1,550 

Commercial  666  676  687  703  715  731  739  746  759  765  771  774  779  787  795  803 

Industrial  357  363  369  377  384  393  397  401  408  411  414  415  419  423  427  431 

Mining  131  131  131  138  157  229  228  228  228  228  228  228  228  228  228  228 

Gross Retail Demand  2,438  2,474  2,513  2,574  2,635  2,764  2,789  2,814  2,859  2,878  2,900  2,909  2,929  2,957  2,984  3,012 

  Distributed Generation  ‐76  ‐85  ‐93  ‐99  ‐105  ‐110  ‐114  ‐118  ‐121  ‐122  ‐123  ‐125  ‐125  ‐126  ‐127  ‐128 

Energy Efficiency  ‐142  ‐159  ‐177  ‐194  ‐211  ‐225  ‐235  ‐244  ‐253  ‐262  ‐271  ‐280  ‐289  ‐299  ‐308  ‐318 

Net Retail Demand  2,220  2,230  2,243  2,281  2,319  2,429  2,440  2,452  2,485  2,494  2,506  2,504  2,515  2,532  2,549  2,566 

  Firm Wholesale Demand  223  158  158  154  154  154  129  129  44  44  44  44  44  44  44  44 

Total Firm Load Obligations  2,443  2,388  2,401  2,435  2,473  2,583  2,569  2,581  2,529  2,538  2,550  2,548  2,559  2,576  2,593  2,610 

  Reserve Margin  522  361  362  365  374  388  395  395  481  499  519  547  448  453  435  434 

Reserve Margin, %  21%  15%  15%  15%  15%  15%  15%  15%  19%  20%  20%  21%  18%  18%  17%  17% 

Page 52: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐52

SystemResourceCapacityTable4showsTEP’sReferenceCasePlanscheduleforfirmresourcecapacitybasedonaresource’scontributiontosystempeak.

Table4–CapacityResources,SystemPeakDemand(MW)

Firm Resource Capacity  (MW)  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032 

Four Corners  110  110  110  110  110  110  110  110  110  110  110  110  110  110  ‐  ‐ 

Navajo  168  168  168  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

San Juan  340  170  170  170  170  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Springerville  793  793  793  793  793  793  793  793  793  793  793  793  793  793  793  793 

 Remote Coal Resources   1,411  1,241  1,241  1,073  1,073  903  903  903  903  903  903  903  903  903  793  793 

  Sundt 1‐4   422  422  422  341  341  260  260  260  260  260  260  260  260  260  156  156 

Luna Energy Facility   184  184  184  184  184  184  184  184  184  184  184  184  184  184  184  184 

Gila River Power Station  412  412  412  412  412  412  412  412  412  412  412  412  412  412  412  412 

Existing Combustion Turbines  219  219  219  219  219  219  219  219  219  219  219  219  96  96  96  96 

  Future Peaking Resources  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Future NGCC Resources  ‐  ‐  ‐  ‐  ‐  412  412  412  412  412  412  412  412  412  412  412 

RICE Resources  ‐  ‐  ‐  96  96  192  192  192  192  192  192  192  192  192  336  336 

Total Natural Gas Resources   1,237  1,237  1,237  1,252  1,252  1,679  1,679  1,679  1,679  1,679  1,679  1,679  1,556  1,556  1,596  1,596 

  Utility Scale Renewables   134  134  208  208  208  208  279  289  321  346  376  400  433  453  470  483 

Demand Response  28  32  37  42  44  46  48  50  52  54  56  58  60  62  64  67 

Total Renewables & DR Resources   162  166  245  250  252  254  327  339  373  400  432  458  493  515  534  550 

  Short‐Term Market Resources  150  100  10  195  215  80  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

  Future Storage Resources  5  5  30  30  55  55  55  55  55  55  55  55  55  55  105  105 

  Total Firm Resources  2,965  2,749  2,763  2,800  2,847  2,971  2,964  2,976  3,010  3,037  3,069  3,095  3,007  3,029  3,028  3,044 

Page 53: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐53

TypicalDispatchProfilesTheprevioussectiondescribedhowtheTEPReferenceCasePlanwilladdresspeakhourdemand.ThisIRP,morethanpreviousones,requiredadditionalanalysisontheinterandintra‐hourdemandrequirementsandtheresponseoftheoptimalresourcemix.Chart7illustratesthemannerinwhichexistingresourceswereroutinelydispatchedtomeetanticipatedloadrequirementsduringasummerpeak‐typedayin2016.Thefiguresdonotrepresenttheactualpeakdays;insteadthedemandprofilesdemonstratedinthesefiguresareatypicaldayrepresentativeofeachrespectiveseasonfor2016.InChart7,it’sclearthatTEP’sexistingrenewableresourceshavealreadyhadanimpactonthedispatchofitscoalandnaturalgasresources.

BothChart7andChart8belowarederivedfromasampleofactualproductiondata.Theareashownabovethe‘Retail’linerepresentsopportunitysalesmadetothespotmarket.Notethatthecurrentlevelofrenewableresourcesiscreatingagreateropportunitytomakesalesfromcoalandnaturalgasresources.Ofcourse,thedepthofthatopportunitymaynotalwaysexistasrenewablesarecreatingthissituationregionallyandnotjustfortheutility.Thiscreatespressureonregionalpowerprices,whichhaveremaineddepressedoverrecentyears,influencedbyexcessgenerationandlowpricednaturalgas.

Chart7–2016ExampleSummerDayDispatch

InChart7above,weobservethatthehighpeakdemandexperiencedinthesummercanbemetwithsubstantialmarketpurchasesandtheutilizationofexistingpeakingresources(gasturbines).Thecontributionfromrenewables,ingreen,isshiftingthesetraditionalpeaksfurthertotherightandintotheeveninghours.Increasedsolargenerationisalreadycreatingashiftingasandenergymarketforecasts.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

MW

Typical Peak Day (Hours)

Renewables Coal Natural Gas Purchases Retail

Page 54: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐54

Withcapacityavailableforpurchase,thegasandenergymarketpriceforecastsdictatethatapartofTEP’sgasresourceswouldbedisplaced.Theportionofthegasresourcesthatarenotdispatchedhavetraditionallyservedasstand‐by(reserve)capacity,thusservingavitalpurposeinmaintainingsystemreliability.Thisdisplacementisalsocausetoreevaluatehowcoalandgasresourcesshouldoperateandinsomecasesifthey’reabletooperatewithredefinedparameters.AsdemonstratedinChart7,TEPexperiencesitspeakdemandat4to5PMineitherJulyorAugust.IncreasedpenetrationofsolarPVishavingtheneteffectofshiftingthispeaktolaterhours,ultimatelyonto7to8PMasthesunsets.Meanwhile,systemoperatorsaredeployingtheirfastestrampingunitsupwardtorespondtotheramp‐downofsolarresources.

Chart8‐2017ExampleWinterDayDispatch

TheTEPwinterloadprofile,asseeninChart8above,differssignificantlyfromthesummerprofile.Thepeakdemandexperiencedonweekdaysinthewinterismeasurablylowerthanthoseseeninthesummer.Inthewintermonths,theloadpeaksintheearlymorninghoursandthenagaininthelateevening.Thedispatchstrategyinthewinterdifferssignificantlyfromthestrategyinthesummer.Adifferentsetofchallengesemergeswithincreasedsolargenerationduringthewinter.Amorepronounced‘duckcurve’createsrampdownandrampupchallenges,whilealsopushingthetraditionalbase‐loadcoalplantsclosertotheirminimumgeneration(andultimatelybelow).

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

MW

Typical Peak Day (Hours)

Renewables Coal Natural Gas Purchases Retail

Page 55: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐55

BalancingAuthorityOperationsTodescribeTEP’sutilityoperationwithrespecttotheelectricgridrequiresareviewofelectricgridfundamentals.ThereareseveralinterconnectionsontheNorthAmericancontinent–theEastern,ElectricReliabilityCouncilOfTexas,Quebec,andtheWestern.TheseareeachpartoftheNorthAmericanElectricReliabilityCorporation(NERC),(seeFigure7).InadditionCentroNacionaldeControldeEnergia(CENACE)operatesthenationalgridofMexico.WithintheWesternInterconnection,thereare38BAs(seeFigure8).EachBAisresponsibletobalanceloadsandresourcessothatfrequencyremainsatornear60Hzor60cyclespersecond.Thisresourcebalanceisimportantforthesafeandreliableoperationofsupplysideresourcesandenduseequipment.Simplyput,aBAisthecollectionofloadsandresourceswithinameteredboundary,connectedtootherBAsthroughtransmissiontiesforthepurposeofmaintainingfrequency.TEP’sBAboundary(seeFigure9)has44tiestoour7adjacentBAs.

Figure7‐NERCInterconnections

Page 56: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐56

Figure8‐WesternInterconnectionBalancingAuthorities

Page 57: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐57

Figure9‐TEP’sBalancingAuthorityArea

Page 58: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐58

TheprimaryquantityestablishedbyNERCfordeterminingaBA’sreliabilityperformanceisAreaControlError(ACE).ACEistheinstantaneousmeasureofaBA’sabilitytomanageitsloadobligationsandsupporttheinterconnectionfrequency(seeFigure10).ThefollowingmeasuresofACEovertimearethestandardsthateachBAisexpectedtomeet:

ControlPerformanceStandard(CPS)CPSisameasureofaBA’sACEovertimewithrespecttofrequency.TheBAhelpsfrequencybyovergeneratingwhenfrequencyislow,andundergeneratingwhenfrequencyishigh.ThisisknownashavingACEontheoppositesideoffrequency.

BalancingAuthorityACELimit(BAAL)BAALisameasureofhowlongaBAremainswithanACEthatishinderingfrequency.ItisunderstoodthatnoBAcanalwayssupportfrequency,butitisexpectedthataBAexperiencingdifficultiesdoesnotleanontheinterconnectionlongerthanittakestoresolvetheissue.

DisturbanceControlStandard(DCS)DCSisameasureofaBA’sabilitytoreplacetheirgeneratingresourcesfollowingtheunplannedlossofaresource.

FrequencyResponseMeasure(FRM)FRMisameasureofaBA’sabilitytoprovidefrequencyresponseduringadisturbance.Frequencyresponsetypicallycomesfromgovernorresponseongeneratorswithcapacitytoincreaseoutput,inductiveloads,andmorerecentlyinvertertechnologyconnectedtobatteriesorrenewablesourceswithcapacitytorespond.

Figure10‐BalancingAreaFunction

Page 59: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐59

ReservesReservesarethekeytoprovidingaBAwiththeabilitytorespondtodeviationsinACEandremaincompliantwiththemeasuresabove.Reservesareoftenlabeledbythefunctiontheyareperformingsuchasregulatingreservesforfollowingload,contingencyreservesforrespondingtoadisturbance,frequencyresponsivereservesthatimmediatelyrespondtofrequencyexcursions.CollectivelytheyarereferredtoasOperatingReserves.Reservesarealsoclassifiedasspinningandnon‐spinning.Spinreferstogenerationthatisonlinebutunloadedsothatitcanimmediatelyrespondtoanevent.Thereserveclassificationofnon‐spinorsupplementalcomesfromgenerationthatisnotconnectedtothesystembutcanbeconnectedandgeneratingpowerwithin10minutes,suchasaquickstartturbine.Interruptibleloadcontractsalsofallintothisnon‐spincategory.Non‐spinisprimarilyusedfordisturbancerecovery.Withtheproliferationofpowerelectronics,manyutilities,reservesharinggroups,andregulatingbodiesrecognizethevalueofstoragesystemsandheadroomonrenewablesystemswhichfactorintothereservecalculation.

LoadFollowingLoadfollowingisgenerallycharacterizedbyautility’sabilitytofollowtheloadshapeofitsBAAreaandregulatepoweroutputchangesoverafivetotenminutetimeframe.Loadfollowingisrequiredtorespondtothechangingconditionsofelectricsupplyanddemand.Historically,utilitiesreliedonamixofconventionalgenerationresourcestiedintoautilities’EnergyManagementSystem(EMS)thatprovidedAutomaticGenerationControl(AGC)tomanagetheirloadfollowingrequirements.However,asrenewableresourcesbecomealargerpartoftheresourceportfolio,changesinsupplyanddemandconditionswillbecomemoreextremeandwillhappenmorefrequently.Thesechangesrequirefastrespondingresourcesanddemandsideshapingtoaccommodatethefluctuatingresourcesasrenewablepenetrationincreases.

Regulationisusedtoreconcilemomentarydifferencescausedbyfluctuationsingenerationandloads.TheprimaryreasonforcontrollingregulationinthepowersystemistomaintaingridfrequencyrequirementsthatcomplywiththeNERC’sRealPowerBalancingControlPerformanceandDisturbanceControlPerformanceStandards.Thebenefitofregulationfromstoragetechnologieswithafastrampratesareontheorderoftwotothreetimesthatofregulationprovidedbyconventionalgeneration.Thisisduetothefactthatstoragetechnologieshavetheabilitytoreacttochangesinsystemconditionsinamatterofaminuteortworatherthanseveralminutes.TheblackloaddemandlineinChart9showsnumerousfluctuationsdepictingtheimbalancebetweengenerationandloadwithoutregulation.Thethickerorangelineintheplotshowsasmoothersystemresponseafterdampingofthosefluctuationswithregulation.

Oneofthenewchallengeswithhighlevelsofrenewablepenetrationisthelowloadlevelsseenintheoffseasonbellyoftheduckcurve(seeChart10),aswellasthelargedailyswingsassociatedwiththepeakseasonloadshape.WithloadsbeingsuppliedbybothDGandutilityscalerenewables,theconventionalresourcesmustbebackeddowntomakeroomfortherenewables,butthenmustrampuptocoverthepeakwhentherenewablesareunavailable.

Page 60: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐60

Chart9–EffectsofLoadRegulation

Chart10‐Typical2030Winter/SpringDuckCurve

0

500

1000

1500

2000

2500Deman

d, M

W

Hourly Demand ‐ Typical Summer Day

Wind SolarCoal Resource Natural Gas Intermediate UnitsPurchases Natural Gas PeakersDemand Regulated Demand Without Regulation

Page 61: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐61

Anotherchallengetoregulationwithhighlevelsofrenewablepenetrationisintermittency.Movingcloudcoverandvariationsinwind,amongotherweatherpatterns,cancauselargeamountsofrenewablegenerationtodropoutorreturntoserviceinmereminutes.Thesefastchangesinrenewablegenerationrequireresourcesthatcanrampupanddownquicklyandrepeatedlyinordertoregulateandmaintainperformancemeasures.

Manypotentialsolutionstohelpmitigatethissteepdailyrampupanddownandinter‐hourintermittencyarebeingexploredandinclude:

Cyclingcoalplants Loweringtheminimumoperatinglevelsofconventionalplants Investinginfastresponsegeneratingtechnology Investinginstoragesystems Changingtheloadshapethroughratedesign

AdjustmentstoOperatingReserveTEPmaintainsanamountofOperatingReservesgreaterthantheminimumrequirement,buthadnotquantifiedtheexcess.DifficultieswithregulationduetorenewableintermittencyledTEP’sSystemControltostudytheintermittencyandexcessoperatingreserves.TheresultwasachangetohowTEPcalculatesandcarriesOperatingReserve.

ThepurposeoftheadjustmenttoOperationReservesistoensureadefinedamountofexcessreservesareavailableatalltimes.ThenewcalculationwillrequirethatadditionalOperatingReservesarecarriedintheOn‐PeakhoursandOff‐PeakHours.ExcessReservesmeetingthenewcriteriawerealreadyavailableduring85%ofhoursintheyear,butimplementingthisnewcriteriaisnecessarytoensuresufficientreservesareavailableatalltimes.

TEP’sEnergyManagementSystemtakestheSystemLoad,anddependingonwhetheritisanOn‐PeakorOff‐Peakhour,multiplyitbyavariabilitymargin.ThisamountisaddedtotheSpinningReserveRequirement,whichtheSystemOperatorsmonitorandmaintainaround‐the‐clock.Theyarealsofreetodeploythisreserveasnecessarytomaintainperformancemeasures.

FrequencyResponseFrequencyresponseisanancillaryservicerequirementthatissimilartoregulationexceptthatfrequencyresponseautomaticallyreactstoasystemdisturbanceinsecondsratherthanminutes.Frequencydisturbancesoccurwhenthereisasuddenlossofageneratingunitoratransmissionlineoutagedisruptingtheload/resourcebalance.Asaresult,othergeneratingresourcesthatareonlinemustrespondtocounteractthissuddenimbalancebetweenloadandgenerationandtomaintainthesystemfrequencyandstabilityofthegrid.Thefirstresponsewithintheinitialsecondsiscalledtheprimaryfrequencycontrol.ThisresponseistheresultofthegovernoractiononthegeneratingunitsaswellasstoragesystemswhichautomaticallyincreasetheirpoweroutputasshowninthelowerportionofFigure11below.Thisisfollowedbythelongerdurationofsecondaryfrequencycontrols.TheseresponsesareinitiatedbyAGCthatspansahalfaminutetoseveralminutesshownbythedottedlineinthelowerportionofFigure11.ThecombinedeffectofinertiaandthegovernoractionsofonlinegeneratingunitsdeterminestherateoffrequencydecayandrecoveryshowninthearrestingandreboundperiodsintheupperportionofFigure11.Thisisalsothewindowoftimeinwhichthefast‐actingresponseofflywheelandbatterystoragesystemsexcelsinstabilizingthefrequency.Thepresenceoffast‐actingstorageassuresasmoothertransitiontonormaloperationreturninggridfrequencybacktoitsnormalrange.

Page 62: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐62

Figure11–SequentialActionsofFrequencyControls

InertiaGeneratorsandmotorloadprovidetheinertiaofasystem.Inertiaistherotatingmassofgeneratorsandtheirprimemovers,aswellasmotorsandtheirloadwhichopposechangesinfrequency.Themagnitudeofinertiainthesystemischangingastheindustrymovesfromlargecentralizedsteamplantstomoreofadistributednetworkofgasturbinesandrenewablesystems.Astheinertiadeclines,therateofchangeoffrequencyincreases.Thecontributiontoinertiafrompowerelectronicsandtheirsystemsisstilltobequantifiedandissometimesreferredtoaspseudoinertia.

VoltageSupportAnotherreliabilityrequirementforelectricgridoperationistomaintaingridvoltagewithinspecifiedlimits.Tomanagereactanceatthegridlevel,systemoperatorsneedvoltagesupportresourcestooffsetreactiveeffectssothatthetransmissionanddistributionsystemnetworkscanbeoperatedinastablemanner.Normally,designatedpowerplantsareusedtogeneratereactivepower(volt‐amperereactive,VAR)tooffsetreactanceinthegrid.Aspowerplantsaredisplaced,VARsourcesneedtobestrategicallyplacedwithinthegridatcentrallocationsandbytakingthedistributedapproachandplacingmultipleVAR‐supportstoragesystemsnearlargeloads.

Page 63: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐63

PowerQualityTheelectricpowerqualityserviceinvolvesusingstoragetoprotectcustomeron‐siteloadsdownstream(fromstorage)againstshort‐durationeventsthataffectthequalityofpowerdeliveredtothecustomer’sloads.Somemanifestationsofpoorpowerqualityincludethefollowing:

Variationsinvoltagemagnitude(e.g.,short‐termspikesordips,longertermsurges,orsags) Variationsintheprimary60‐hertz(Hz)frequencyatwhichpowerisdelivered Lowpowerfactor(voltageandcurrentexcessivelyoutofphasewitheachother) Harmonics(i.e.,thepresenceofcurrentsorvoltagesatfrequenciesotherthantheprimaryfrequency)

Interruptionsinservice,ofanyduration,rangingfromafractionofasecondtoseveralseconds

Typically,thedischargedurationrequiredforthepowerqualityuserangesfromafewsecondstoafewminutes.Distributedstoragesystemscanmonitorgridpowerqualityanddischargetosmoothoutdisturbancessothatitistransparenttocustomers.

Table5–AncillaryServicesTechnicalConsiderationforStorageTechnologies

Ancillary Services  Storage System Size  Target Discharge Duration Minimum Cycles/Year 

Load Following / Ramping 

1 – 100 MW Range: 15 minutes to 60 

minutes Not Applicable 

Regulation  Range: 10 – 40 MW Range: 15 minutes to 60 

minutes 250 – 10,000 

Voltage Support  1 – 10 (MVAR)  Not Applicable  Not Applicable 

Distribution Deferral 500 kilowatts (kW) – 10 

MW Range: 1 – 4 hours  50 ‐ 100 

Power Quality  100 kW – 10 MW  10 seconds – 15 minutes  10 ‐ 200 

Frequency Response  10 – 100 MW  5 seconds – 5 minutes   20 ‐ 100 

Page 64: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐64

Distribution System Enhancements 

DistributionCapacityExpansionTEP’slongtermdistributionsystemcapacityrequirementsarebeingsupportedbystrategicallytargetingareaswherenewsubstationscanbebuilt,increasingexistingsubstationcapacity,andtheoptimizingthereplacementofageingequipment.

New138kVSubstationsNew138kVsubstationshavebeenidentifiedintheCompany’s10yeartransmissionplan.Historically,justificationfornewsubstationsinthe10yearplanhavebeendrivenprimarilyfromcapacityneedsonthedistributionsystem.Thesenew138kV‐sourceddistributionsubstationswillnotonlyhelpsupportandincreasesystemcapacity,theywillprovideadditionalcontingencysupportfortheexistingdistributionnetwork.Thenew138kVsubstationsalsoalignwithlongrangeplansoffurtherutilizingthe138kVsystemtodirectlysourcethedistributionsystem.The138kVtransmissionsystemismorereliablethanthe46kVsub‐transmissionsystemthatisusedtosourceasignificantportionofthedistributionsystem.Thesenewsubstationsallowformoreofthedistributionsystemloadtobesourcedfromamorereliable138kVsystem.

BenefitsRealizedfromNewSubstations Reducedpeakloadingonexistingsystem Increasedcapacityforfuturecommercial,residentialandlightindustrialdevelopment Increasedcontingencysupporttoimprovesystemreliabilityandoperationalflexibility Additionalcapacitycanbeutilizedtoidentifyandevaluateimprovedserviceforcriticalcustomers Supportsothertechnologyintegrationsuchasremoteswitchingcontrol Supportslongtermplansfor4kVsystemconversionto13.8kV Retirementofageingsubstationswherefeasible Reducesdistributionsystemloses

Page 65: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐65

ExistingSubstationUpgradesContinuedfocusonutilizingtheAssetManagementGrouptoanalyzeandmonitorallofTEP’sexistingsubstationequipmentwillhelpidentifywhichageingsubstationtransformersareinneedofreplacementthroughoutthesystem.Oncethetransformershavebeenidentifiedforreplacement,theyareevaluatedinrelationtocurrentsystemconditionstodetermineaproperreplacementstrategy.Inmanycases,increasedtransformercapacityandupgradestoahigherlow‐sidevoltagearerequired.Similartowhathasbeendescribedabove,increasedtransformercapacitywillimproveoperationalflexibilityandsystemreliability.Additionally,installingnewtransformerswitha13.8kVlow‐sidevoltagealignswithlongrangeplansforupgradingthe4kVdistributionsystemtomeetexistingstandards.

4kVSystemConversionInitially,the4kVsystememergedastheprimarydistributionvoltagetoserveallresidentialandcommercialloadwithincentralTucson.Amajorityofthe4kVsystemissub‐standardwhencomparedtotheCompany’s13.8kVsystem,however,afullsystemconversionwillbeverylaborandcostintensive.

Manyoftheexistingcomponentsincludingcable,servicetransformers,poles,arms,andinsulatorsmustbereplacedtofullyconvertthesystemto13.8kV.Effortsareunderwayforidentifyingalong‐rangeplanforsystemconversionandtheseplanswillrelyonprojectsidentifiedaboverelatedtosubstationtransformerreplacements.

4KVSystemConversionBenefits Opportunityforaligningsystemconversionwithsubstationtransformerchange‐outs Increasedcircuitcapacitywithvoltageconversion Improvedsystemreliabilitybycreatingstrongertieswiththeexisting13.8kVsystem Increasedcontingencysupportwillimproveoutagerestorationtime Reducedsystemloses

Page 66: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐66

Clean Energy Standards 

Beginningin1999,withtheEnvironmentalPortfolioStandard,theArizonaCorporationCommission(ACCor“Commission”)hasadoptedcleanenergystandards,whichestablishgoalsforallArizonaloadservingentitiesregulatedbytheCommission,suchasTEPto(1)utilizerenewableenergyresourcestomeetaportionofitsretailload,and(2)designandimplementEEprogramstoreducesomepercentageofcustomerenergyuse.Thesestandardswereintendedto,andinfacthave,accruedcertainbenefitstocustomers,aswellasbroadersociety,including:

Reducedemissionsofgreenhousegasesandotherairpollutantsthoughareductioninfossil‐fuel‐generation

Reducedrenewableenergyunitcostsbycontributingtoalargerandmorecertainmarketforrenewableenergymanufacturersandinstallers

Reducedoverallcustomerbills,bypromotingcost‐effectiveEEmeasures

RenewableEnergyStandardComplianceTheRenewableEnergyStandard9(RES)setsfortharequirementforallArizonaloadservingentitiestomeetapercentageoftheirretailloadusingrenewableenergyresources.Thispercentageincreasesannuallyuntilitreaches15%in2025.In2017theREStargetforTEPwillbeapproximately621GWhbasedon7.0%of2016retailsales.TEPanticipatesexceedingtheannualrequirementin2017andeachyearthereafteraspartofitsgoaltoreach30%ofretailloadusingrenewableenergyby2030.

EnergyEfficiencyStandardComplianceTheArizonaEnergyEfficiencyStandard(“EEStandard”)setsfortharequirementforallArizonaloadservingentitiestoachieveenergysavingsbasedonapercentageoftheprioryearretailload,growingtoacumulativeloadreductionof22%by2020.Table6showsTEP’sprogresstowardsmeetingthestandardannually.Asoftheendof2016,TEPhasachievedtherequiredsavingsandispoisedtocontinuethrough2017.In2017TEP’stargetforenergysavingswillbe204,341MWh,basedon14.5%of2016retailsales.Forresourceplanningpurposes,TEPhasassumedthatitmaintainscompliancewithArizonaEEStandardthrough2020whentheprogramsunsets.AssumptionsforEEsavingsafter2020areaddressedinChapter10.

9RenewableEnergyStandardandTariff,A.C.C.R14‐2‐1801

Page 67: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐67

Table6‐EnergyEfficiencyCumulativeAnnualSavingsProgresstowardstheStandard

Year Retail Energy 

Sales (MWh) 

Incremental Annual Energy Savings 

(MWh) 

Cumulative Annual Energy Savings 

(MWh) 

Cumulative Annual Savings as a % of previous year  

Retail Sales 

CumulativeEE 

Standard 

2010  9,291,788   

2011  9,332,107  139,539  139,539  1.50%  1.25% 

2012  9,264,818  105,655  245,194  2.63%  3.00% 

2013  9,278,918  177,425  422,619  4.56%  5.00% 

2014  8,520,347  221,215  643,834  6.94%  7.25% 

2015  8,431,556  168,600  812,434  9.54%  9.50% 

2016  8,387,868  197,466  1,011,900  12.00%  12.00% 

2017    204,341  1,216,241  14.50%  14.50% 

Utility‐SpecificStandardDerivedThroughtheIRPProcessWhiletheRESandEEstandardhaveproducedrealandtangiblebenefitsasnotedabove,cleanenergystandardsappliedatastatewidelevelareinherentlyinflexibleandfailtotakeintoaccounttheuniquecircumstancesofdifferentutilities.Thiscreatesinefficaciesinresourceacquisitionanddispatch,whichultimatelyresultsinhighercostspassedontocustomers.Intheearlyyearsoftheseprograms,whenthecleanenergygoalsweremodest,theimpactoftheseinefficiencieswasnotsignificant.However,asthesecleanenergygoalsapproachhigherpercentagesofthetotalretailload,TEPanticipatesthatthenegativeimpactoftheseinefficiencieswillbecomemorepronounced.

Properconsiderationofcostandbenefitsofvariousresourcesisafundamentalfunctionofintegratedresourceplanning.Infact,theIRPprovidesthemostholisticconsiderationoftheverygoalsthatcleanenergystandardsaimtoachieve,whilebalancingthecostofachievingthosegoals.Sinceintegratedresourceplanningwasreinstatedin2011,thegoaloftheIRPhasshiftedfromfocusingontheleast‐costportfoliotothebestcaseportfolioconsideringcost,environmentalfactors,andreducinglong‐termrisk.

AddressingcleanenergystandardswithintheIRPwouldputthecosteffectivenessofrenewableenergy,EE,andDRonalevelplayingfieldwithconventionalresourcesbasedontheirroleincreatingalow‐cost,low‐riskresourceportfolio.Addingtothelogicofthisapproachisthatmanyrenewableenergytechnologiesareatorapproachingparitywithconventionalresources,andcosteffectiveEEremainsthelowestcostresource.Finally,IRPtoolsarecontinuallybeingadaptedtoaccountforemerginghourlyandsub‐hourlyoperationalissuesthataccompanycertainrenewableenergyandDRproducts.Therefore,TEPbelievesthattheIRPwouldbeabettermechanismtodeveloputility‐specifictargetsforcleanenergystandardsthanastate‐wide,“onesizefitsall”rulemaking.

Page 68: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐68

Renewable Energy Integration 

TEPistargetingarenewableportfoliothatwillsupply30%ofitsretailloadrequirementby2030.ThisaggressivetargetwillcomewithitsownsetofchallengesanditwillrequireTEPtoderiveabalanced,responsive,anddiversegenerationportfolio.ThissectionwillpointoutandexplaintheoperationalchallengesthatTEPwillfaceasitincreasesitsuseofrenewablegeneration.

OperationalChallengesHistorically,electricutilitieswithpredominantairconditioningloadsetapeakdemandbetween4:00PMto5:00PMonasummerday.Thewinterloadrequirementsarelowerthantheyareforthesummerbut,thechallengesthatemergeonadailybasis(withheavysolarpenetration)aremorepronounced.Chart11belowillustratesasamplewinterdayforTEP.Onatypicalwinterdayretailloadtendstopeakatday‐breakandagainafterthesunsetsandconsumersturnonappliancesandlighting.

Chart11–SampleOperationalChallengesduetoSolarProduction

Typical2030WinterDayLoadProfile

‐400

‐200

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

MW

Typical Peak Day (Hours)

Coal Natural Gas/Purchases Over Generation Retail (net renewables)

4

3

2

5

1 ‐ Ramp Down   2 ‐Minimum Generation   3 ‐ Over‐Generation   4 ‐ Ramp‐Up   5 ‐ Peak Shift

1

Page 69: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐69

TheaccumulationofsolarPVintroducesoperationalchallengesonadailybasis.AswereviewChart11aboveshowingtheloadshapeofatypicalwinterday,wemakethefollowingobservations;

1. RampDown–AbsentsolarPV,thedemandprofileonatypicalwinterdayincludesapeakinthemorningandoneintheevening.Themorningpeakoccursduringthecoldesthoursasthesunrisesandwhileconsumerswake,homesandbusinessesarewarmedandcommutersheadtowork.Theretailload,onitsown,wouldtrenddownwardmodestlyasthesunrisesandtracksalongthehorizon.Thisramp‐downwastypicallymanagedwithcoalandnaturalgasresources.TheneteffectofadditionsolarPVwillcauseamoredrasticramp‐down.Fast‐responseresources,suchasRICEs,willberequiredtomanagethissteepreductioninnetload.TheseunitswilllikelybeprescheduledtocontributetothemorningpeakandthenutilizedtorampdowntogivewaytothesunandsolarPV.

2. MinimumGeneration–AssolarPVgenerationreachesitspeak,andafterramp‐down,generatingunitsmusthavethecapabilitytogenerateatreducedoutputlevelsduringthemiddayhours.Modificationsmayberequiredonunitstoallowthemtocycleoff.Ifcyclingisnotanoptionforgenerators,TEPmustrelyonmarketdemandforexcessthermalgenerationoff‐takeordevelopstrategiestodispatchbelowitsminimumgeneration.

3. Over‐Generation–TheCAISOisalreadyexperiencingnegativepricingforover‐generationduringpeakPVgeneratinghours.Adjacentutilitiesandentitieshavebeenthebeneficiariesofthispricing.TheopportunitytochargeEnergyStorageSystems(ESS),suchasbatteriesorhydropumped‐storage,presentsitselfduringthesehourstotakeadvantageofexcessgenerationatlowcost.IncreasedPVatTEPwillcontributetoover‐generationandwillrequireinnovativeideasandinfrastructuretosecuretherightmixtureofresources.

4. RampUp–Thesunbeginstoset,fast‐respondingresourcesmustnowrampuptodisplacethedemandthatsolarPVrelinquishes.It’satthispointthatautilitymustutilizeflexibleresourcestoequallyoffsetthedropinsolargeneration.Theramp‐upmaybemitigatedintheneartermbycombustionturbinesandnaturalgascombinedcyclegenerators.Astheramp‐upsteepens,itmaynecessitatetheinclusionofESS,RICE,and/orDRmechanisms.

5. PeakShift–SolarPVwillonlyreducedemanduntilthesunsets.Thisresultsinanarrowingandnetshiftofpeakdemand.CAISOhasalsodemonstratedescalatedpricingintheseeveningandnighthours.WhileESSchargesduringthe‘over‐generation’hours,thispeakperiodmaypresentanopportunitytodischargethesesystems,especiallyifweobserveatransformationofhourlypeakandoff‐peakpricing.

SolarPVhastremendousupsideandarguablyitmaycontributetoreducedlosses,toapportionedcapacityreductions(generationandtransmission),andtocarbonemissionreductions,amongotherbenefits.Werecognizefromthechartanddiscussionabovethatotherchallengesarise.Asthesunisrising,electricloadstabilizesandbeginsanascenttowardthepeak.Increasedpenetrationofsolarcreatesarapidnetdropinload;TEPmusthavegeneratorsthatarecapableoframpingdownatafastrate.Mostbaseloadunitssuchascoalandnaturalgas‐steamarechallengedtorespondtothisrampdownandsubsequentrampup.Inbetweenwemaybechallengedwithunitgenerationminimumsandnegativepricing.

Thenetreductioninloadwillcreatetheneedforrapidrespondinggeneratorstoregulatetheinitialsteepdeclineinloadfollowedbyanimmediaterise.Inaresourceplanningcontext,withtheincreasingpenetrationofsolarsystems,wemusttakeintoconsiderationtherightcombinationofresourcestorespondtothevariabilityandintermittencyofrenewablesystems.AportfoliowithahighpenetrationofsolarandotherrenewablesmaynecessitatetheinstallationofRICEsand/orstorageintheformofbatteriesornaturalgas.

Page 70: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐70

ShiftingNetPeakChart12belowrepresentsaprojected2030typicalsummerpeakdayforretaildemandandthenetretaildemandadjustedforvaryinglevelsofsolarpenetrationasestimatedintheReferenceCasePlan.ThechartillustrateshowincreasedpenetrationofsolarPVandsolarDGwillshiftthenetpeakretaildemandfromapproximately4PMtoultimately8PM.Thenetreductioninpeakwillnotexceedthedifferencebetweenthedemanddemonstratedat4PMandthedemandat8PMwhenthesunhasalreadyset.Infact,TEPanticipatesthatapproximately350MWsofPVandDGwillbeinservicebyyear‐end2017.Theimpactofthecurrentsolarportfolioisdemonstratedinthechartbelow;netpeakdemandhasalreadybeenreducedbyandthenetpeakisshiftedto7PM.

Theadditionof150MWspriortoyear‐end2020willreducethepeakminimallybutthetimeofpeakwillshiftfurthertotherightandto8PM.After2020,weobservethatsolargenerationfromPVandDGwillhavenegligiblereductiontonetpeakat8PM.Thecontributionfromsolargenerationtowarddemandreductionwillbeconstrainedwithinthemid‐dayhours.Solargenerationatlevelsdemonstratedfor2025and2030inthechart,willonlycontributetowardenergyproductionprimarilywhileotherresourcesmustbedeployedtomeetnetpeakdemand.

Chart12–PeakDemandContributionfromPV

TypicalSummerDayLoadProfile

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

MW

Typical Peak Day (Hours)

Retail (2030)

Net (with 2030 solar)

Net (with 2017 solar)

Net (with 2020 solar)

Net (with 2025 solar)

Page 71: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐71

WeatherForecastingtoSupportSystemDispatchWeatherforecastingisutilizedtoreduceoperatingcostsatTEP.Therearedifferentproductsthatareusedtoforecasttheweather,butthemainproductTEPpredictstheweatherwithisweatherforecastmodels.

AtTEP,weusearegionalspecificformofaNumericalWeatherPrediction(NWP)model.ANWPmodelisanumericalrepresentationofthedifferentlandandatmosphericprocessesthataffecttheweather.ThespecificversionoftheNWPmodelTEPusesisknownastheArizonaWeatherResearch&Forecast(AZWRF)model.ThismodelwascreatedbytheUniversityofArizona(UA),whichwasdonesoinpartnershipwithTEPandismaintainedwithcontinuedsupportfromTEPandanumberofotherutilities.Thismodelisunique,becauseitisa“highlycustomized”modelthatisspecifictothesouthwesternUnitedStates(US).Thisisimportant,becausetraditionalweatherforecastmodelsdonottakeintoaccounttheterrainlocatedthroughoutthesouthwesternUS.

ThemodificationstheUAmadetothemodelhasallowedittoproducebetterforecaststhanotherweatherforecastmodelscan.Itisalsorunatahigherresolutionthanotherweatherforecastmodelsare.Thisisdone,sosmallscaleweatherphenomenacanbecaptured,likethewindevents,clouds,andmonsoonalthunderstormscreatedbythesurroundingmountains.Ifweweretousetraditionalweathermodels,weathereventsarecommonlyeitheroverorunderforecasted.

PowerforecastsarecreatedbytheUAforTEP,soTEPcaneasilytaketheforecastinformationandimplementitintoitsexistingprocesses.ThispowerforecastisanensembleofmultiplerunsoftheNorthAmericanModel(NAM),theGlobalForecastSystemmodel(GFS),andtheRapidRefreshmodel(RR).ThepowerforecastalsocontainsinformationthatTEPgivestheUAaboutthedifferentutilityandresidentialscalesolarandwindsitesintheserviceterritory.Thismodelprovidesforecaststhatrangefrom48hoursupto7days.Themodelisrunupto8timesadayandisinitializedwithdifferentdataeachtime.

Atthistime,TEP’sWholesaleMarketingDepartmentusesthispowerforecasttomakedecisions,regardinghowmuchpowertobuyorsellattherealtimeanddayaheadlevel.

Page 72: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐72

Belowaretwoexamplesoftheseforecasts.ThefirstexampleisaforecastthatcoversallofTEPterritory’sutility‐scalesolarandthesecondexampleisaforecastthatcoversallofTEPterritory’sutility‐scalewind.

Chart13–TEPUtilityScaleSolarForecast

Chart14–TEPUtilityScaleWindForecast

TEPcanseehowandifthemodelsthatgointothepowerforecastagree,bylookingatthegreenshadingseenontheaboveforecasts.Theconfidenceintervalsrepresentedontheforecastsarereliablethroughthreedays.Pastthethreedaymark,however,theforecast’sconfidenceintervalsbecomelessandlessreliable.Alargemajorityoftheuncertaintyapparentafterthreedayscomesfromtheuncertaintythatisapparentinglobalweatherconditions.

Page 73: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐73

Environmental Regulations 

OverviewTheelectricgeneratingsectorcurrentlyfacesnumerousregulationsrelatedtoairquality,wastegeneration,protectionofwaterways,andclimatechange.Fossilfuel‐firedpowerplants,particularlycoal‐firedpowerplants,aresignificantsourcesofsulfurdioxide(SO2),nitrogenoxides(NOx),particulatematter(PM),andcarbondioxide(CO2)aswellasmercuryandotherhazardousairpollutants.Thesepowerplantemissionsarelimitedthroughseveralstatutoryandregulatoryprograms.Astheseregulatoryprogramshaveevolved,theyhavehad,andwillcontinuetohaveimportantimplicationsforpublichealth,forthemixofU.S.generatingresources,andforeconomicgrowthbydrivinginvestmentinnewandcleanertechnologiesandcontributingtotheretirementofthemoreinefficientandhigherpollutingplants.ThediscussionbelowprovidesasnapshotofthemajorenvironmentalregulatoryprogramsfacingtheelectricgeneratingsectorthatmayhaveanimpactonTEP.

RegionalHazeTheEPA'sRegionalHazeRuleestablishesagoaltoreducevisibilityimpairmentinClassIareas(NationalParks,Monuments,etc.)tonaturalconditionsby2064.Progresstowardthislong‐termgoalismeasuredin10‐yearplanningperiods.Foreachplanningperiod,statesmustdevelopplansthatestablishgoalsandemissionreductionstrategiesforimprovingvisibilitybyreducingemissionsfromsourceslocatedwithintheirrespectivejurisdictions.BecauseNavajoandFourCornersarelocatedontheNavajoIndianReservation,theyarenotsubjecttostateoversight;theEPAoverseesregionalhazeplanningforthesepowerplants.Thesestateplansmustachieve“ReasonableProgress”towardthe2064goal,andarereviewedbyEPAinrelationtothatobjective.

Duringthefirstplanningperiod(2009‐2018)theruleincludedanadditionalrequirementreferredtoasBestAvailableRetrofitTechnology(BART).BARTappliedtocertainindustrialfacilitiesbuiltbetweenAugust1962andAugust1977.InthewesternU.S.,RegionalHazeBARTdeterminationshavefocusedoncontrolsforNOx,oftenresultinginarequirementtoinstallselectivecatalyticreduction(SCR).SeveralplantownerssubjecttoBARTdeterminationsthatcalledforSCRnegotiatedalternativetoBARTprovisionsinwhichequivalentorgreateremissionreductionswereachievedthroughunitretirementscombinedwithothermeasuresinlieuofinstallingSCR.FinalBARTprovisionsapplicabletoplantsownedbyTEParesummarizedinTable7below.

Table7‐FinalBARTNOxProvisionsforTEP‐OwnedPlants

Plant TEP Ownership 

BART Provisions  Alternative to BART Provisions 

Four Corners 7% of Units 4 and 5 

110 MW 

SCR on all five units One Unit (Unit 4 or 5) by October 2016 

The remaining four units by October 2017  Plant‐wide emission rate of 0.11 lbs./MMBtu 

Closure of Units 1‐3 by January 2014 SCR on Units 4 and 5 by August 2018 

Plant‐wide emission rate of 0.098 lbs./MMBtu 

San Juan 50% of Units 1 and 2 

340 MW 

SCR on all four units by September 2016 

Emission rate of 0.11 lbs./MMBtu 

Closure of Units 2 and 3 by January 2018 SNCR on Units 1 and 4 by February 2016 

Emission rate of 0.23 lbs./MMBtu 

Navajo 7.5% of Units 1‐3 

168 MW 

SCR on all three units Emission rate of 0.055 lbs./MMBtu 

Closure of one unit by January 2020 SCR on the remaining units by January 2031 

Emission rate of 0.07 lbs./MMBtu 

Sundt Unit 4 100% 

120 MW 

SNCR on Unit 4 Unit operates on coal or natural gas Emission rate of 0.36 lb./MMBtu 

Unit eliminates coal as a fuel source Emission rate of 0.25 lb./MMBtu 

Page 74: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐74

FutureplanningperiodswillfocusonaReasonableProgressprovisions.ReasonableProgressisanevaluationonthecosteffectivenessofemissionreductionsforasourcebasedonfourfactors10andinrelationtothevisibilityimprovementgoalsestablishedbytheStateforthatplanningperiod.TheplantsthathavebeensubjecttoBARTprovisionsarenotlikelytohavefurthercontrolrequirementsunderReasonableProgress.

SpringervilleGeneratingStationwasnotsubjecttoBART,andtherefore,willbeevaluatedforemissionreductionsunderReasonableProgress.AccordingtotheArizonaDepartmentofEnvironmentalQuality’sProposedRegionalHaze5‐YearProgressReport11,monitoringdatafromeachofthe12ClassIareasinArizonashowsthatvisibilityconditionsareexpectedtoexceedtheirrespective2018ReasonableProgressgoalsforthe20%worstdays.Inaddition,therearesignificantemissionreductionsexpectedoverthenextseveralyearsduetotheBARTdeterminationsforplantsinandnearArizona.

Oneofthekeymetricsformeasuring“costeffectiveness”underaReasonableProgressevaluationisthecostofthecontrolsdividedbyamountofemissionreductionsachievedthroughimplementationofthosecontrols(i.e.$/tonreduced).Thehigherthe$/tonreducedvalue,thelesslikelythatthosecontrolswillbedeterminedtobe“costeffective”.SpringervilleiscurrentlywellcontrolledforSO2,NOxandPMemissions(seeChapter9),meaningthereisnotalotofroomforfurtherreductions,andlowertonsreducedincreasesthe$/tonreducedvalue.

BasedontheState’sprogressinimprovingvisiblyatClassIareasinthestate,andtheanticipatedhighcostofachievingfurtheremissionreductionsatSpringerville,forpurposesofthisIRPweassumenofurtheremissionreductionswillberequiredatSpringervillethroughaReasonableProgressdetermination.

CleanPowerPlanOnOctober23,2015,theEPApublishedafinalruleregulating,forthefirsttime,CO2emissionsfromexistingpowerplants.Ingeneral,thisfinalrule,referredtoastheCleanPowerPlan(CPP),aimstoreduceCO2emissionsfromU.S.powerplantsby32%from2005levelsby2030.Morespecifically,theruleestablishesemissionguidelinesbasedonEPA’sdeterminationofthe“bestsystemofemissionreductions”,whichstatesandtribes(heretoreferredtoas“states”)mustusetosetstandardsapplicabletotheaffectedplantsintheirjurisdictions.

Arizonaisoneof27stateschallengingtheEPA’srulemakingauthorityandArizonahasfiledsuitagainsttheEPA.OnFebruary9,2016,theUnitedStatesSupremeCourtissuedastayoftheCPP,12meaningthattherulehasnolegaleffectpendingtheresolutionofthestateandindustrychallengetotherule.ThatchallengeiscurrentlybeforetheU.S.CourtofAppealsfortheD.C.Circuit,whichheardoralargumentsbeforeanenbanccourtonSeptember27,2016.Notwithstandingthestatusofthelitigation,thecurrentAdministrationhasstateditplanstosignificantlymodify,ifnotcompletelydismantletherule.

WhilerecognizingthattheultimateoutcomeoftheCPPishighlyuncertain,TEPbelievesitservesasanappropriateproxyforincorporatingCO2emissionconstraintsintolong‐termplanning.TheCPPisafinal

10CleanAirActSec.169A(g)(1)“indeterminingreasonableprogressthereshallbetakenintoconsiderationthecostsofcompliance,thetimenecessaryforcompliance,andtheenergyandnon‐airqualityenvironmentalimpactsofcomplianceandtheremainingusefullifeofanyexistingsource”11ADEQAirQualityDivision,ProposedArizonaStateImplementationPlantRevision‐RegionalHaze5‐YearProgressReport,September201512http://www.supremecourt.gov/orders/courtorders/020916zr3_hf5m.pdf

Page 75: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐75

agencyactionandwaspromulgatedunderrulespursuanttotheCleanAirAct.Inaddition,theCPPestablishesambitiousgoalsforemissionreductions.Therefore,TEPwillevaluatecompliancewiththeCPPforallportfoliosstudiedinthisIRP.

CPPOverviewTheCPPestablishesemissiongoalsfortwosubcategoriesofpowerplantsintheformofanemissionrate(lbs./MWh)thatdeclinesovertheperiodfrom2022to2030.Thosesubcategoriesare:

Fossil‐firedsteamelectricgeneratingunits(“SteamEGUs”)‐includescoalplantsandoilandnaturalgas‐firedsteamboilers

Naturalgas‐firedcombined‐cycleplants(NGCC)

Thenusingtheserates“SubcategoryRates”andtheproportionalgenerationfromsteamEGUsandNGCCplantsineachstate,theCPPderivesstatespecificgoals(“StateRates”).TheCPPalsoconvertstheseemissionrategoalstototalmass(i.e.shorttons)goalsforeachstate.EachstateisrequiredtodevelopaStatePlanthatwillregulatetheaffectedplantsintheirjurisdiction.TEPhaseffectedplantsinthreeseparatejurisdictions,Arizona,NewMexico,andtheNavajoNation,andtherefore,wouldbesubjecttothreeStatePlans.Table8belowshowstheapplicablerategoals.

Table8–CPPRateGoals

CO2 Rate (lbs/MWh)  2022‐2024  2025‐2027  2028‐2029  2030+ 

Subcategorized Rate ‐ Steam EGUs  1,671  1,500  1,308  1,305 

Subcategorized Rate ‐ NGCC  877  817  784  771 

         

State Rate ‐ Arizona  1,263  1,149  1,074  1,031 

State Rate ‐ New Mexico  1,435  1,297  1,203  1,146 

State Rate ‐ Navajo Nation  1,671  1,500  1,380  1,305 

TherearethreeprimaryformsoftheStatePlanavailabletostates(withsub‐options):

Rate Plantsarerequiredtomeetanemissionratestandard(lbs./MWh)equaltotheplant’semissionsdividedbythesumofitsgenerationandthegenerationfromqualifyingrenewableenergyprojectsand/orverifiedEEsavings.Arateplancouldbeadministeredthroughtheuseofemissionratecredits(ERCs),wheresourceswithemissionsabovethestandardgeneratenegativeERCswhentheyoperate,andsourceswithemissionsbelowthestandard(ornoemissions)generatepositiveERCs.Attheendofacomplianceperiod,eachaffectedplantmusthaveatleasta“zero”balanceofERCs.

Undertherateapproach,stateshavetheoptionofmeasuringcomplianceagainsttheStateRateortheSubcategoryRates.

Mass Plantsareallocated(orotherwiseacquire)allowances,thetotalofwhichequalsthestate’smassgoal,andeachplantmustsurrenderanallowanceforeachtonofCO2emittedduringacomplianceperiod.Ownersofplantsthatdonothavesufficientallowancescanreduceemissionsbycurtailingproduction,re‐dispatchingtoalower

Page 76: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐76

emissionresource,orretiringtheplantandre‐distributingallowancestotheirremainingplants.

StateMeasures Insteadofregulatingpowerplantsdirectly,astatecouldimplementpoliciesthatwillhavetheeffectofreducingemissionsintheirstatesuchasbuildingcodes,renewableenergymandatesorEEstandards.Complianceismeasuredbasedonemissionsfromtheaffectedplants.

ArizonaTheStateofArizonawasproactivelyplanningforCPPcompliance;however,planningactivitieswereputonholdafterthepresidentialelection.MuchoftheplanningwasdonewiththeassistanceofaTechnicalWorkingGroup,formedtoevaluatetechnicalaspectsoftheplan.

TheStateofArizonahaspreviouslystateditiscommittedtodevelopingaStatePlan,andinpreparingfortheinitialplansubmittal,ADEQorganizedtheoptionsfortheformofaStatePlanintosubsetsofRateorMass,withtheintenttofocusonthemostlikelyoptions.

NavajoNationIntheproposedFederalPlanandModelRules13,EPAaskedforcommentsonwhetheritwas“necessaryorappropriate”toregulateEGUsontheNavajoNationundertheCPP.EPAhasnottakenactiononitsproposalanditisuncertainwhenorifitwilltakefinalaction.IftheEPAdeterminesthatitisinappropriateorunnecessarytoregulateEGUsontheNavajoNation,thenTEPwillberelievedofanyCPPrequirementsfortheNavajoGeneratingStationandtheFourCornersPowerPlant.IfEPAelectstoproceedwithregulatingtheseEGUsundertheCPP,itislikelythattheNavajoNationwouldadoptamass‐basedapproachtoCPPcompliance.Underamass‐basedapproach,theexcessallowancesassociatedwithTEP’sownershipshareoftheretirementoftheNavajoattheendof2019wouldbesufficienttocoveremissionsassociatedwiththeremainingplant(FourCorners)throughitsplannedretirementin2031.

NewMexicoRatherthanbesubjecttoaFederalPlan,theStateofNewMexicoislikelytosubmitaStatePlanSIPaswell,believingthataNewMexicodevelopedplanwillprovidetheflexibilityneededtominimizecostspassedontoitsresidents.TEPassumesthatNewMexicowouldalsoadoptamass‐basedapproachtoCPPcompliance.Underamass‐basedapproach,theexcessallowancesassociatedwithTEP’sownershipshareoftheretirementoftheSanJuanUnit2attheendof2017,andtheexitfromUnit1in2022wouldbesufficienttocoveremissionsassociatedwiththeremainingNewMexicoplant(Luna)wellbeyondtheplanningperiod.

13FederalPlanRequirementsforGreenhouseGasEmissionsforElectricUtilityGeneratingUnitsConstructedonorBeforeJanuary8,2014;ModelTradingRules;AmendmentstoFrameRegulations;ProposedRule[80FR64966]datedOctober23,2015.

Page 77: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐77

Chart15–ADEQRegulatoryFrameworkOptions14

PACEGlobalArizonaCPPAnalysisTohelpevaluatetherelativebenefitsofRateversusMassforArizona,theArizonautilitieshiredPACEGlobal(“PACE”)toconductamodelingassessmentoftherelativecompliancepositioncomparedtotheStateRateandMassgoalsbasedonabasecaseoutlook.Theresults15ofthatassessmentindicatethatArizonawouldlikelyfallshortoftheallowancesneededtocoveremissionsusingamassapproach.However,Arizonawasabletomeettherategoalsforthevastmajorityofthecomplianceperiodstudied.Arate‐basedplan,ingeneral,betteraccommodatestheneedtomeetfutureloadgrowthwithexistingplants,andthesubcategoryrateapproachisgenerallyconsideredbetterforresourceportfolioswithahighpercentageofcoal‐firedgeneration.

14Ibid,ADEQ“EPA’sFinalCleanPowerPlan:Overview,SteveBurr,AQD,SIPSection,September1,2015.15MoreinformationcanbefoundatADEQ’swebsitehttp://www.azdeq.gov/environ/air/phasethree.html#technical

Page 78: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐78

Figure12–PACEGlobalArizonaCPPAnalysis

BasedonthePACEwork,TEPbelievesthatArizonaismostlikelytoadoptasubcategorizedrateapproachforCPPcompliance,therefore,planningportfoliosstudiedinthisIRPwillbeevaluatedforCPPcomplianceunderasubcategorizedrateapproach.

Page 79: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐79

NationalAmbientAirQualityStandardsAcoreelementofCleanAirActistheestablishmentofNationalAmbientAirQualityStandards(NAAQS).NAAQSarelevelsofairpollutionintheambientairthataredeterminedtobeprotectiveofthegeneralpublic(includingsensitivepopulations)withanadequatemarginofsafety.NAAQShavebeenestablishedforsixspecificcriteriapollutants(ozone,particulatematter,sulfurdioxides,nitrogenoxides,lead,andcarbonmonoxide).NAAQShavetwocomponents:primarystandardstoprotectpublichealthandsecondarystandardstoprotectpublicwelfareandtheenvironment.NAAQSareimplementedthroughenforceablesourcespecificemissionlimitationsandotherairqualityregulationsestablishedbystatesviaStateImplementationPlans(SIPs).TheSIPsdetaileachstate’sstrategyto“attain”or“maintain”theNAAQS.

TheCAArequiresEPAtoreviewand,ifappropriate,reviseeachNAAQSeveryfiveyears.Theserevisionsoftenresultinmorestringentstandards,whichmayleadtofurtherrestrictionsofemissionsfrompowerplantsandothersources.

In2015EPArevisedtheprimaryNAAQSsforozone,loweringthestandardto70partsperbillion(ppb).Withinoneyearfollowingpromulgationofastandard,StatesandTribesarerequiredtosubmittoEPArecommendedboundarydesignationsfortheattainmentstatus(i.e.attainment,nonattainment,unclassifiable)ofareaswithintheirjurisdictions.ArizonasubmitteditsrecommendedboundarydesignationsinSeptember2016,recommendingthattwodistinctareasbedesignatedasnonattainment.TEPhasnooperationneartheYumanonattainmentarea.TheMaricopa‐Pinal‐GilanonattainmentareaisdelineatedonFigure13below.

Figure13‐Maricopa‐Pinal‐GilaNonattainmentAreaBoundary

Source:Enclosure1,ADEQ’s2015OzoneNAAQSBoundaryRecommendationsandTechnicalSupportDocumenthttps://www.epa.gov/sites/production/files/2016‐11/documents/az‐rec‐enc‐1.pdf

Page 80: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐80

TheGilaRiverGeneratingStationislocatedjustwithintheboundaryoftheMaricopa‐Pinal‐Gilanonattainmentareaandis,therefore,subjecttononattainmentprovisionsoftheCleanAirAct.GilaRiverUnit3,partiallyownedbyTEP,isequippedwithSCRforcontrolofNOxemissions,andtherefore,isnotexpectedtobesubjecttoanyfurtheremissionreductionsduetothearea’snonattainmentstatus.However,anyexpansionorsignificantmodificationstothefacilitywouldtriggertherequirementtoupgradetoLowestAvailableEmissionReductions(LAER)standardsandoffsetanyincreaseinemissionsataratiogreaterthan1:1.

TheTucsonmetropolitanareawasdesignatedasinattainmentperArizona’srecommendationtoEPA,withamaximummonitoredambientairqualityconcentrationof69ppb.Therefore,newsources,andmodificationsofexistingsources,willnotcurrentlybesubjecttononattainmentprovisions.Attainmentstatusismonitoredonanannualbasis.IffuturemonitoringdataindicatesthatambientairqualityintheTucsonmetropolitanareaexceedstheozonestandard,Arizonawouldberequiredtoreviseitsnonattainmentboundarydesignation.

PowerGenerationandWaterResourcesWateravailabilityisamajorissueforutilitiesoperatingpowerplants,orplanningnewresourcesintheDesertSouthwest.Forfacilitiesalreadyinoperation,utilitiesneedtobecognizantofwateruseandsupplytrendsintheareaimmediatelysurroundingthosefacilities.Whileexistingfacilitieshavelikelysecuredthelegalrightstothewaterneededforoperation,therecanbeadisconnectbetweenthelegalrighttowateranditsphysicalavailability.Forthisreasontechnologiesandstrategiestodecreasepowerplantwaterusecanbecomeanimportantplanninggoalwithintheintegratedresourceplanningprocess.Reducingpowerplantwaterusecanbeaccomplishedeitherthroughshiftingtoalowerwaterusegeneratingresourceorthroughincreasingpowerplantwateruseefficiency.ThissectionprovidesanoverviewofTEP’swateruseatitsexistinggeneratingfacilitiesanddiscussesourstrategytoreduceoverallwaterconsumption.

Chart16presentsthehistoricalannualwateruseassociatedwithTEP’sshareofownershipforitssteamelectricandNGCCgeneratingplantsandthesourceofthatwater(i.e.surfacewaterorgroundwater).

Chart16–AverageAnnualWaterConsumptionbyStation(TEPShare)

 ‐

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

Four Corners

Navajo

San Juan

Springerville

Sundt

Luna

Gila River

ACRE‐FEET

2012 2013 2014 2015 2016

GroundwaterSurface Water

Page 81: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐81

PowerGenerationandWaterImpactsofResourceDiversificationTEP’sresourcediversificationstrategyreplacesgenerationfromhigherwaterusecoal‐firedresourceswithacorrespondingamountofgenerationfromlowerwateruseNGCCplantsandzero‐wateruserenewableresources.SeeChart17belowforaveragewaterconsumptionratesforvariouselectricitygenerationtechnologies.Basedonthesewaterconsumptionrates,TEP’sresourcediversificationwillresultinlowerwaterconsumptionforpowergenerationoverall.

Chart17–LifeCycleWaterUseforPowerGeneration16

However,waterconsumptionhasalocalizedenvironmentalimpactaswell.Theavailabilityofwaterthatiswithdrawnfromsurfacewaters,asinthecaseoftheNavajoGeneratingStation(LakePowell),theFourCornersPowerPlant(MorganLakeandtheSanJuanRiver),andtheSanJuanGeneratingStation(SanJuanRiver),ishighlydependentonprecipitationandsnowpack,aswellasotheruses.TEP’sreferencecaseportfoliocallsforretirementoforexitfromeachofthesefacilitieswithintheplanningperiod,withthe

16AdaptedfromMeldrumet.al.“Lifecyclewateruseforelectricitygeneration:areviewandharmonizationofliteratureestimates”,publishedMarch3,2013,http://iopscience.iop.org/article/10.1088/1748‐9326/8/1/015031

Page 82: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐82

majorityoccurringwithinthenextsixyears,whichsignificantlyreducesandeventuallyeliminatesanyriskofwateravailabilityforpowergenerationfromsurfacewaters.

Theavailabilityofwaterthatiswithdrawnfromgroundwateraquifers,asinthecaseofSpringerville,Sundt,GilaRiver,andLunapowerplants,isdependentontherechargetoandotherwithdrawalsfromtheaquifer,butisalsoafunctionofthehydrogeologicalcharacteristicsoftheaquiferitself.

AtSpringerville,itistoTEP’sadvantage,byvirtueofanagreementwithalocalNativeAmericanTribe,tolimitwithdrawalsofgroundwaterattheplantto20,000acre‐feetannually.Therefore,therearewaterconservationmeasuresinplaceattheplant,andTEPisexploringadditionalwaterconservationandreusemeasures.ThecoolingtowersforUnits1and2operateathighcyclesofconcentration,upto13cyclesbeforeblowdown,whichreducestheamountofwaterusedperunitofenergygenerated.Inaddition,TEPrecentlyhostedapilotstudyatSpringerville17todemonstrateanewtechnologyforreducingwastewaterdischargesthroughvaporrecompression,whichalsoproducesadistillatethatcouldberecirculatedbacktotheplant.Additionaltechnologiesarebeingconsideredfordemonstrationprojects.

LunareducesgroundwaterwithdrawalsbysupplementingthewellwaterwithtreatedmunicipalwastewaterprovidedbytheCityofDeming,NewMexico.Lunaisabletosatisfy,onaverage,12%ofitstotalwaterdemandfrommunicipalwastewater.

GilaRiverGeneratingStationislocatedwestofPhoenix,Arizona(inproximitytothePaloVerdeNuclearGeneratingStation).Inthisareathereisover6,000MWofexistingNGCCcapacitythatislikelytoseeasignificantincreaseingenerationasutilitieslikeTEPreplacecoal‐firedgenerationwithgenerationfromNGCCplants.Thesefacilitiesaretoofaraparttohaveadirectimpactoneachotherintermsofgroundwateravailability;however,theexpectedincreasedwateruseasaresultofincreasedgenerationneedstobeevaluated.

FortheIRP,TEPwillincludeforeachportfoliothechangeinwaterconsumptionovertheplanningperiod.FortheReferenceCasePlan,theIRPwillcharttheannualamountofwaterconsumedforpowergenerationalongwiththesourceofthewater(surfacewaterorgroundwater).Increasingwaterconsumptionwithineitherofthesesourcecategorieswillbeweighedasariskfactorforthatportfolio.

17ElectricPowerResearchInstitute(EPRI)inpartnershipwithTucsonElectricPower,SaltRiverProject,andTri‐StateGenerationandTransmission,“AVARAWastewaterTreatmentDemonstrationatSpringervilleGeneratingStation”,finalresultspending.

Page 83: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐83

 

CHAPTER 4 

A New Integration Approach to Resource Planning 

Withtheincreasingcost‐competivenessofcertainrenewableresources,manyresourceplannersareintheprocessofintegratinghigherlevelsofrenewabletechnologiesasacomplementtotheirexistingconventionalgenerationfleet.Whilesomerenewabletechnologieshaveachievednotional“gridparity”undercertainconditions,suchcomparisonsdonottakeintoaccountthecostofsystemintegration.Asaresult,today’sresourceplanningeffortsarenowfocusedonintegratingnew“gridbalancing”technologiesthatwillenablethemtotakeadvantageofhigherlevelsoflowcost,cleanrenewableenergy.

Historically,utilityplannersclassifiedtraditionalgenerationresourcesintofourcategoriesbasedontheirduty‐cycleandtheirabilitytoserveload.Thesecategorieswerereferredtoasbaseload,intermittent,loadfollowingandpeaking.Aspartofthe2017IRP,TEPtakesaslightlydifferentapproachtocategorizingthecapabilitiesforeachtypeofresourceinordertobetterdescribehowtheseresourceswillplayaroleastheCompanytransformsitsresourceportfoliooverthenextdecade.

Thefourcategoriesaredescribedinmoredetailbelow:

Figure14–NewResourceCategoriestoMeetTomorrowResourceNeeds

Grid Balancing Resources

Load Serving Conventional Resources

Load Modifying Resources

Load Serving Renewable Resources

Page 84: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐84

LoadModifyingResourcesLoadmodifyingresourcesincludesEE,DG,andtimeofusetariffs,whoseeffectsareprimarily“behindthemeter”andaretherefore,largely,ifnotentirelybeyondtheviewandcontrolofthebalancingauthority.WhilebothEEandDGresourcesreduceacustomer’snetconsumption,solarPVgridsystemscanover‐generateduringthedayinhourswhenacustomer’susageislessthanthesolarproductionoutput.

RenewableLoadServingResourcesRenewableloadservingresourcesarecomprisedofbothutilityscalesolarandwindtechnologies.Bothgridscalesolarphotovoltaicsandwindarecurrentlythelowestcostresourcesfroman“energyonly”basis.AspartoftheCompany’s2017IRP,TEPplanstoaddapproximately800MWofadditionalsolarandwindresourcestoitsgenerationportfoliooverthenextfifteenyears.WhileutilityscalesolarandwindwillgiveTEPtheopportunitytodevelopatransformedportfoliooflow‐cost,zero‐carbonresources,thesetechnologiesmustbebalancedwithinaportfolioofconventionalloadservingandgridbalancingresources.

ConventionalLoadServingResourcesConventionalloadservingresourcesarecomprisedofcoal,hydro,nuclearandnaturalgastechnologiesthatareusedtoservethevastmajorityoftheenergydispatchedtomeetload.

GridBalancingResourcesGridbalancingresourcesincludenaturalgascombustionturbines,DR,naturalgasreciprocatingenginesandstoragetechnologies.Thesegridbalancingresourceswillbeusedforpeakshaving,energyarbitrageandcanbeusedbythebalancingauthoritiestomaintaingridreliability.

Page 85: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐85

TypicalSummerDayCategorizedbyResourceRequirementsChart18detailshowloadmodifying,loadserving,gridbalancingresourceswouldbeutilizedontypicalsummerday.

Chart18–ResourceRequirementsonTypicalSummerDay

 

 ‐

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

Deman

d, M

W

Hour Ending

Load Serving‐Traditional Fossil Load Serving‐Renewables Grid Balancing

Load Modifying Total Firm Obligations Gross Load Before EE and DG

Page 86: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐86

TypicalWinterDayCategorizedbyResourceRequirementsChart19detailshowloadmodifying,loadserving,gridbalancingresourceswouldbeutilizedontypicalwinterday.

Chart19–ResourceRequirementsonTypicalWinterDay

 

 ‐

 500

 1,000

 1,500

 2,000

 2,500

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24

Dem

and, M

W

Hour Ending

Load Serving‐Traditional Fossil Load Serving‐Renewables Grid Balancing

Load Modifying Total Firm Obligations Gross Load Before EE and DG

Page 87: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐87

Resources Matrix  

Table9providesabriefoverviewofthetypesofresourcesthatwereevaluatedintheresourceplanningprocesswithinthe2017IRP.Eachtechnologyisdescribedbycategory,type,carbonprofile,stateoftechnology,primaryuseandwhetheritcanbedispatchedupondemand.

Table9‐ResourceMatrix

Category  Type Zero Carbon Production 

State of Technology 

Primary Use Dispatchable by 

Balancing Authority 

Load  Modifying  Resources 

Energy Efficiency  Yes  Mature Base  

Load Reduction No Distributed Generation 

Yes  Mature Intermediate  Load Reduction No

Rate Design  (1)  Mature Targeted Load  

Usage / Reductions No 

Load Serving  Renewable  Resources  

 Wind    Yes    Mature  Intermediate  Generation No 

 Solar   Yes   Mature  Intermediate  Generation 

No

Load Serving  Conventional Resources 

Natural Gas Combined Cycle 

No  Mature Base Load  Generation Yes

Pulverized Coal  No  Mature Base Load  Generation Yes

Small Modular Nuclear (SMR)   

Yes  Emerging Base Load  Generation 

Yes

Grid  Balancing  Resources 

Reciprocating Engines 

No  Mature  5 ‐ 10 Minute Ramping

YesCombustion Turbines  

No   Mature  10 ‐ 15 Minute 

Ramping Yes 

Pumped Hydro Storage 

(1)  Mature 1 Minute  Ramping 

Yes 

Demand Response   Yes    Mature  1 Minute  Ramping 

Yes 

Battery Storage  (1)  Emerging 1 Second  Ramping

Yes

(1) Carbon intensity is dependent upon the resources that would be displaced by this rate tariff or storage technology net of charging. 

ResourceBenchmarkingUtilityresourceplanningisperformedusingawidespectrumoftoolsandmethodologies.Priortorunninganydetailedsimulationmodels,theresourceplanningteamreviewedsourcesofinformationfromthird‐partiesandconsultantstodevelopup‐to‐datecostparametersforthevaryingresourcetechnologies.Inaddition,informationgatheredthroughouron‐goingcompetitivebiddingprocessesandrequestforproposalsolicitationswasalsousedtoderivecostestimatesfornewbuildresourcesandwholesalemarketalternatives.

 

Page 88: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐88

SourceDataBelowisalistofsourcesthatTEPreliedontocompilecostinputassumptionsfortraditionalsupply‐side,demand‐sideandrenewableresourcesmodeledinthe2017IRP:

PACEGlobalPaceGlobalFutureStatesoftheWorld‐IntegratedResourcePlanningScenarios(December2016)SeeAppendixA

BurnsandMcDonnell2017FlexibleGenerationTechnologyAssessment(March2017)SeeAppendixB

U.S.EnergyInformationAdministrationAnnualEnergyOutlook2017(August2016)https://www.eia.gov/forecasts/aeo/electricity_generation.cfm

NationalRenewableEnergyLaboratoryRenewableElectricityFuturesStudy(2016)http://www.nrel.gov/analysis/re_futures/index.html

SunshotInitiativehttps://energy.gov/eere/sunshot/sunshot‐initiative

LazardLevelizedCostofEnergyAnalysis10.0(December2016)https://www.lazard.com/media/438038/levelized‐cost‐of‐energy‐v100.pdf

LazardandEnovationPartnersLevelizedCostofStorageAnalysis2.0(December2016)https://www.lazard.com/media/438042/lazard‐levelized‐cost‐of‐storage‐v20.pdf

 

Page 89: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐89

Lazard’sLevelizedCostofEnergyAnalysis

OverviewonConventionalandAlternativeEnergyTechnologiesThefollowinganalysiswaspublishedaspartofLazard’sLevelizedCostofEnergy(LCOE)Analysis.18This2016reportcomparesthevariousconventionalandalternativeenergytechnologies.

Certainalternativeenergytechnologiessuchaswindandutility‐scalesolarcontinuetobecomemorecost‐competitivewithconventionalgenerationtechnologiesinsomeapplications,despitelargedecreasesinthecostofnaturalgas.Lazard’sanalysisdoesnottakeintoaccountpotentialsocialandenvironmentalexternalitiesorreliability‐orintermittency‐relatedconsiderations.

Despiteasharpdropinthepriceofnaturalgas,thecostofallformsofutility‐scalesolarPVandutility‐scalewindtechnologiescontinuetoremaincompetitivewithconventionalgenerationtechnologiesasillustratedbyrecentpublicannouncementsofbidssubmittedbyrenewableenergyprovidersinopenpowerprocurementprocesses.

Currently,rooftopsolarPVisnotcostcompetitivewithoutsignificantsubsidies,due,inpart,tothesmall‐scalenatureandaddedcomplexityofrooftopinstallations.However,theLCOEofrooftopsolarPVisexpectedtodeclineincomingyears,partiallyasaresultofmoreefficientinstallationtechniques,lowercostsofcapitalandimprovedsupplychains.Importantly,LazardexcludesfromtheiranalysisthevalueassociatedwithcertainusesofrooftopsolarPVbysophisticatedcommercialandindustrialuserssuchasdemandchargemanagement,whichappearsincreasinglycompellingtocertainlargeenergycustomers.

Thepronouncedcostdecreaseincertainrenewableenergytechnologies,combinedwiththeneedsofanagingandchangingpowergridintheU.S.,hassignificantlyincreaseddemandforenergystoragetechnologiestofulfillavarietyofelectricsystemneeds.Industryparticipantsexpectthisincreaseddemandtodrivesignificantcostdeclinesinenergystoragetechnologiesoverthenextfiveyears.Increasedavailabilityoflower‐costenergystoragewilllikelyfacilitategreaterdeploymentofrenewableenergytechnologies.Energystorageapplicationsandcostsarediscussedbelow.

 

18 Lazard is a preeminent financial advisory and asset management firm. More information can be found at https://www.lazard.comLazard’sLevelizedCostOfEnergyAnalysis10.0canbefoundathttps://www.lazard.com/media/438038/levelized-cost-of-energy-v100.pdf

Page 90: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐90

Lazard’sLevelizedCostofStorageAnalysis

OverviewonEnergyStorageTechnologiesThefollowanalysiswaspublishedaspartofLazard’sLevelizedCostofStorage(LCOS)Analysis.19This2016reportcomparesthevariousenergystoragetechnologiesbycostanduse.Energystoragehasavarietyofuseswithverydifferentrequirements,rangingfromlarge‐scale,powergrid‐orientedusestosmall‐scale,consumer‐orienteduses.Lazard’sanalysisidentifiesanumberof“usecases”andassignsdetailedoperationalparameterstoeach.Thisapproachenablesmeaningfulcomparisonsofstoragetechnologiesacrossanumberofusecases.

CostCompetitiveStorageTechnologiesSelectenergystoragetechnologiesarecost‐competitivewithcertainconventionalalternativesinanumberofspecializedpowergriduses,butnonearecost‐competitiveyetforthetransformationalscenariosenvisionedbyrenewableenergyadvocates.

Althoughenergystoragetechnologyhascreatedagreatdealofexcitementregardingtransformationalscenariossuchasconsumersandbusinesses“goingoffthegrid”ortheconversionofrenewableenergysourcestobaseloadgeneration,itisnotcurrentlycostcompetitiveinmostapplications.However,someusesofselectenergystoragetechnologiesarecurrentlyattractiverelativetoconventionalalternatives;theseusesrelateprimarilytomanagingfrequencyregulationandtransmissioninvestmentdeferral.

Today,energystorageappearsmosteconomicallyviablecomparedtoconventionalalternativesinusecasesthatrequirerelativelygreaterpowercapacityandflexibilityasopposedtoenergydensityorduration.Theseusecasesincludefrequencyregulationand—toalesserdegree—transmissionanddistributioninvestmentdeferral,demandchargemanagementandmicrogridapplications.Thisfindingillustratestherelativeexpenseofincrementalsystemdurationasopposedtosystempower.Putsimply,“batterylife”ismoredifficultandcostlytoincreasethan“batterysize.”Thisislikelywhythepotentiallytransformationalusecasessuchasfullgriddefectionarenotcurrentlyeconomicallyattractive—theyrequirerelativelygreaterenergydensityandduration,asopposedtopowercapacity.

TheLazardstudyfindsawidevariationinenergystoragecosts,evenwithinusecases.Thisdispersionofcostsreflectstheimmaturityoftheenergystorageindustryinthecontextofpowergridapplications.Thereisrelativelylimitedcompetitionandamixof“experimental”andmorecommerciallymaturetechnologiescompetingattheusecaselevel.

19 Lazard’s Levelized Cost Of Storage Analysis 1.0 can be found at https://www.lazard.com/media/2391/lazards‐levelized‐cost‐of‐storage‐analysis‐10.pdf Lazard’s Levelized Cost Of Storage Analysis 2.0 can be found at https://www.lazard.com/media/438042/lazard‐levelized‐cost‐of‐storage‐v20.pdf

Page 91: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐91

FutureEnergyStorageCostDecreasesIndustryparticipantsexpectcoststodecreasesignificantlyinthenextfiveyears,drivenbytheincreasinguseofrenewableenergygeneration,governmentpoliciespromotingenergystorageandtheneedsofanagingandchangingpowergrid.

Industryparticipantsexpectincreaseddemandforenergystoragetoresultinenhancedmanufacturingscaleandability.Theeconomiesofscalecreatedwilldrivecostdeclinesandestablishaproductioncostcycleinwhichenergystoragecostdeclinesfacilitatewiderdeploymentofrenewableenergytechnology.Theresultwillcreatemoredemandforstorageandspurringfurtherinnovationinstoragetechnology.

Costdeclinesprojectedbyindustryparticipantsvarywidelybetweenstoragetechnologies—lithiumisexpectedtoexperiencethegreatestfiveyearbatterycapitalcostdecline(~50%),whileflowbatteriesandleadareexpectedtoexperiencefiveyearbatterycapitalcostdeclinesof~40%and~25%,respectively.Leadisexpectedtoexperience5%fiveyearcostdecline,reflectingthefactthatitisnotcurrentlycommerciallydeployed.

Themajorityofnear‐tointermediate‐costdeclinesareexpectedtooccurasaresultofmanufacturingandengineeringimprovementsinbatteries,ratherthaninbalanceofsystemcosts.Therefore,usecaseandtechnologycombinationsthatareprimarilybattery‐orientedandinvolverelativelysmallerbalanceofsystemcostsarelikelytoexperiencemorerapidlevelizedcostdeclines.Asaresult,someofthemost“expensive”usecasestodayaremost“levered”torapidlydecreasingbatterycapitalcosts.Ifindustryprojectionsmaterialize,someenergystoragetechnologiesmaybepositionedtodisplaceasignificantportionoffuturegas‐firedgenerationcapacity,inparticularasareplacementforpeakinggasturbinefacilities,enablingfurtherintegrationofrenewablegeneration.

Page 92: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐92

2017IntegratedResourcePlanLevelizedCostComparisonsThecalculationofthelevelizedcostofenergyprovidesacommonmeasuretocomparethecostofenergyacrossdifferentdemandandsupply‐sidetechnologies.TheLCOEtakesintoaccounttheinstalledsystempriceandassociatedcostssuchascapital,operationandmaintenance,fuel,transmission,taxincentivesandconvertsthemintoacommoncostmetricofdollarspermegawatthour.ThecalculationfortheLCOEisthenetpresentvalueoftotalcostsoftheprojectdividedbythequantityofenergyproducedoverthesystemlife.

Becauseintermittenttechnologiessuchasrenewablesdonotprovidethesamecontributiontosystemreliabilityastechnologiesthatareoperatorcontrolledanddispatched,theyrequireadditionalsysteminvestmentforsystemregulationandbackupcapacity.Aswithanyprojection,thereisuncertaintyaboutallofthesefactorsandtheirvaluescanvaryregionallyandacrosstimeastechnologiesevolveandfuelpriceschange.Furtherresourceutilizationisdependentonmanyfactors;theportfoliomix,regionalmarketprices,customerdemandandmust‐runrequirementsaresomeconsiderationsoutsideofLCOE.

LCOEAssumptions–AllResources AllLCOEcostsarein2017dollars.Futureyearcostswillbebasedonyearprojectisinstalledwhichwillincorporateinflationandtechnologyinnovationassumptions.

Analysisexcludesintegrationcosts(e.g.,gridandconventionalgenerationinvestmenttoovercomesystemintermittency)forintermittenttechnologies.

Analysisdoesnotincludeanydecommissioningcosts.

Page 93: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐93

2017LevelizedCostofAllResourcesChart20belowprovidesacomparisononthelevelizedcostsofallresourcesusedinthe2017IRP.Allcostsreflectthe2017LCOE$/MWh.

Chart20‐LevelizedCostsofAllResources

$15 

$44  $51  $53  $65  $68  $77 $104  $105 

$130 $157 

$192 

$257 

$503 

 $‐

 $100

 $200

 $300

 $400

 $500

 $600En

ergy Efficiency

Solar PV ‐ Tracking

Solar PV ‐ Fixed

 Tilt

Wind Resources

Natural G

as Combined

 Cycle (NGCC)

Solar PV ‐ Commercial and Industrial

Natural G

as Combined

 Cycle (NGCC)

Small M

odular Nuclear

Solar PV ‐ Residen

tial

Reciprocating En

gines (RICE)

Combustion Turbine (Large Fram

e Class)

Combustion Turbine (Sm

all Frame Class)

Battery Storage (Lithium)

Dem

and Response

2017 LCOE $/M

Wh

Fuel Capital Property Tax & Insurance Fixed O&M Variable O&M

Page 94: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐94

LoadModifyingResources–CostAssumptionsTable10includestheloadmodifyingresourcecostsforthe2017IntegratedResourcePlan.

Table10–LoadModifyingResources–CostAssumptions

Energy  Efficiency  

 Solar PV –  Residential  

Solar PV –  Commercial and 

Industrial  Rate Design 

Customer Efficiency Programs

Residential DG Programs 

Commercial & Industrial DG Programs 

 

Targeted Load  Usage / Reductions By Time of Use 

 Energy  Efficiency  

 Solar PV –  Residential  

Solar PV –  Commercial and 

Industrial  Rate Design 

Based on Various Customer Demand Side Programs 

Based on Various 

Residential DG Programs 

Based on Various Commercial & Industrial DG Programs 

Based on Various Rate Tariff by Customer Class 

$15   $105   $68   Depends of Tariff 

Page 95: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐95

Chart21‐LoadModifyingResources–CostAssumptions

LCOEAssumptionsforLoadModifyingResources EnergyefficiencybasedonTEP’sprojectedprogramcostsbasedontheaveragelifetimeoftheprograms.

SolarPV–ResidentialbasedonLazard’sLCOEAnalysis–Version10. SolarPV–Commercial&IndustrialbasedonLazard’sLCOEAnalysis–Version10.

$15

$105

$68

0

20

40

60

80

100

120

Energy Efficiency Solar PV ‐ Residential Solar PV ‐ Commercial andIndustrial

2017 $/M

Wh

Capital or Program Cost

Page 96: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐96

RenewableLoadServingResources–CostAssumptionsTable11includestheloadservingrenewableresourcecostsforthe2017IntegratedResourcePlan.

Table11–RenewableLoadServingResources–CostAssumptions

Plant Construction Costs  Units Solar Thermal – 

No Storage 

Solar Thermal – 

 Ten Hour Storage

Solar PV – 

Fixed Tilt 

Solar PV –  

Tracking 

Wind  

Resources 

 Project Lead Time     Years  3  3  0.75  0.75  1 

 Installation Years     First Year  2020  2020  2018  2018  2018 

 Peak Capacity , MW    MW  100  110  50  50  50 

 Plant Construction Cost     2017 $/kW  $6,500  $10,300  $1,300  $1,450  $1,475 

 Resource Life   Years  25  35  25  25  20 

 

  Operating Characteristics      Units  Solar Thermal – 

No Storage 

Solar Thermal – 

Ten Hour Storage

Solar PV – 

Fixed Tilt 

Solar PV – 

Tracking 

Wind 

Resources 

 Fixed O&M     2017 $/kW  $66.30  $81.60  $9.18  $12.24  $40.80 

 Variable O&M     2017 $/MWh $0.00  $0.00  $0.00  $0.00  $0.00 

 ITC     Percent  30%  30%  30%  30%  ‐ 

 PTC    $/MWh  ‐  ‐  ‐  ‐  $18.40 

 Annual Capacity Factor     Annual %  28%  52%  23%  30%  33% 

 Annual Output     GWh  245.3  501.1  100.7  132.7  144.5 

 Net Coincident Peak    NCP%  100%  34%  34%  65%  23% 

 Water Usage    Gal/MWh  800  ‐  ‐  ‐  ‐ 

 

 Levelized Cost of Energy      $/MWh    $228  $179  $51  $44  $53 

Page 97: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐97

Chart22‐RenewableLoadServingResources–CostAssumptions

LCOEAssumptionsforLoadServingResources–Renewables ITCandPTCshownarefor2017inservicedates(commenceconstructionpriorto12/31/16). SolarresourcesassumehighsolarinsulationforprojectssitedintheDesertSouthwest. WindresourcesassumenoITC.PTCreflects$23/MWhescalatedat1.5%foratermof10years.CapacityfactorsreflectprojectssitedinEasternArizonaorWesternNewMexico.

Transmissionwheelingcostsarenotreflectedincostofdeliveryforbothsolarandwindprojects.

$51

$44

$53

$0

$10

$20

$30

$40

$50

$60

Solar PV ‐ Fixed Tilt Solar PV ‐ Tracking Wind Resources

2017 $/M

Wh

Capital Property Tax & Insurance Fixed O&M Variable O&M

Page 98: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐98

ConventionalLoadServingResources–CostAssumptionsTable12includestheloadservingconventionalresourcecostassumptionsforthe2017IntegratedResourcePlan.

Table12‐ConventionalLoadServingResources–CostAssumptions

   Plant Construction Costs     Units  Baseload  NGCC 

Intermediate  NGCC 

 Small Modular  Nuclear (SMR)  

 Project Lead Time       Years    3  3  12 

 Installation Years       First Year Available   2020  2020  2029 

 Peak Capacity , MW      MW    550  550  500 

 Plant Construction Cost       2017 $/kW    $1,100   $1,100   $5,100  

 Resource Life    Years   30  30  30 

 

  Operating Characteristics      Units  Baseload  NGCC 

Intermediate  NGCC  

 Small Modular  Nuclear (SMR)  

 Fixed O&M       2017 $/kW    $33.97  $33.97  $148.75 

 Variable O&M       2017 $/MWh   $2.04  $2.04  $3.06 

 Gas Transportation     2017 $/kW    $16.80  $16.80  ‐ 

 Heat Rate       Btu/kWh    7,400  7,400  9,500 

 Annual Capacity Factor       Annual %    75%  50%  95% 

 Expected Annual Output       GWh    3614.5   2,409.0   4,161.0  

 Fuel Source      Fuel Source   Natural Gas  Natural Gas  Uranium 

 Unit Fuel Cost      $/mmBtu   $5.04  $5.04  $0.90 

 Net Coincident Peak      NCP%    100%  100%  100% 

 Water Usage      Gal/MWh    350  350  800 

 

 Levelized Cost of Energy      $/MWh    $65  $77  $104 

Page 99: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐99

Chart23–ConventionalLoadServingResources–2017LCOE$/MWh

LCOEAssumptionsforLoadServingResources–Conventional NaturalgaspricesarebasedonPACEGlobal’sBaseCase(CleanPowerPlan)Scenariothatassumespriceswillaverage$5.04/mmBtufrom2017through2032.

Conventionalresourcesdonotincludeanydecommissioningcosts.

$104

$65

$77

$0

$20

$40

$60

$80

$100

$120

Small Modular Nuclear Base Load NGCC Intermediate NGCC

2017 $/M

Wh

Fuel Capital Property Tax & Insurance Fixed O&M Variable O&M

Page 100: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐100

GridBalancingResources–CostAssumptionsTable13includesthegridbalancingresourcecostassumptionsforthe2017IntegratedResourcePlan.

Table13–GridBalancingResources–CostAssumptions

   Plant Construction Costs     Units  Combustion Turbine 

(Aeroderivative) 

Combustion Turbine  

(Small Frame Class) 

 Combustion Turbine  

(Large Frame Class) 

Reciprocating Engines (RICE)  

Battery Storage (Lithium)  

 Demand Response 

 Project Lead Time       Years    2.5  2.5  2.5  1.5  0.5 Customer Load 

Control Programs 

 Installation Years       Year Available   2020  2020  2020  2018  2018 

 Peak Capacity , MW      MW    45  75  220  100  100 

Construction Cost       2017 $/kW    $1,300   $800   $650   $1,200   $2,568  

 Resource Life    Years   30  30  30  30  20  

  Operating Characteristics      Units  Combustion Turbine 

(Aeroderivative) 

Combustion Turbine  

(Small Frame Class) 

 Combustion Turbine 

(Large Frame Class)  

Reciprocating Engines (RICE)  

 Battery Storage  

 Demand Response 

Fixed O&M       2017 $/kW    $29.89  $30.65  $28.05  $12.24  $9.18 

Based on Various Direct Load 

Control Programs 

Variable O&M       2017 $/MWh  $3.57  $3.83  $3.57  $4.59  $37.35 

Gas Transportation     2017 $/kW    $16.80  $16.80  $16.80  $16.80  ‐ 

Heat Rate       Btu/kWh    9,800  10,500  9,900  8,000  ‐ 

Capacity Factor       Annual %    15%  8%  12%  20%  16% 

Annual Output       GWh    59.1   52.6   231.3   175.2   140.2  

Fuel Source      Fuel Source   Natural Gas  Natural Gas  Natural Gas  Natural Gas  System 

Unit Fuel Cost      $/mmBtu   $5.04  $5.04  $5.04  $5.04  ‐ 

Net Coincident Peak      NCP%    100%  100%  100%  100%  100% 

Water Usage      Gal/MWh    150  150  150  50  System   Levelized Cost of Energy      $/MWh    $192  $239  $157  $130  $257  $503  

Page 101: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐101

Chart24–GridBalancingResources–CostAssumptions

LCOEAssumptionsforGridBalancingResources NaturalgaspricesarebasedonPACEGlobal’sBaseCase(CleanPowerPlan)Scenariothatassumespriceswillaverage$5.04/mmBtu.

Reciprocatingenginesareassumedtobedispatchwithnaturalgasata20%capacityfactorbasedonTEP’sresourceportfoliowithemphasisonsupportingtheintegrationofrenewableresources.Assumesreplacementcostof65%ofinitialcapitalafter25,000hoursofoperation.

DLCcostsarebasedonaverageestimatedprogramcostofthird‐partyloadaggregators.Annualcapacityfactorsbasedonlimitedcustomerinterruptability.Theseprogramsassumealimitof30interruptibleeventsdispatchedover6hourstotaling180hoursperyear(or2%capacityfactor).

$503

$257

$192$157

$130

$0

$100

$200

$300

$400

$500

$600

DemandResponse

Battery Storage(Lithium)

CombustionTurbine (SmallFrame Class)

CombustionTurbine (LargeFrame Class)

ReciprocatingEngines (RICE)

2017 $/M

Wh

Fuel Capital Property Tax & Insurance Fixed O&M Variable O&M

Page 102: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐102

RenewableElectricityProductionTaxCredit(PTC)Thefederalrenewableelectricityproductiontaxcreditisaninflation‐adjustedper‐kilowatt‐hour(kWh)taxcreditforelectricitygeneratedbyqualifiedenergyresourcesandsoldbythetaxpayertoanunrelatedpersonduringthetaxableyear.Thedurationofthecreditis10yearsafterthedatethefacilityisplacedinserviceforallfacilities.

InDecember2015,theConsolidatedAppropriationsActextendedtheexpirationdatefortheproductiontaxcredittoDecember31,2019,forwindfacilitiescommencingconstructionwithaphase‐downbeginningforwindprojectscommencingconstructionafterDecember31,2016.TheActextendedthetaxcreditforothereligiblerenewableenergytechnologiescommencingconstructionthroughDecember31,2016.TheActappliesretroactivelytoJanuary1,2015.

Thetaxcreditamountisadjustedforinflationbymultiplyingthetaxcreditamountbytheinflationadjustmentfactorforthecalendaryearinwhichthesaleoccurs,roundedtothenearest0.1cents.TheInternalRevenueService(IRS)publishestheinflationadjustmentfactornolaterthanApril1eachyearintheFederalRegistrar.For2015,theinflationadjustmentfactorusedbytheIRSis1.5336.

Applyingtheinflation‐adjustmentfactorforthe2014calendaryear,aspublishedintheIRSNotice2015‐20,theproductiontaxcreditamountisasfollows:

$0.023/kWhforwind,closed‐loopbiomass,andgeothermalenergyresources $0.012/kWhforopen‐loopbiomass,landfillgas,municipalsolidwaste,qualifiedhydroelectric,and

marineandhydrokineticenergyresources.

ThetaxcreditisphaseddownforwindfacilitiesandexpiresforothertechnologiescommencingconstructionafterDecember31,2016.Thephase‐downforwindfacilitiesisdescribedasapercentagereductioninthetaxcreditamountdescribedabove:

Table14–ProductionTaxCreditPhaseDown

Construction Year (1) PTC Reduction 

2017  PTC amount is reduced by 20%

2018  PTC amount is reduced by 40%

2019  PTC amount is reduced by 60%

                                                  (1) For wind facilities commencing construction in year. 

Notethattheexactamountoftheproductiontaxcreditforthetaxyears2017‐2019willdependontheinflation‐adjustmentfactorusedbytheIRSintherespectivetaxyears.Thedurationofthecreditis10yearsafterthedatethefacilityisplacedinservice.

Seehttp://energy.gov/savings/renewable‐electricity‐production‐tax‐credit‐ptcformoredetails.

Page 103: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐103

EnergyInvestmentTaxCredit(ITC)TheConsolidatedAppropriationsAct,signedinDecember2015,includedseveralamendmentstothefederalBusinessEnergyInvestmentTaxCreditwhichapplytosolartechnologiesandotherPTCeligibletechnologies.Notably,theexpirationdateforthesetechnologieswasextended,withagradualstepdownofthecreditsbetween2019and2022.

TheITChasbeenamendedanumberoftimes,mostrecentlyinDecember2015.Thetablebelowshowsthevalueoftheinvestmenttaxcreditforeachtechnologybyyear.Theexpirationdateforsolartechnologiesandwindisbasedonwhenconstructionbegins.Forallothertechnologies,theexpirationdateisbasedonwhenthesystemisplacedinservice(fullyinstalledandbeingusedforitsintendedpurpose).

Table15–InvestmentTaxCreditsbyYearandTechnology

Technology  2017  2018  2019  2020  2021  2022 Future Years 

PV, Solar Water Heating, Solar Space Heating/Cooling, 

Solar Process Heat 30%  30%  30%  26%  22%  10%  10% 

Geothermal Electric 

10%  10%  10%  10%  10%  10%  10% 

Large 24%  18%  12%  ‐  ‐  ‐  ‐ 

Wind 

SolarTechnologiesEligiblesolarenergypropertyincludesequipmentthatusessolarenergytogenerateelectricity,toheatorcool(orprovidehotwaterforusein)astructure,ortoprovidesolarprocessheat.Hybridsolarlightingsystems,whichusesolarenergytoilluminatetheinsideofastructureusingfiber‐opticdistributedsunlight,areeligible.Passivesolarsystemsandsolarpool‐heatingsystemsarenoteligible.

Seehttp://energy.gov/savings/business‐energy‐investment‐tax‐credit‐itcformoredetails.

Page 104: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐104

ImpactsofDecliningTaxCreditsandTechnologyInstalledCostsChart25andChart26shownbelowreflectthenear‐termcapacitypricedeclinesona$/kWbasisfrom2017‐2023associatedwiththereductionintheinstalledcostsofsolartechnologiesrelativetothelevelizedcostrealizedona$/MWhassumingdifferentlevelsofinvestmenttaxcreditsbyyear.ThesolarITCassumptionsarebasedonthefederalinvestmenttaxcreditassumptionsshowninTable15above.

Chart25–SolarPVFixed,ImpactsofDecliningTaxCreditsandTechnologyInstalledCosts

 

Chart26–SolarSAT,ImpactsofDecliningTaxCreditsandTechnologyInstalledCosts

$47.5

$48.0

$48.5

$49.0

$49.5

$50.0

$50.5

$51.0

$51.5

$52.0

$1,180

$1,200

$1,220

$1,240

$1,260

$1,280

$1,300

$1,320

2017 2018 2019 2020 2021 2022 2023

LCOE, $/M

Wh

Installed Cost, $/kW

Solar ‐ Fixed PV

LCOE, $/MWh Installed Cost, $/kW

$41.0

$41.5

$42.0

$42.5

$43.0

$43.5

$44.0

$44.5

$45.0

$1,320

$1,340

$1,360

$1,380

$1,400

$1,420

$1,440

$1,460

2017 2018 2019 2020 2021 2022 2023

LCOE, $/M

Wh

Installed Cost, $/kW

Solar ‐ Single Axis Tracking (SAT)

LCOE, $/MWh Installed Cost, $/kW

Page 105: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐105

ImpactsofDecliningPTCandTechnologyInstalledCostsChart27shownbelowreflectsthenear‐termcapacitypricedeclinesona$/kWbasisfrom2017‐2023associatedwiththereductionintheinstalledcostsofwindresourcesrelativetothelevelizedcostrealizedona$/MWhassumingdifferentlevelsofproductiontaxcreditsbyyear.ThewindPTCassumptionsarebasedonthefederalproductiontaxcreditassumptionsshowninTable14above.

Chart27–Wind,ImpactsofDecliningProductionTaxCreditsandTechnologyPriceInstalledCosts

$53$59

$65

$77 $78

$79

$79

$0

$10

$20

$30

$40

$50

$60

$70

$80

$90

$1,450

$1,460

$1,470

$1,480

$1,490

$1,500

$1,510

$1,520

$1,530

$1,540

2017 2018 2019 2020 2021 2022 2023

LCOE, $/M

Wh

Installed Cost, $/kW

Wind Resources

LCOE, $/MWh Installed Cost, $/kW

Page 106: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2
Page 107: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐107

 

CHAPTER 5 

LOAD MODIFYING RESOURCES 

EnergyEfficiencyTEPrecognizesenergyefficiency(EE)anddemandresponse(DR)ascost‐effectivewaystoreduceourrelianceonfossilfuels.TEPoffersavarietyofenergysavingoptionsforcustomersencouragingbothhomeownersandbusinessestoinvestinEEupgradesthroughDemandSideManagement(DSM)incentivizedprograms.

TEPhasmadegreatstridestowardsachievingthegoalssetbyArizona'sEEStandard.TheEEStandardcallsoninvestor‐ownedelectricutilitiesinArizonatoincreasethekilowatt‐hoursavingsrealizedthroughcustomerratepayer‐fundedEEprogramseachyearuntilthecumulativereductioninenergyachievedthroughtheseprogramsreaches22percentofthepreviousyear’sretailsalesby2020.

TheEEsectionpresentsadetailedoverviewoftheproposedelectricDSMprogramstargetedattheresidential,commercialandindustrial(C&I),andutilityimprovementsectors,aswellastheirassociatedproposedimplementationcosts,savings,andbenefit‐costratios.

TEP,withinputfromotherpartiessuchasNavigantConsulting,Inc.(“Navigant”),ResidentialUtilityConsumerOffice(RUCO)andtheSouthwestEnergyEfficiencyProject(SWEEP),hasdesignedacomprehensiveportfolioofprogramstodeliverelectricenergyanddemandsavingstomeetannualDSMenergysavingsgoalsoutlinedintheEEStandard.Theseprogramsincludeincentives,direct‐installandbuy‐downapproachesforenergyefficientproductsandservices;educationalandmarketingapproachestoraiseawarenessandmodifybehaviors;andpartnershipswithcontractorstoobtainthemostcost‐effectivereturnontherate‐payerdollarsinvestedinDSMprograms.

2017ImplementationPlan,Goals,andObjectivesTEP’shigh‐levelEE‐relatedgoalsandobjectivesareasfollows:

Implementonlycost‐effectiveEEprograms. Designandimplementadiversegroupofprogramsthatprovideopportunitiesforallcustomerstoparticipatein.

AchieveenergysavingsgoalssetintheEEStandardthrough2020. Whenfeasible,maximizeopportunitiesforprogramcoordinationwithotherefficiencyprograms(e.g.SouthwestGasCorporation,ArizonaPublicServiceCorporation)toyieldmaximumbenefits.

Maximizeprogramsavingsataminimumcosttotheratepayerthroughcomprehensiveandcost‐effectiveprograms.

Page 108: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐108

ProvideTEPcustomersandcontractorswithdirectwebaccesstodetailedinformationonallefficiencyprograms(residentialandcommercial)forelectricitysavingsopportunitiesathttp://www.tep.com

ExpandtheEEinfrastructureinthestatebyincreasingthenumberofavailablequalifiedcontractorsthroughtrainingandcertificationinspecificfields.

Usetrainedandqualifiedtradealliessuchaselectricians,HVACcontractors,builders,manufacturers,architects,andengineerstotransformthemarketforefficienttechnologies.

Informandeducatecustomerstomodifybehaviorsthatenablethemtouseenergymoreefficiently.

PlanningProcessTEP’sportfolioofprogramsincorporateselementsofthemostsuccessfulEEprogramsacrossNorthAmerica.ProgramsaredesignedinconsiderationoftheTucsonmarketandprovidecost‐effectiveprogramsforTEPcustomers.Asubstantialamountofinformationincludingevaluations,programplansandstudieswereusedtodevelopspecificprogramsforTEP.WithinputfromNavigant,RUCOandSWEEP,TEPalsousedabenchmarkingprocesstoreviewthemostsuccessfulEEprogramsfromacrossthecountry,withafocusonsuccessfulDesertSouthwestprogramstohelpshapetheportfolio.

TEPusedthefollowingstrategiestoproducethelowestcostportfolioofEEprograms:

ImplementingprimarilyindustryacceptedprogramsthathavebeensuccessfullyappliedbyotherutilitiesintheSouthwestandacrossthecountry.

Implementingprogramsthroughacombinationofthird‐partycontractorsandTEPstaff.TEPutilizesimplementationcontractorswheretheyprovideparticularindustryexpertiseand/ortools.

ProgramScreeningTEPusesrigorousmodelstoevaluatethecosts,benefits,andrisksofEEandDSMprogramsandmeasures.ThesemodelsaredesignedtoestimatethecapacityandenergyvaluesofEEandDRmeasuresatanhourlylevel.Byexaminingprojectedprogramperformanceandcosteffectivenessoverawidevarietyofweatherandcostconditions,TEPisabletomeasuretherisksandbenefitsofemployingEEandDSMmeasuresversustraditionalgenerationcapacityadditions,andfurther,toensurethatDSMresourcesarecomparedtosupplysideresourcesrelatively.

TheanalysisofEEandDSMcost‐effectivenesshastraditionallyfocusedprimarilyonthecalculationofspecificmetrics,oftenreferredtoastheSocietalCostTest(SCT).AsdetailedinTable16‐ComparativeBenefit‐CostTests,therearefivemajorbenefit‐costtestscommonlyutilizedintheEEindustry,eachofwhichaddressesdifferentperspectives.TheEEStandardestablishedthatthesocietalcosttestshouldbeusedasthekeyperspectivefordeterminingthecost‐effectivenessofEEmeasuresandprograms.Regardlessofwhichperspectiveisused,benefit‐costratiosgreaterthanorequalto1.0areconsideredcost‐effective.Whilevariousperspectivesareoftenreferredtoastests,thefollowinglistofcriteriademonstratesthatdecisionsonprogramdevelopmentgobeyondapass/failtest.

Page 109: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐109

Table16‐ComparativeBenefit‐CostTests

  

SOCIETAL COST TEST 

TOTAL RESOURCE COST TEST 

UTILITY RESOURCE COST TEST 

PARTICIPANT COST TEST 

RATE IMPACT MEASURE 

TEST 

BENEFITS 

 Reduction in Customer's Utility Bill              

 Incentive Paid by Utility              

 Any Tax Credit Received           

 Avoided Supply Costs       Avoided Participant Costs        

 Participant Payment to Utility             External Benefits              

COSTS 

 Utility Administration Costs       Participant Costs        

 Incentive Costs              

 External Costs              

 Lost Revenues              

UtilityResourceCostTestTheUtilityResourceCostTest(UCT),alsoreferredtoastheProgramAdministratorTest(PAT),measuresthenetbenefitsofaDSMprogramasaresourceoptionbasedonthecostsandbenefitsincurredbytheutility(includingincentivecosts)andexcludinganynetcostsincurredbythecustomerparticipatingintheefficiencyprogram.Thebenefitsaretheavoidedsupplycostsofenergyanddemand,thereductionintransmission,distribution,generationandcapacityvaluedatmarginalcostsfortheperiodswhenthereisaloadreduction.Thecostsaretheprogramcostsincurredbytheutility,theincentivespaidtothecustomers,andtheincreasedsupplycostsfortheperiodsinwhichloadisincreased.

TotalResourceCostTheTotalResourceCost(TRC)isatestthatmeasuresthetotalnetresourceexpendituresofaDSMprogramfromthepointofviewoftheutilityanditsratepayers.Resourcecostsincludechangesinsupplyandparticipantcosts.ADSMprogramthatpassestheTRCtest(i.e.,hasaratiogreaterthan1)isviewedasbeneficialtotheutilityanditscustomersbecausethesavingsinelectriccostsexceedtheDSMcostsincurredbytheutilityanditscustomers.

ParticipantCostTestTheParticipantCostTest(PCT)illustratestherelativemagnitudeofnetbenefitsthatgotoparticipantscomparedwiththenetbenefitsachievedfromotherperspectives.Thebenefitsderivedfromthistestreflectreductionsinacustomer’sbillandenergycostsplusanyincentivesreceivedfromtheutilityorthirdparties,

Page 110: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐110

andanytaxcredit.Savingsarebasedongrossrevenues.Costsarebasedonout‐of‐pocketexpensesfromparticipatinginaprogram,plusanyincreasesinthecustomer’sutilitybills.

RateImpactMeasureTestTheRateImpactMeasure(RIM)Testmeasuresthechangeinutilityenergyratesresultingfromchangesinrevenuesandoperatingcosts.HigherRIMtestscoresindicatetherewillbelessimpactonincreasingenergyrates.WhiletheRIMresultsprovideaguideastowhichtechnologyhasmoreimpactonrates,generallyitisnotconsideredapass/failtest.Instead,theamountofrateimpactisusuallyconsideredatapolicylevel.Thepolicyleveldecisioniswhethertheentireportfolio’simpactonratesissodetrimentalthatsomenetbenefitshavetobeforgone.

SocietalCostTestTheSCTissimilartotheTRCtest,butitisalsointendedtoaccountfortheeffectsofexternalities(suchasreductionsinCO2,nitrogenoxidesNOx,andsulfurdioxideSO2.OneadditionaldifferencebetweentheTRCandtheSCTisthattheSCTusesasocietaldiscountrateinitsanalysis.TheSCTistheregulatedbenefit/costanalysisrequiredintheEEStandard.TEPhasprovidedaSCTthataccountsforthesocietaldiscountrate.

CurrentEnergyEfficiencyandDSMProgramsTEP’s2016EnergyEfficiencyPlanwasfiledonJune1st,2015,inaccordancewithSectionR14‐2‐2405oftheEEStandard,forapprovalofEEandDSMprogramswiththeACC(DocketNo.E‐01933A‐15‐0178).TEPreceivedthefinalorderforapprovalfortheseprogramsfromtheACCinDecisionNo.75450onFebruary11,2016augmentingDecisionNo.74885(December31,2014).TEPhasrequestedthattheACCcontinuetheimplementationplanapprovedinDecisionNo.75450toprogramyear2017.

TEPusesEEprogramstoefficientlyandcost‐effectivelyaltercustomerenergydemandandconsumptionandreducethelong‐termsupplycostsforenergyandpeakdemand.TEP’sportfolioofprogramsisdividedintoresidential,commercial,behavioral,support,andutilityimprovementsectorswithadministrativefunctionsprovidingsupportacrossallprogramareas.Theseprogramscanvarygreatlyintheirdispatchcharacteristics,sizeanddurationofloadresponse,certaintyofloadresponse,andlevelandfrequencyofcustomerparticipation.Ingeneral,programsareofferedintwoprimarycategories,1)EEprogramsthatreduceenergyconsumption,and2)DRprogramsthatreducepeakdemand.Table17belowliststheCommission‐approvedEEandDRprogramscurrentlyintheTEPportfolio.Detailsoftheseprogramscanbefoundinthe2016EnergyEfficiencyPlan

Page 111: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐111

Table17‐CurrentEnergyEfficiencyPrograms

Residential Sector 

Appliance Recycling 

Efficient Products 

Existing Homes 

Low Income Weatherization 

Multi‐Family Homes 

Residential New Construction 

Shade Trees 

Behavioral Sector Behavioral Comprehensive 

Home Energy Reports

Commercial & Industrial Sector

Bid for Efficiency 

Combined Heat & Power 

C&I Comprehensive 

Commercial New Construction

Commercial Schools 

Retro‐Commissioning 

Small Business Direct Install 

Support Sector Consumer Education and Outreach 

Energy Codes and Standards 

Utility Improvement Sector 

C&I Direct Load Control 

Conservation Voltage Reduction 

Generation Improvement and Facilities Upgrade 

Page 112: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐112

Chart28showstheactualsegmentationofenergysavingsacrosssectorsasaresultfromthe2016implementation.

Chart28–2016DSMPortfolioCompositionbySector

Resource Planning Integration 

DSMForecastingConsistentwiththeACC’sDecisionNo.71435onResourcesPlanning,TEPforecastedcumulativeenergysavingsforTEP’sDSMportfolioovera15‐yeartimeperiodfrom2017–2032includingmeetingArizona’sEEStandard,whichconcludesin2020.TEPpreparedamonthlyenergyandpeakreductionforecastsforallyearsintheIRPplanningperiod.Thesavingsweredistributedbasedontheactualhourlyshapeofallhistoricalmeasuresinstalledfrom2011through2015andarecarriedforwardfortheplanningperiod.CostdispatchmodelingusingthisshapewillapproximatetheimpactsofEEsavingsontheactualsystemload.Inaddition,TEPpreparedanhourlysavingsdistributionbasedontheimpactsofEEin2015andcomparedEEsavingsdistributiontotheshapedistributionoftheactualTEPsystemloadfor2015.

InordertointegratethehourlysavingsimpactofTEP’sportfolioofDSMprogramsinto15‐yearplanninghorizon,TEPdeterminedthehourlysavingsofeachindividualEEmeasuresandthenaggregatedthemattheportfolio‐levelbycustomerrateclass.Thehourlysavingsresolutioncanbesummedintomonthlyenergyandusedtofindpeakdemandsavings.

TEPconsideredseveralavailableresourcesandoptionsfordeterminingEEmeasurehourlylevelsavingsdata.Oneoptionwastoconductlong‐termend‐usemeteringandanalysisforthemeasuresinstalledat

7%

34%

47%

12%

Behavoiral Commercial Residential Utility Improvement

Page 113: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐113

customers’premises,whichwouldbemulti‐yearprojectsandverycostly.Anotheroptionwastoutilizedatamadeavailablefromnationalandotherstate‐levelfundedmulti‐yearstudiesandresearchthatincorporatedbestpracticesfordetermininghourlylevelmeasuresavings.TEPfoundthislatteroptiontobemoreprudentgiventhetimesensitivityandexpense.

TEPreliedupon8,760hourlysavingsloadshapestakenfromwidelyreferencedandrecognizedindustrysourcesforindividualEEmeasuresthatcomprisedeachparticularDSMprogram.Thesesourcesinclude:

California’sDatabaseforEnergyEfficientResources(DEER),whichisdevelopedbytheCaliforniaPublicUtilitiesCommission

California’sCommercialEnd‐UseSurvey(CEUS),whichwaspreparedbyItron,Inc.fortheCaliforniaEnergyCommissionincooperationwithCalifornia’sinvestor‐ownedutilities(i.e.,PacificGasandElectric,SanDiegoGasandElectric,SouthernCaliforniaEdison,SouthernCaliforniaGasCompany),andtheSacramentoMunicipalUtilitiesDistrict

BuildingAmerica–NationalResidentialEfficiencyMeasuresDatabase,whichisdevelopedbytheNationalRenewableEnergyLaboratory(NREL)withsupportfromtheU.S.DepartmentofEnergy(DOE)

Theseloadshapesweredevelopedthroughextensivebuildingend‐usemeteringandenergysimulationmodelingandwerenormalizedforhistoricalweatherconditionsandpatternsapplicabletoparticularclimateregions.Theloadshapesselectedfromthesesourcesaddresstheresidentialandnon‐residentialsectorsseparatelywithdifferentbuildingend‐usesthatrelatetotheEEmeasuresintheprograms.TEPselectedtheloadshapescarefullytoaccountforseasonalordiurnalvariationsinoperationalorend‐usepatternsfordifferentmeasures.TEPutilizedtheCalifornia‐basedDEERandCEUSloadshapesonlyasameanstodevelop8,760hourlyshapingontheEEmeasures.TheannualsavingsvaluesthatwillbeattributedtothesehourlysavingsloadshapearecalculatedspecificallyforTEP’sprogramsthroughprogramdesignandthird‐partyMeasurement,Evaluation,andResearch(MER).

Sincetheweather‐sensitiveEEmeasureloadshapesfromDEERandCEUSweredevelopedforCalifornia,TEPhadtoapplyadjustmentfactorsforitsserviceterritoryinArizona.First,forweathercalibrationpurposes,TEPutilizedtypicalmeteorologicalyear(TMY3)weatherdataforTucson,ArizonaandcomparedthattotheloadshapesdevelopedforCalifornia’sClimateZone15,whichistheclosestgeographicallyaswellasthemostcompatibleweatherregioninCaliforniatoTEP’sserviceterritory,andthenadjustedhourlyindexedvaluesasneeded.Thisapproachofweathercalibrationensuresthatweather‐sensitiveEEmeasuresthathaveseasonalordiurnalvariationsinenergysavingswouldhavetheappropriateeffectforTEP’sclimateregion.Furthermore,theTMY3weatherdatasets,whichweredevelopedbyNRELwithsupportfromDOE,arebasedonclimatedatafromaperiodfrom1991‐2005.Utilizingrecenthistoricalweatherdatahelpstoweathernormalizethesavingseffectsofweather‐sensitiveEEmeasuresatthehourlylevel.TheBuildingAmericadatabaseincludedmeasuresavingsloadshapesdevelopedutilizingTMY3weatherdataforTucson;therefore,nosuchweatheradjustmentswereneededfortheseloadshapes.

Afterdeterminingthemeasureshapes,TEPappliedameasure’sannualenergysavingsvaluewiththeappropriatemeasureend‐useloadshapetodetermineauniquemeasure‐specificsavingsloadshape.TEPwasthenabletoaggregatethehourlysavingsvalueforallgivenmeasuresinaparticularprogramtodetermineaprogram‐levelsavingsloadshape.Fromthesecompositeprogram‐levelsavingsloadshape,TEPwasabletoapplyitsdefinitionofpeakperiodstodeterminecoincidentandnon‐coincidentpeakdemandsavings.

Page 114: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐114

WhilethefocusofthisIRPisonfutureresourcesplanning,TEPalsoacknowledgestheimportanceofattributingverifiedsavingsvaluesforindividualmeasuresandprogramsfromMERresults.TEPhasretainedtheservicesofNaviganttoserveasthethird‐partyevaluationcontractorforTEP’sportfolioofDSMprograms.NavigantverifiesenergysavingsforprogramsutilizingrigorousindustryevaluationstandardsandprotocolsoutlinedbytheInternationalPerformanceMeasurementandVerificationProtocol(IPMVP),FederalEnergyManagementPlan(FEMP)andtheUniformMethodsProject(UMP)oftheNREL.

LoadShapeResultsThehourlysavingsdeterminedthroughtheMethodologySectionaboveallowedTEPtoforecastannualenergyandpeakdemandsavingsforTEP’s2017portfolioofDSMprogramsbothtodeterminea15‐yearoutlookonresourcesandtomeettheEEStandardsavingstargetsby2020.

Toestimatethelevelofcost‐effectiveenergysavingsbeyond2020,TEPreliedonareportpublishedbytheEPRItitled“U.S.EnergyEfficiencyPotentialThrough2035”.FurtherdetailsonTEP’sassumptionsforfutureEEareincludedinChapter10.

Page 115: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐115

Chart29showstheEEannualsavings(MWh)requiredtomeettheStandard(includingcredits)through2020,andthecorrespondingestimatedactualreductioninretailsalesthrough2032.

Chart29–EEAnnualEnergyGoals(TheStandard)vs.EPRIEstimatedRetailSalesReduction(MWh)

InordertoevaluateEEasaresourceforreplacementofgenerationinthecontextoftheIRP,thespecifictypesofmeasuresbeingimplementedaremodeled,likeotherresourcesagainsttheforecastedsystemload.ModelingEEmeasuresasaresourceinTEP’scostproductionmodelwillprovideamoreaccurateindicationofthepotentialcostsavingsassociatedwiththesemeasures,throughdisplacingenergy(i.e.fuel)orcapacityfromconventionalresources.Usingtheseresults,TEPcantargetmeasuresthatcoincidewithhighcostresourcesorthesystempeaks,bothdailyandannually.Chart30providesasampleofhowcurrentEEmeasuresinteractwithTEP’ssystemloads.

 ‐

 50,000

 100,000

 150,000

 200,000

 250,000

2017 2020 2023 2026 2029 2032

Annual Energy Efficiency Targets (MWh)

Tracking to Standard Retail Sales Reduction

Page 116: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐116

Chart30–TEP’sTypicalDaySummerLoadShapevs.CumulativeEELoadShape

Tucson’sclimatehasagreatimpactonthesystem’sgenerationneeds.Asexpected,TEPisasummerpeakingutility,generallyexperiencingitsgreatestdemandoccurringinJuly.AsshownChart30thecumulativeimpactofEEforTEPin2015peakedduringthe8:00PM‐12:00AMtimeframe.However,theTEPsystemloadpeakisbetween1‐8PM.Inordertotrulyreplacegenerationneeds,EEtargetsandgoalswouldneedtofocusmoreontheinstallationofEEmeasuresthatcoincidewiththesystempeak.Chart30depictstheforecastedcumulativeannualpeakdemandsavingsforTEP’sportfolioofprogramsthrough2032,basedontheEEshapederivedfrom2015data.

0.000%

0.005%

0.010%

0.015%

0.020%

0.025%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Percent of Hourly Load

Hour of the Day

Typical Summer Day Load Shape

Typical Summer Energy Efficiency (Negative Load Shape)

Page 117: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐117

EnergyEfficiencyTechnologySummary

Technology  Wide range of technologies and customer incentives.  Technologies range from customer installed high efficiency electrical devices to design and construction of high efficiency building standards.  

Characteristics TEP offers a variety of EE programs designed for both the residential and commercial customers.  The primary objective of these programs is to provide customers with consumption based information and financial incentives to reduce overall energy consumption.  EE programs give customers opportunities to reduce their monthly electric bills by providing incentives for customers to invest in high efficiency technologies such as home appliances, compact fluorescent lighting, pumps, motors and HVAC equipment.  Other programs provide incentives for builders to design and construct both residential and commercial buildings based on higher EE construction standards.    

Benefits  Lowest cost resource.  Potential environmental benefits include reductions in air emissions and water consumption.  The effect of EE reduces system demand and losses and may contribute to deferring the need to construct new power plants and transmission lines.    

Risks  

Challenges include customer participation, market potential and sustained load reduction.

Resource Lead Time  1‐2  Years 

ThecumulativeannualpeakdemandsavingsfromTEP’sDSMprogramsdoesreducethesystempeakwiththeincreaseincumulativeannualsavingstargetgoalsintheStandardandbeyond.

TheimplementationofTEP’sDSMprogramswillhelpTEPmeetthecumulativeannualsavingstargetsintheEEStandardandincorporateEEintoits15‐yearresourceplanningtime‐frame.EEisanimportantpartofTEP’sfutureresourcemix.Furthermore,stratifyingmeasure‐levelenergysavingsonanhourlylevelwillhelptheplanningprocesstoidentifyEEmeasuresandprogramsthatbestfitTEP’sresourceneeds.TEPwillcontinuetomonitorDSMprogramactivityandresearchEEindustrybestpracticestodeterminethemostcost‐effectiveportfolioofprogramsthatprovidesEEsolutionstoitscustomersandincorporatesDSMinvestmentsinTEP’sresourceplanning.

 

Page 118: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐118

Distributed Energy Resources 

DistributedEnergyResources(DER)includeDistributedGeneration(DG),whicharesmall‐scale,typicallyrenewableresourcesoftensitedonutilitycustomerpremises.TheArizonaRESrequiresthataportionofrenewableenergyrequirementsbeobtainedfromresidentialandcommercialDGsystems.TherequiredpercentageofDGintheArizonaRESTis30%ofthetotalrenewableenergyrequirement.ThissectionprovidesabriefoverviewonbothresidentialPVsystemsandsolarhotwaterheatingtechnologies.

Figure15–TypicalResidentialDistributedPVSystems

Page 119: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐119

SolarPhotovoltaicDGSystemsOverviewSolarPVDGsystemsconvertsunlightdirectlyintoelectricity.AresidentialPVpowersystemenablesahomeownertogeneratesomeoralloftheirdailyelectricalenergyneedsontheirrooforsometimesusingaground‐mountedsystem.ThemostcommontypeofPVsystemtodayisreferredtoasa“gridtied”system,whichparallelstheutilitysystemandreferencestheutilityvoltageandfrequencytoinsurethatthePVinverter(s)areoperatingproperly.WithagridtiedPVsystem,thePVsystemremainsconnectedtotheutilitygridsothatpowerandenergycanbedrawnfromtheutilityifthePVsystemcannotmeetthedemand.PVsystemsmayalsoincludestand‐alonebatterybackuporUninterruptiblePowerSupply(UPS)capabilitytoprovidepowerandenergyintheeventofautilityoutage.Todaythereareanewgenerationofbatterysystemsthatarecapableofgridtiedoperation,andthiswillallowsignificantoperationalbenefitsinthefutureandmayallowgridsupportoperationsasbatteriescansupplementtheutilitysupplyduringpeakdemandtimes.

Everyhomeandbusinessthatisconnectedtotheelectricutilityhasamainservicepanel,anelectricalmeter,andalinetotheutilitygrid(aservicedrop).Powerflowsfromthegridthroughthemetertotheservicepanelwhereitisdistributedthroughoutthehomeorbusiness.WhenPVgenerationisaddedtoabuilding,additionalpowerfromthatsourcewillalsoflowtothemainservicepanelandisdistributedthroughoutthebuilding.Intheeventofautilityoutage,agridtiedPVsystemisdesignedtoshutdownuntilutilitypowerisrestored.Asimplegrid‐tiedPVsystemdiagramisshowbelow:

Figure16–ResidentialPVSystemSchematic

TypicalSystemComponents:

PVArray:PVsystemsusesolarcellstoconvertsunlightdirectlyintoelectricity.Themostcommonlyusedsolarcellsaremadefromhighlypurifiedcrystallinesilicon.GroupsofsolarcellsarepackagedintoPVmodules,whicharesealedtoprotectthecellsfromtheenvironment.Modulesarewiredtogetherinseriesandparallelcombinationstomeetthevoltage,current,andpowerrequirementsofthePVsystem.ThisgroupingisreferredtoasaPVarray,andthePVarrayproducesDCpowerwhichisthenconvertedtoACpowerbyaninverter.PVmodulestypicallyrangeinsizefrom5‐to‐25squarefeetandweighabout3‐4lbs./ft2.

Page 120: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐120

BalanceofSystem(BOS):TheremainderofthePVsystemcomponents,asidefromthePVmodules,iscalledtheBalance‐of‐System,orBOS.BOSincludesmountinghardwareandwiringsystemsusedtointegratethesolarmodulesintothestructuralandelectricalsystemsofthehomeorbusiness.ThewiringsystemsmayincludedisconnectsfortheDCandACsidesoftheinverter(moststringinvertershaveACandDCdisconnectsintegratedintothedevice),ground‐faultprotection,andovercurrentprotectionforthesolarmodules.ManyPVsystemsincludeacircuitcombinertointegratestringsofPVmodules.Someinvertersincludethisfusingandcombiningfunctionwithintheinverterenclosure.Micro‐invertershavebecomecommoninthePVarenaoverthepastfewyears,andthePVmoduleissometimescalledan“ACModule”.Withmicro‐inverters,theDCtoACconversionisachievedoneachmodule,typicallyatthe300wattpowerlevel.PVsystemsthatutilizemicro‐invertershavenoDCdisconnects,nocombiners,andthedesigncanlookquitedifferentthanthe“typicalgridtiedPVsystem”shownbelow.Benefitsofmicro‐invertersincludethefactthatoneinverterfailurewillnothaveasignificantimpactonenergyproduction,shadingofoneorseveralmodulesmaynotbeasignificantproblemasitiswithtraditionalPVsystems,andthewiringofthePVsystemrequiresnoDCcomponents,butonlyACwiring,whichisthetypicalwiringthatelectriciansareaccustomedtoworkingon,installingandservicing.

ConfigurationofTypicalPVSystemsFigure17–TypicalGridTiedPVSystem

Page 121: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐121

SolarHotWaterHeatersSolarHotWater(SHW)heatingsystemsincludestoragetanksandsolarcollectors.TherearetwotypesofSHWsystems:1)active,whichhavecirculatingpumpsandcontrols,and2)passive,whichdon'thavecirculatingpumpsandcontrols.Mostsolarwaterheatersrequireawell‐insulatedstoragetank.Solarstoragetankshaveanadditionaloutletandinletconnectedtoandfromthecollector.Intwo‐tankheatingsystems,thesolarwaterheaterpreheatswaterbeforeitenterstheconventionalwaterheater.Inone‐tanksystems,theback‐upheateriscombinedwiththesolarstorageinonetank.Solarwaterheatingsystemsaredescribedusingfourcommonterms:

Activesystems:usepumpstomovefluidsthroughthesystem Passivesystems:relyonthebuoyancyofwarmwaterandgravitytomovefluidsthroughthesystemwithouttheneedforpumps

Directsystems:heatwaterthatfeedsdirectlyintothedomestichotwatersystem.Directsystemsalwaysusepotablewaterastheheattransferfluid.Inareaswithhighlevelsofdissolvedminerals,carbondioxide,orotherwaterqualityproblems,thesesystemsmayrequirewatersoftenersorotherwaterqualitymitigation

Indirectsystems:haveindependentpipinganduseheatexchangerstoisolatesolarfluidsfrompotabledomestichotwater.Systemsusingpropyleneglycolmustuseheatexchangers,however,watermayalsobeusedinindirectsystemswithheatexchangers

Figure18‐TypicalSolarHotWaterHeaterSystem

Page 122: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐122

Thefollowingsystemdescriptionsincludeexampleillustrationsofsystemdesigns.Inpractice,systemsmaybeconfiguredinmanydifferentways.

IntegralCollectorStorage(ICS)PassiveDirectSystemICSsystemsarebothpassiveanddirect.Thetankandcollectorarecombined.PotablewaterisheatedandstoredintheICScollector.Ashotwaterisused,coldwaterfillsthecollectorfromthebottom.Thesesystemsworkbestwhenhotwaterdemandsareinthelateafternoonandevening.Heatgainedduringthedaymaybelostatnightifnotused,anddependsonlocalweatherconditions.Acheckvalve,orthearrangementofpiperuns,stopsreversethermosiphoningwhereheatislostfromthedomestichotwatersystemtothenightsky.Thesesystemsaretheleastexpensiveofsolarthermalsystemdesignsandoneofthemostpopulartypesofdesignsontheworldmarket.However,theymayonlybeusedinareasthatdonotexperienceregularhardfreezes.ICScollectorshavemoredepththanflatplatecollectorstoaccommodateintegraltanks.Somebuildershaveplacedthesecollectorsdirectlyontheroofdeckandbuiltuparoundthemwithparapetsortileroofsystems.

ThermosiphonPassiveDirectSystemThermosiphonsystemsarepassivewithastoragetanklocatedhigherthanthesolarcollector,andsomesystemsmaycomepackagedwithtankspre‐mountedtocollectors.Inthesesystemsthetanksitsontheoutsideoftheroof,whileothersystemshavetankslocatedinsideatticspacesabovethecollectors.Thesesystemsaredirect,usingpotablewaterastheheattransferfluid.Waterpipesandtankscontainingwatermustbeprotectedfromfreezingorlocatedinaconditionedspaceinclimatesthatfreeze.

Page 123: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐123

TypicalInstallationsIngeneral,SHWsystemsaremountedonasouth‐facingroof(inthenorthernhemisphere),oradjacenttothehouseatgroundlevel.IneithercasetheSHWsystemisgenerallyremotefromthebackupandsupplementarystoragewaterheateranditstank.Thisdistance,ortheamountoffinishedspacetheloopmusttraverseinaretrofitinstallation,impactsthemethodandcostofinstallation.Themostfundamentaldistinctionisbetweensystemsthatmustresistfreezing(closed‐loopsystems)andthoselocatedinclimateswherefreezingisveryrarelysevereenoughtothreatentheintegrityofthesystem(open‐loopsystems).Becauseclosed‐loopsystemsrequireeitherdrain‐backprovisionsoraseparatefreeze‐protectedlooptoindirectlyheatwaterinthestoragetank,theygenerallyhaveactivecomponents(pumps)andaremorecomplex.

DistributedGenerationTechnologySummary

Technology and Fuel Distributed Generation; Predominantly Rooftop Solar PV 

Characteristics PV cells convert sunlight directly into electricity.  Cells are arranged in modules, and modules into arrays, which can be mounted in a fixed position or onto structures that enable them to track the sun. 

Benefits 

O&M costs are very low and not subject to future fuel prices.  Emits no air pollution and consumes no water.  Energy generally produced during high‐demand periods.  Scalability provides greater cost control and cost risk mitigation. 

Risks  

Unless coupled with energy storage, solar energy is only available during daylight hours and is subject to variable output during the day, depending on cloud cover. 

Construction Lead Time  

0.75 years

Page 124: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2
Page 125: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐125

 

CHAPTER 6 

LOAD SERVING RESOURCES 

RenewableEnergyTheresourceplanningteamreliedonanumberofindustryexpertssuchasBlackandVeatch,UnitedStatesDepartmentofEnergy,andtheNationalRenewableEnergyLaboratorytohelpdeveloptheoperationalandcostassumptionsforrenewabletechnologies.Thischapterprovidesanoverviewontheassumptionsusedintheresourceplanningevaluations.Forthe2017resourceplanthefollowingrenewabletechnologieswereconsidered:

Solar–Photovoltaic(PV) Solar‐ConcentratingPVTechnology(CPV) Solar‐ConcentratingSolarPowerTechnology(CSP) WindTurbines Bio‐Resources

Renewableresourceassumptionswerebasedonthefollowingdatasources:

1. DOE,EnergyEfficiency&RenewableEnergy,SunShotInitiativeWebsitehttp://www1.eere.energy.gov/solar/sunshot/https://energy.gov/eere/sunshot/about‐sunshot‐initiative

2. DOE,ElectricityAdvisoryCommitteeReportsandmeetings,news,etc.through2016https://energy.gov/oe/services/electricity‐advisory‐committee‐eac/electricity‐advisory‐committee‐2016‐meetings

3. NRELWebsitehttp://www.nrel.gov/

4. PACEGlobalInsights

5. TEP’scompetitiveprocurementprocessandon‐goingR&Defforts.

 

Page 126: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐126

SolarPVTechnologySolarPVcellsconvertsunlightdirectlyintoelectricity.ThesePVcellsarethebuildingblocksofPVmodules,orpanels,andthesemodulesarethebuildingblocksforaPVarray,whichcanproducekilowattstomegawattsofpower.

PVgetsitsnamefromtheprocessofconvertinglight(photons)toelectricity(voltageandcurrent),whichiscalledthe PVeffect.ThePVeffectwasfirstobservedin183920byAlexandreEdmondBecquerel,andprovenwiththefirstpracticalsiliconsolarcellin1954,whenscientistsatBellLabsdiscoveredthatsilicon(anelementfoundinsand)createdanelectricchargewhenexposedtosunlight.Soonafter,solarcellswereusedtopowerspacesatellitesandeventuallypoweredsmalleritemslikecalculatorsandwatches.Today,hundredsofthousandsofAmericans,andmillionsacrosstheworldpowertheirhomesandbusinesseswithgridtied21solarPVsystems.UtilitycompaniesarealsousingPVtechnologyforlargepowerstations,manyinthe100sofmegawattsduringpeakpowertimes.

Traditionalsolarcellsmadefromsiliconaretypicallyflat‐plate,andgenerallyarethemostefficient22.Second‐generationsolarcellsarecalledthin‐filmsolarcellsbecausetheyaremadefromamorphoussiliconornon‐siliconmaterialssuchascadmiumtelluride.Thinfilmsolarcellsuselayersofsemiconductormaterialsonlyafewmicrometersthick.Becauseoftheirflexibility,thinfilmsolarcellscandoubleasrooftopshinglesandtiles,buildingfacades,ortheglazingforwindows.AllofthesebuildingmaterialtechnologiesaregenerallyreferredtoasBuildingIntegratedPhotovoltaic.

Next‐generationsolarcellsarebeingmadefromvarietyofmaterialsotherthansilicon,includingsolarinksthatmayuseconventionalprintingtechnologies,solardyes,andconductiveplastics.SomesolarPVcellsuseplasticlensesormirrorstoconcentratesunlightontoaverysmallpieceofhighefficiencyPVmaterial.ThePVmaterialisgenerallymoreexpensive,butbecausesolittleisneeded,thesystemsareseenasbecomingcosteffectiveforusebyutilitiesandindustry.However,becausethelensesmustbepointedatthesun,theuseofconcentratingcollectorsislimitedtothesunniestpartsofthecountrythatincludeCalifornia,Nevada,andArizona.

Solarmodulesandarraysusedtopowerhomesandbusinessesaretypicallymadefromsolarcellscombinedintomodulesthatholdabout40cells.Atypicalhomewillhaveanarrayof10to20solarpanelstopowerthehome,withanaverageresidentialPVsystemsizeof5kW23.Themodulesareoftenmountedatafixedanglefacingsouth,ortheycanbemountedonatrackingdevicethatfollowsthesun,allowingthemtocapturethemostsunlight.Forlargeelectricutilityorindustrialapplications,hundredsofsolararraysareinterconnectedtoformalargeutility‐scalePVsystemofteninthe10sor100sofMWofnameplatecapacity.

20https://www1.eere.energy.gov/solar/pdfs/solar_timeline.pdf21GridTiedPVsystemsarePVsystemsthatareconnectedinparalleltotheelectricutilitygrid,wheresomeoralloftheenergyisconsumedlocallyandsomeoralloftheenergyissentbacktotheutilitysystemforusebyotherconsumers22Formoreonefficiencyseehttp://www.nrel.gov/pv/materials‐devices.html23http://www.seia.org/research‐resources/solar‐photovoltaic‐technology

Page 127: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐127

SolarResourceCharacteristicsSeveralformsofsolarpowertechnologyareavailabletodayinordertocaptureenergyfromthesun.Oneform,solarPV,convertssunlightintodirectcurrentpower.Adevicecalledaninverterthenconvertsthedirectcurrentpowerintoalternatingcurrentpowertobeusedbyconsumersandtiedtotheelectricgrid.AnotherformofsolarisCSP,whereCSPuseslargereflectorsandtrackingsystemstogatherenergyfromsunlightandfocusittogenerateheat.Heatfromtheconcentratedsunlightmaybeusedtoproducesteamthatturnsaturbinegeneratortogeneratealternatingcurrentpower.SomeCSPsystemsmayheatmoltensaltsorothermaterialstobeusedafterthesungoesdown,andwhenthatpowerisneeded.Thisisanothertypeofenergystoragethatisbeingstudiedanddevelopedthroughouttheworld,andmayhelpsolvesomeofthechallengesrelatedtothediurnalnatureofthesun.

Incertainrespects,thetechnologicaldevelopmentandcommercializationofutility‐scalesolarpoweriscurrentlyatastagesimilartothatofwindpowerpriortoitsrecentperiodofrapidgrowthandwidespreadadoptionbytheelectricutilityindustry.Forexample,largeamountsofcapitalarebeinginvestedinresearch,designanddemonstrationeffortstoimprovesolarpowergeneratingtechnologiesandachieveimprovedeconomiesofscale.ExamplesincludeintensiveR&DonadvancedformsofsolarPVtechnologies,andconstructionofdemonstrationprojectsbasedonlarge‐scaleconcentratingsolargeneratingtechnology.

Page 128: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐128

PhotovoltaicSolarPowerTechnologyAsnotedabove,thetwoprimaryformsofsolarpowergeneratingtechnologiesaresolarPVandconcentratingsolarpower.PVsystemsmakeupthebulkofexistinginstalledsolargeneratingfacilities,andcanbebuiltatpracticallyanysize–fromonekilowattto100sofmegawatts.PVmodulescanbeconnectedingroupstobecomeanarray,andaPVarraycanbeconfiguredinmanydifferentlayoutsbasedontheavailablerooftoportheavailablelandtoplacethesearrays.

Source:NREL:NationalRenewableEnergyLaboratory

A single PV cell produces a small amount of power. To produce more power, cells are electrically interconnected and physically mounted to a frame to form modules, which can in turn be connected into arrays to produce yet more power. Because of this modularity, PV systems can be designed to meet many electrical requirements, both large and small. PV systems can even be designed to have battery storage systems connected, providing power and energy when it is needed or for emergencies. 

Flat‐PlatePhotovoltaicArray

Source: Renewable Energy Atlas of theWest: A Guide to the Region’s Resource Potential

Page 129: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐129

Flat‐PlatePVSystemsThemostcommonPVarraydesignusesflat‐platePVmodules(sometimesreferredtoasPVpanels).ThesePVpanelscaneitherbefixedinplaceorallowedtotrackthemovementofthesun.Trackingsystems,whicharemoreexpensivetoinstallandhavehighermaintenancerequirements,canbesingleaxistrackingordualaxistracking,andgenerallyresultinasignificantincreaseinenergyproduction.

Onetypicalflat‐platemoduledesignusesasubstrateofmetal,glass,orplastictoprovidestructuralsupportintheback;anencapsulantmaterialtoprotectthecells;

andatransparentcoverofplasticorglass.Source:NREL

PVsystemsrespondtosunlightthatiseitherdirectordiffuse.Eveninclearskies,thediffusecomponentofsunlightaccountsforbetween10%and20%ofthetotalsolarradiationonahorizontalsurface.Onpartlysunnydays,upto50%ofthatradiationisdiffuse.Andoncloudydays,100%oftheradiationisdiffuse.

Illustrationofthedirectsolarradiationandtheindirect,diffuseradiationthatcontributetoaPVarray.Source:NREL

Page 130: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐130

MountingStructuresPVarraysmustbemountedonastable,durablestructurethatcansupportthearrayandwithstandwind,rain,hail,andotheradverseconditions.However,stationarystructuresaretypicallydesignedwithflat‐platesystems.ThesestructurestiltthePVarrayatafixedangledeterminedbythelatitudeofthesite,therequirementsoftheload,andtheavailabilityofsunlight.Amongthechoicesforstationarymountingstructures,rackmountingmaybethemostversatile.Itcanbeconstructedfairlyeasilyandinstalledonthegroundoronflatorslantedroofs.

Theadvantagesoffixedarraysarethattheylackmovingparts,thereisvirtuallynoneedforextraequipment,andtheyarerelativelylightweightcomparedtotrackingsystems.Thesefeaturesmakethemsuitableformanylocations,includingmostresidentialroofs.Becausethepanelsarefixedinplace,theirorientationtothesunisusuallyatananglethatprovideslessthanoptimalenergyproductionandmaximumenergyproductiontimeofday.Therefore,lessenergyperunitareaofaPVarrayiscollectedcomparedwiththatfromatrackingarray.However,thisdrawbackmustbebalancedagainstthehighercostofthetrackingsystem.Chart50illustratestheincreasedenergyproductionofasingle‐axistracking(SAT)system,whichisdependentonlocation,butcanprovideanincreaseinannualenergyproductionofupto20‐40%.

SingleAxisandDualAxisTrackingSystemsSometimes,thesolarmountingstructureisdesignedtotrackthesun.Therearetwobasickindsoftrackingstructures:one‐axisandtwo‐axis.TheSATPVsystemsaretypicallydesignedtotrackthesunfromeasttowest.Theyareusedwithflat‐platesystemsandsometimeswithconcentratorsystems.Thetwo‐axistypeisusedprimarilywithPVconcentratorsystems.Theseunitstrackthesun'sdailycourseanditsseasonalcoursebetweenthenorthernandsouthernhemispheres.Naturally,themoresophisticatedsystemsarethemoreexpensiveones,andtheyusuallyrequiremoremaintenance.

Chart31‐ComparisonofSolarPVSystems

(FixedPanelvs.SingleAxisTracking)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1:00 AM 4:00 AM 7:00 AM 10:00 AM 1:00 PM 4:00 PM 7:00 PM 10:00 PM

% of Nam

eplate Solar PV  Cap

acity

Time of  Day (Typical Summer Day)

Solar PV (Fixed) Solar PV (Single‐Axis)

On an annual basis, single axis tracking systems provide 40% 

more energy versus fixed 

During summer coincident peak , a tracking system 

provide 60% more capacity versus fixed 

Page 131: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐131

SolarPVTechnologySummary

Technology and Fuel Solar PV Technology

Characteristics PV cells convert sunlight directly into electricity.  Cells are arranged in modules, and modules into arrays, which can be mounted in a fixed position or onto structures that enable them to track the sun. 

Benefits 

O&M costs are very low and not subject to future fuel prices.  Emits no air pollution and consumes no water.  Energy generally produced during high‐demand periods.  Scalability provides greater cost control and cost risk mitigation. 

Risks  

Unless coupled with energy storage, solar energy is only available during daylight hours and is subject to variable output during the day, depending on cloud cover. 

Construction Lead Time  

0.75 years

Page 132: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐132

U.S.SolarMapThismapshowsthenationalsolarPVresourcepotentialfortheU.S.,andisbasedonthemonthlyaveragedailytotalsolarresourcepotentialongridcells.Theinsolationvaluesrepresenttheresourceavailabletoaflatplatecollector,suchasaPVpanel,orientedduesouthatananglefromhorizontaltoequaltothelatitudeofthecollectorlocation.ThisistypicalpracticeforPVsysteminstallation,althoughotherorientationsarealsoused.AdditionalmapsareavailableattheNRELwebsitelocatedathttp://www.nrel.gov/gis/solar.html

Map2‐U.S.PVSolarResourceMap

Page 133: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐133

ArizonaSolarPowerMapTheGlobalHorizontalResourceofArizonamapprovidesmonthlyaverageandannualaveragedailytotalsolarresourceaveragedoversurfacecellsof0.038degreesinbothlatitudeandlongitude,ornominally4kminsize.TheinputsarebasedonthePATMOS‐Xmodelthatuseshalf‐hourlyradianceimagesinvisibleandinfraredchannelsfromtheGOESseriesofgeostationaryweathersatellites.

Map3‐GlobalHorizontalSolarResourceofArizona

Page 134: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐134

NewMexicoSolarPowerMap

TheNewMexicoNRELSolarInsolationMapisbasedonestimatesmonthlydailytotalradiation,averagedfromhourlyestimatesofdirectnormalirradianceovereightyears.TheinputsarebasedonhourlyvisibleirradiancefromtheGOESgeostationarysatellites,andmonthaverageaerosolopticaldepth,precipitablewatervapor,andozonesampledata10kmresolution.

Map4‐NewMexicoNRELSolarInsolationMap

Page 135: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐135

ConcentratingPhotovoltaics(CPV)Concentratingphotovoltaicsystemsuselensesormirrorstoconcentratesunlightontohigh‐efficiencysolarcells.Thesesolarcellsaremoreexpensivethanconventionalcellsusedforflat‐platePVsystems.However,theincreasedcellefficiencyrequireslesscellareatoproduceagivenamountofpower.

CPVtechnologyoffersthefollowingadvantages:

Potentialforsolarcellefficienciesgreaterthan40% Nomovingparts Nointerveningheattransfersurface Near‐ambienttemperatureoperation Nothermalmass;fastresponse Reductionincostsofcellsrelativetooptics Scalabletoarangeofsizes

Becauseoftheirrelativelyhighcost,CPVsystemsrequiretheuseofconcentratedsunlighttobecost‐competitivewithothersolarpoweroptions.Thus,groupssuchasNRELhavefocusedonthedevelopmentofmulti‐cellpackages(densearrays)toimproveoverallperformance,improvecooling,andinstallreliableprototypesystems.

CPVsystemsarenotincludedinTEP’slong‐termresourceplanatthistimeduetotheirhighcosts,astheyaretypicallytwotothreetimeshigherthanmoretraditionalsolarandwindresourcesonalevelizedcostbasis.Also,marketpricesandcostdataaredifficulttoobtainbecausetheCPVmarketisyoungandtherearearelativelylownumberofinstallationsandcompaniesinthefield.Recently,theCPVindustryhasstruggledtocompetewithPVprices,leadingCPVcompaniesexitingthemarket,whileothersfacechallengesinraisingthecapitalrequiredtoscale.24

CPVTechnologySummary

Technology and Fuel Concentrating Photovoltaics (CPV)

Characteristics Uses mirrors or lenses on a single‐axis or dual‐axis tracking system to concentrate sunlight onto high‐efficiency PV cells.  

Benefits 

Performs best in high‐sunlight regions.  Efficiency is not affected by high ambient temperatures.  Trackers allow for high levels of power production through the day.  Less land and land disturbance required relative to conventional PV systems.  

Risks  

Costs are two to three times higher than more conventional solar technologies.  CPV market is still young and not well developed. 

Construction Lead Time  

1 year 

 

24Phillips,Simonetal.CurrentStatusofConcentratorPhotovoltaic(CPV)Technology,Version1.2,February2016.

Page 136: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐136

ConcentratingSolarPowerTechnology(CSP)ConcentratingSolarPowerisanothertypeofsolarpowergeneration,andisconsideredanidealtechnologyforwarmclimatesthatareprevalentinArizona.Concentratingsolarpowerusesmirrorstoreflectandconcentratesunlightontoreceiversthatcollectthesolarenergyandconvertitintothermalenergy.Thisthermalenergycanthenbeusedtoproduceelectricityviaasteamturbineorheatenginedrivingagenerator.Invirtuallyallapplications,CSPislargeinscale,ontheorderof100MWorlarger.Theselargesystemsaresimilarinmanyrespectstotraditionalcoal,naturalgas,ornucleargeneratorsystemsandutilizesynchronousgeneratorstoproduceelectricity.WhiletheCSPsystemsgenerallydonotoperate24/7becauseofthediurnalnatureofthesun,theydoprovidegridsupportwhentheyareoperationalbecauseofthesynchronousgeneration.ThisimportantfeatureofgridsupportisanimportanttechnicalfactorwhencomparingCSPtoPVgenerationsystemsthatutilizeinverters,whichdonotcurrentlyprovideinertiatothegrid.

TherearethreegenericCSPsystemarchitectures:line‐focus(troughsystems),point‐focuscentralreceiver(powertowers),andpoint‐focusdistributedreceiver(dish‐enginesystems).

PowerTowerCSPSystemsPowertowersystemsconsistofafieldoflarge,nearlyflatmirrorassemblies,knownasheliostats,whichtrackthesunandfocusthelightontoareceiveratthetopofatower.Inatypicalconfiguration,aheat‐transferfluid,suchaswater,waterandglycolmixtures,ormoltennitratesaltsispumpedthroughthereceiver,andusedtogeneratesteamtopoweraconventionalsteam‐turbinepowercyclegeneratingelectricity.Insomesystems,excessthermalenergycanbestoredduringdaylighthourstoprovideelectricityattimeswhenthesunisnotavailableandatnight.Anadvantageofpowertowersystemsoverlinearconcentratorsystemsisthathighertemperaturescanbeachievedintheworkingfluid,leadingtohigherefficienciesandlower‐costelectricity.Sunlightcanbeutilizedfromalargearea,andconcentratedonasmallareaonthetower,andthatapproachreducesthedistancethatheatcapturingfluidsmusttraveltogeneratepowerandenergy.

Page 137: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐137

CSPTechnologySummaryTechnologyandFuel ConcentratingSolarPowerTechnology(CSP)

Characteristics

Mirrorsconcentratesunlightontoafluidthatcangeneratesteamforelectricgenerators.

Benefits

Electricgeneratorscanbesynchronizedtothegrid,therebyprovidinginertia.ForsomeCSPtechnologies,thermalstoragecanbeusedtoaddressintermittencyissuesandprovidepoweraftersunset.

Risks

Costsaretwotothreetimeshigherthanmoreconventionalsolartechnologies.

ConstructionLeadTime

4to5years

Page 138: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐138

IvanpahSolarElectricGeneratingStation

Figure19‐Figure8‐IvanpahSolarElectricGeneratingStation(392MW)

TheIvanpahSolarElectricGeneratingStationislocatedinIvanpahDryLake,Calif.,approximately40milessouthwestofLasVegas.BrightSourcebegandevelopmentin2006,andconstructioncommencedinOctober2010,ledbyengineering,procurement,andconstructionpartnerBechtel.ThestationwasfirstconnectedtothegridinSeptember2013andwentintocommercialoperationinlate2013.Thestationiscomprisedofthreeseparateunitsandhaslong‐termPPAsinplacewithPacificGas&Electric(Units1and3)andSouthernCaliforniaEdison(Unit2).Image

Page 139: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐139

TheIvanpahSolarElectricGeneratingSystemiscomprisedofthreeseparateunitswithatotalcapacityof392MW.IvanpahisajointeffortbetweenNRGEnergy,Google,Bechtel,andBrightSourceEnergy.Thestationusesover300,000software‐controlledheliostatsthatconcentratesunlightontothree459‐foottowers.Fourtypesofheliostatsareuseddependingonthedistancefromthetower;thefurthestoutaremorethanhalfamileaway.Theheliostatsarecapableofwithstanding85‐mphwinds.

Eachtowersupportsa2,100‐tonboilerthatdirectssteamintoaturbinegeneratoratgroundlevel.Naturalgasisusedtowarmtheboilerupfromacoldstart,butinnormaluse,itretainsenoughheatfromthepreviousdaytostartuponsunlightalone.A110‐toncounterweightiscontinuallyrepositionedtokeepthetowerstable.Theconcentratedsunlightgeneratessteaminthetower‐topboilers.Thefacilityreliesonair‐cooledcondenserstocondensetheturbineexhaust,reducingwaterconsumptionbyasmuchas95%lessthanawet‐cooledthermalplant.Theplant’sonlywaterrequirementsareboilermakeupwaterandforcleaning,andthewaterisobtainedfromtwowellsonthesite.

IvanpahComputerControlledHeliostats IvanpahSolarReceiverandCondensers

OneofThree130MWSolarPower CloseupofSolarReceiver

Page 140: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐140

Ivanpah’s$2.2billioncostwassupportedby$1.6billioninloanguaranteesfromtheDOE’sLoanProgramsOffice25(LPO).Theplantisjustaportionofthe2.8GWofLPO‐financedlarge‐scalesolar(CSPandPV)thatiscurrentlyoperatingorunderconstruction.TheLPOcurrentlyoverseesaportfolioofmorethan$30billioninloans,loanguarantees,andcommitmentsthatsupportmorethan30closedandcommittedprojects.LPO‐supportedfacilitiesincludeoneoftheworld’slargestwindfarmsaswellasseveraloftheworld’slargestsolargenerationandthermalenergystoragesystems.

StirlingEngineDishTechnology

ThesolarStirlingEngineiswellbeyondtheresearchanddevelopmentphase,withmorethan20yearsofrecordedoperatinghistory.TheStirlingtechnologyisbasedonanelectricalsolardishsystem,whichconsistsofauniqueradialsolarconcentratordishstructurethatsupportsanarrayofcurvedglassmirrorfacets,designedtoautomaticallytrackthesun,collectandconcentratesolarenergyontoaPowerConversionUnit(PCU).ThePCUiscoupledwith,andpoweredby,aSESStirlingenginethatgeneratesgrid‐qualityelectricity.

Figure20‐StirlingEngineDish

25https://energy.gov/sites/prod/files/2014/11/f19/DOE‐LPO‐Financial%20Performance%20November%202014.pdf

Page 141: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐141

TheconversionprocessinthePCUinvolvesaclosed‐cycle,high‐efficiencyfour‐cylinder,reciprocatingSolarStirlingEngineutilizinganinternalworkingfluidthatisrecycledthroughtheengine.TheSolarStirlingEngineoperateswithheatinputfromthesunthatisfocusedbythedishassemblymirrorsontothePCU’ssolarreceivertubesthatcontainhydrogengas.ThePCUsolarreceiverisanexternalheatexchangerthatabsorbstheincomingsolarthermalenergy.Thisheatsandpressurizesthegasintheheatexchangertubing,andthisgasinturnpowersthesolarStirlingEngine.

Figure21‐SolarParabolicDish‐EngineSystem‐25kW(NREL)

AgeneratorisconnectedtothesolarStirlingEngine,andwasteheatfromtheengineistransferredtotheambientairviaaradiatorsystem.Thegasiscooledbyaradiatorsystemandiscontinuallyrecycledwithintheengineduringthepowercycle.Theconversionprocessdoesnotconsumewater,asisrequiredbymostthermal‐poweredgeneratingsystems.

Page 142: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐142

ParabolicTroughPowerPlants(PTPP)26APTPPsystemistypicallyorientedinanorth‐southdirectionandtracksthesunfromeasttowestfocusingsolarenergyonalongtubularreceiver.Theworkingfluidinatroughsystemisusuallyasyntheticoilthatisheatedtoapproximately390°C(734°F).ThehotoilisusedtogeneratesteamforuseinaconventionalRankinecyclesteamturbinesystem.ThepredominantCSPsystemsinoperationintheUnitedStatesarelinearconcentratorsusingparabolictroughcollectors.Inaddition,troughsystemscanbehybridized(naturalgasco‐firing)ormayusethermalstorageinordertodispatchpowerwhenmostvaluabletoelectricutilities,whichisusuallyduringpeakloadtimesduringthelateafternoons.

26Formoreinformation,seehttps://www.mtholyoke.edu/~wang30y/csp/PTPP.html

Page 143: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐143

Figure22‐HarperLakeSolarCSPProject(NREL)

Figure23‐SchematicofaParabolicTroughPowerPlant(PTPP)withthermalstorage.

(MountHolyokeCollege)

Source:https://www.mtholyoke.edu/~wang30y/csp/PTPP.html

Page 144: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐144

ParabolicTroughPowerPlantTechnologyAsshowninthePTPPexamplebelow,thesolartroughfieldheatssynthetictransferoilthatisusedtogeneratesuperheated,high‐pressuresteamthatisdeliveredtoasteamturbine.Thisturbinepowersanelectricalgenerator,creatingelectricitythatcanbedeliveredtothebulkpowersystemforutilityuse.

Figure24‐SolarPTPPSchematic

MojavePTPPProjectTheMojaveSolarProjectconsistsoftwo125MWparabolictroughpowerplantsforatotalof250MW.TheMojaveSolartechnologyusesmirrorstoconcentratethethermalenergyofthesuntodriveaconventionalsteamturbine.Theplantislocatedabout20milesfromBarstow,California,andwascompletedinDecemberof2014byAbengoa.Abengoasecureda$1.2billionloanguaranteefromtheUSDOE.PacificGas&Electrichasagreedtopurchasethepowergeneratedfromthesolarthermalfacilityaspartofa25yearPPAwithAbengoaSolar.

Figure25‐MohaveSolarCollectors

Page 145: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐145

HybridizedConfigurationwithNaturalGasCo‐FiringISCCtechnologycombinesthebenefitsofsolarenergywiththebenefitsofacombinedcycle.Theoperationofasolarcombinedhybridplantissimilartoaconventionalcombinedcycleplant.Thefuel(preferablynaturalgas)isburnedgenerallyonacombustionchamberofagasturbine.Theheatcomingfromthesolarfieldisaddedtoescapegasesthataredirectedtotheheatretriever,resultinginincreasedsteamgenerationand,consequently,anincreaseofelectricityproductionfromthesteamturbine.

Figure26‐SolarCSPHybridwithNaturalGasCo‐Firing

StorageConfigurationbasedonTwo‐TankMoltenSaltSystemConcentratingsolarpowertechnologiesarebeingenhancedwiththeadditionofenergystoragesystems.Withtheuseofathermalenergystoragesystem,solarplantsareabletoproduceenergyoutputduringnon‐daylighthours.Oneofthematerialsbeingusedtostorethesun’sthermalcapacitanceismolten‐nitratesalt.Inthisdesignconfiguration,largeinsulatedtanksfilledwithmoltensaltareusedwithPTPPtechnologytostoretheheatfromthesynthetictransferoil.Thisstoredheatisusedtoimprovethedispatchabilityofthesolarresourcebyprovidingpowerafterthesungoesdown.Systemsemployingthisstoragetechnologymaybenefitfromthestoredheatandproducepowerfor6‐8hoursaftersundown.

Page 146: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐146

Figure27‐SolarCSPwithThermalStorage

SolanaGeneratingStationSolanasolarthermalplant,aPTPPconcentratingsolarpowerCSPplantandthefirstintheU.S.withthermalenergystoragebegancommercialoperationsinOctober2013.27

The280‐MWplant,nearGilaBendinArizona,employsmoltensalttostoreaboutsixhoursofthermalenergyatfullpower,allowingthefacilitytocontinueoperatingduringperiodsofpeakeveningdemand.Theadditionofthermalstoragealsoallowsthefacilitytosmoothoutanyintermittencyingenerationasaresultofcloudyperiodsduringtheday,whichallowstheplanttooperatemorelikeatraditionalthermalgeneratingsystem.

Thethree‐squaremilefacilityemploys2,700parabolictroughmirrorsandapairof140‐MWsteamturbines.Heatedoilfromthemirrorsisusedtoheatmoltensaltinsixpairsofhotandcoldtankswithacapacityof125,000metrictons.

SolanasellsallitspowertoArizonaPublicService,thestate’slargestutility,througha30‐yearPPA.Thefacilitycostapproximately$2billiontobuild,andwasfinancedinpartwitha$1.45billionloanguaranteefromtheDepartmentofEnergy.

27Formoreinformationseehttps://www.nrel.gov/csp/solarpaces/project_detail.cfm/projectID=23

Page 147: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐147

AerialViewofSolanaSolarField

Solana’sPowerBlocks

ParabolicTroughCollector

ThermalEnergyStorageTanks

Page 148: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐148

WindPower

ResourceCharacteristicsWindpoweristheprocessofmechanicallyharnessingkineticenergyfromthewindandconvertingitintoelectricity.Themostcommonformofutility‐scalewindtechnologyusesahorizontal‐axisrotorwithturbinebladestoturnanelectricgeneratormountedatthetopofatalltower.Forutility‐scalewindpowerproduction,dozensofwindturbinesmaybegroupedtogetheratawindfarmproject.Powergeneratedbythewindturbinesiscollectedatasubstationwheretransformersincreasethevoltageandthepoweristhenfedintothetransmissionsystem.

Becauseairhaslowmass,thewinditselfhaslowenergydensity.Theamountofwindpowerthatcanbeproducedatagivenprojectsiteisdependentonthestrengthandfrequencyofwind.Windvelocitydeterminesquantityofpowerthatcanbeproduced.Forexample,adoublingofwindspeedallowsroughlyeighttimesasmuchpowertobeproduced.

Overthelasttwentyyears,theuseofwindpowerhasincreasedrapidly,makingitthepredominantformofnewrenewablegenerationresource,withmanylarge‐scaleinstallationsaroundtheworld.Majoradvancesinwindpowertechnologywereachievedinthe1990sand2000s,allowingmuchlargerturbinestobedeveloped.Forexample,windturbineswithacapacityof1.5megawattsto5megawattsarenowcommonandwindturbineslargerthan8megawattsarebeingdeveloped.Thishascreatedeconomiesofscale,drivingdowntheunitcostofenergyfromwindpowerresources.

Figure28‐KingmanWindFarm(10MWProject)

UNSElectricWind Project

AsmallwindfarmoutsideofKingman,ArizonadevelopedbyWesternWindEnergyCorporation.

Page 149: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐149

U.S.WindResourceMap

Map5‐U.S.WindResourceMap 

Page 150: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐150

ArizonaWindResourceMap

TheU.S.DepartmentofEnergy'sWindProgramandtheNRELpublishedan80‐meter(m)heightwindresourcemapforArizona28.TheArizonaWindResourceMapshowsthepredictedmeanannualwindspeedsatan80‐mheight.Areaswithannualaveragewindspeedsaround6.5meterspersecondandgreaterat80‐mheightaregenerallyconsideredtohavearesourcesuitableforwinddevelopment.Utility‐scale,land‐basedwindturbinesaretypicallyinstalledbetween80mand100mhigh.NRELpublisheswindresourcemapsatelevationsof30m,50m,80m,90m(offshore),and100m.

Map6‐ArizonaNRELWindResourceMap

28http://www.nrel.gov/gis/wind.html

Page 151: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐151

ArizonaWindResourcePotentialItisestimatedthatArizona’swindresourcecapacitypotentialisapproximately10,900MWbasedonanannualcapacityfactorof30%.Onanannualbasisthisresultsin30,600GWhofpotentialannualwindgenerationforthestate.

Chart32‐ArizonaNRELWindResourcePotential

Page 152: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐152

NewMexicoWindResourceMapTheU.S.DepartmentofEnergy'sWindProgramandtheNRELpublishedan80‐mheightwindresourcemapforNewMexico.TheNewMexicoWindResourceMapshowsthepredictedmeanannualwindspeedsatan80‐mheight.Areaswithannualaveragewindspeedsaround6.5meterspersecondandgreaterat80‐mheightaregenerallyconsideredtohavearesourcesuitableforwinddevelopment.Utility‐scale,land‐basedwindturbinesaretypicallyinstalledbetween80and100mhigh.Asmentionedabove,NRELpublisheswindresourcemapsatelevationsof30m,50m,80m,90m(offshore),and100m.

Map7‐NewMexicoNRELWindPowerMap–80m

Page 153: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐153

NewMexicoWindResourcePotentialItisestimatedthatNewMexico’swindresourcecapacitypotentialisapproximately492,000MWbasedonanannualcapacityfactorof30%.Onanannualbasisthisresultsin1,645,000GWhofpotentialannualwindgenerationforthestate.

Chart33–NewMexicoWindResourcePotential

Page 154: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐154

WindResourceTechnology

Asthewindstartstoblow,yawmotorsturnaturbine’snacellesothattherotorandbladesfacedirectlyintowind.Thebladesareshapedwithanairfoilcrosssection(similartoanaircraftwing)andthiscausesairtomovemorequicklyoveronesidethantheother.Thisdifferenceinspeedcausesadifferenceinpressure,whichinturncausesthebladetomove,therotortoturn,andarotationalforce(ortorque)tobegenerated.

Therotorisconnectedtoagearbox(onmostturbines)andinturntoageneratorhousedinthenacellethatconvertsthetorqueintoelectricity.Theelectricityisthenfedintoatransformerlocatedeitherinsideorjustoutsidetheturbinewhichstepsupthevoltagetoreducelossesinthetransmissionofelectricity.Fromtheretheelectricitytravelsthroughundergroundcablestoanelectricitysub‐station,usuallyonornearthewindfarmsite,wherethevoltageissteppedupwithpowertransformersandexportedtothelocalgrid.

Therearefourtypesofutility‐scalewindturbinesnowinuse,withthemajorityofnewinstallationsbeingtypesIIIandIVduetotheiruseofpowerelectronicstocontrolbehaviorandgenerateatamuchwiderwindowofwindspeeds.

TypeI:Squirrelcageinductiongenerator

TypeII:Wound‐rotorinductiongeneratorwithadjustableexternalrotorresistance

TypeIII:Doubly‐fedinductiongenerator

TypeIV:Inductiongeneratorwithfullconverterinterface

Typicallyturbinesbegintogenerateelectricityatwindspeedsof3‐4m/s(7‐9mph).Theamountoftorque(andthuselectricity)generatedincreaseswithwindspeeduptoaround15m/s(34mph)wherethemaximum(orrated)capacityoftheturbineisreached.Outputisthenmaintainedatthisleveluntilaturbineisshutdownwhenthewindreacheshighspeedsofaround25m/s(57mph)toprotectitfromexcessiveloads‐thoughtheturbinesareinfactdesignedandcertifiedtowithstandwindspeedsupto70m/s(157mph).

Page 155: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐155

Figure29‐3DDrawingofNordexN80/2500kWWindTurbine

WindTechnologySummaryTechnologyandFuel WindPower

Characteristics

Kineticenergyofthewindistransformedintomechanicalenergythrougharotor,andthenintoelectricalenergybyageneratorhousedinsidethenacelleofawindturbinetower.

BenefitsHistoricallyoneofthecheapestformsofrenewableenergyinmostoftheUS.Canprovideenergyatanytimeoftheday/night.

Risks

Generallymoreintermittentandlesspredictable thantheoutputfromsolarfacilities.

ConstructionLeadTime

1year.

HOWAWINDTURBINEWORKS

1.Rotorassemblyofthreebladesmountedonahubthatisconnectedviathemainshafttothegearbox.

2.Pitchmotorschangetheangleofattachofthebladessoastocontrolrotationalspeedandtorque.

3.Gearboxconvertstherotationalspeedoftherotortoasuitablespeedforthegenerator.

4.Yawmotorscontinuallyturnthenacellesoastoensuretherotorfacesintothewind.

5.Towersupportsthenacelleandrotor.Thetowercontainselectricalcablesandaccessladders.

6.Generatorconvertsthetorquegeneratedbytherotortoelectricalenergy.

Page 156: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐156

Bioenergy/Bio‐ResourcesBiofuelsareasetofenergyresourcesthatareproducedusingbiologicalprocesses,andcanbederiveddirectlyfromplantsorindirectlythroughotherprocessesincludingagriculturalwaste.

Sometypesofbiofuelpowerplantsutilizetheheatproducedfromthecombustionofbiologicalmaterialstoproduceelectricity.Biofuelgeneration,frommultiplesources,isarelativelymature,proventechnology.Inaddition,biomassresources,likeotherformsofrenewableenergy,canbeatornearcarbon‐neutral.Beingcarbon‐neutralreferstoachievingnetzerocarbonemissionsbybalancingameasuredamountofcarbonreleasedwithanequivalentamountsequesteredoroffset.

TheNationalRenewableEnergyLaboratorypublishesmapsthatprovidedatarelatedtotheavailableannualbiomassforfuelandotheruse.MostofthisbiomassisbasedonagriculturalwastefromU.S.farms.

Map8–U.S.NRELBiomassMap

Page 157: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐157

ArizonaBiomassMapTheArizonaNRELBiomassMapillustratesthebiomassresourcesavailableinArizonabycounty.BiomassfeedstockdataareanalyzedbothstatisticallyandgraphicallyusingaGeographicInformationSystem(GIS).Thefollowingfeedstockcategoriesareevaluated:cropresidues,forestresidues,primaryandsecondarymillresidues,urbanwoodwaste,andmethaneemissionsfrommanuremanagement,landfills,anddomesticwastewatertreatment.

Map9–ArizonaNRELBiomassMap

Page 158: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐158

NewMexicoBiomassMapTheNewMexicoNRELBiomassMapillustratesthebiomassresourcesavailablebycountyinNewMexico.BiomassfeedstockdataareanalyzedbothstatisticallyandgraphicallyusingaGIS.Thefollowingfeedstockcategoriesareevaluated:cropresidues,forestresidues,primaryandsecondarymillresidues,urbanwoodwaste,andmethaneemissionsfrommanuremanagement,landfills,anddomesticwastewatertreatment.Themapshowstheavailablebiomassresources,asdotheothermapsshowninthisreportforvariousregions,butdoesnotindicateactualuseofthoseresources.

Map10–NewMexicoNRELBiomassMap

Page 159: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐159

BiomassTechnologyOverviewBiofuelenergysourcescanbedividedintotwobroadcategories:biomassandbiogas.

Biomass:Thiscategoryincludesallsolidbiologicalmaterials.Themostcommonsourceofbiomassfueliswood.Howeverthiscategorycanalsoincludemanure,sewagesludge,agriculturalwaste,andevencultivatedbiomassagriculturalproductssuchasgrasses.

Biomasspowerplantsoperateinamannerverysimilartocoalandnaturalgaspowerplants.Ingeneral,theheatproducedfromcombustionofthebiomassisusedtoproducesteamthatinturnisusedtospinaturbineandproduceelectricity.Inadditiontodedicatedbiomasspowerplants,thereisalsothepotentialforusingbiomasssourcesasaco‐firingfuelwithtraditionalresourcessuchascoal.

Biogas:Thiscategoryincludesthecaptureofgassesnaturallyproducedasapartofbiologicalprocesses.Oneofthemostcommonbiogasismethane,andisoftencollectedfromtheprocessofdecayatlandfills.Anotherpotentialsourceisthemethaneproducedfrombacterialdigestionofmanure.

Biogasresourcesmaybeusedtoproduceelectricityaspartofadedicatedplantinthesamemannerasatraditionalnaturalgasplant,andbiogasesaresometimesusedtosupplementotherfuelsources.

TransmissionandSitingRequirementsBiofuelresourcesmayormaynotrequiresignificantelectrictransmissionupgradesdependingonthelocationofthesourceoffuel.Forinstance,plantsutilizingwoodwasteorgasproducedasapartofsewagetreatmentwouldlikelybelocatednearloadcentersandrequireminimaladditionaltransitionresources.Ontheotherhand,aplantutilizingagriculturalorforestthinningwastewouldlikelybelocatedasignificantdistancefromloadcentersandmayrequireelectrictransmissionupgrades.

DispatchCharacteristicsOneofthepotentialadvantagesfortheadoptionanduseofbiomasspowerplantsisthatitcanbeusedasadispatchable,reliable,baseloadresource(incontrasttomanyotherrenewables).Direct‐firedbiomasspowerplantsoftenoperateatcapacityfactorsof85%andabove,similartocoalandnaturalgaspoweredplants.

EnvironmentalAttributesTheprincipalenvironmentaladvantageforusingbiofuelsisthatbiofuelsareconsideredcarbon‐neutral.WhiletheprocessofburningbiofuelsdoesreleaseCO2,anearlyequalamountofCO2isabsorbedfromtheatmosphereasthebiologicalsourceofthefuelgrows.Whiletheburningofbiofuelsiscarbon‐neutral,itdoesentailsignificantemissionsofNOxandPM,requiringtheuseofscrubbingtechnologyatthepowerplant.Inadditiontosomeunfavorableemissions,theuseofbiomassalsorisksothernegativeenvironmentalimpactsifthefuelisnotcollectedinasustainablemanner.Ingeneral,however,biofuelsareharvestedfromwastesources,andsustainabilityisgenerallyaninsignificantissue.

Page 160: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐160

BiomassTechnologySummary

Technology and 

Fuel 

Biomass 

Characteristics Electricity generated through the combustion of biologic material or biologic material 

byproducts (i.e., biogas). 

Benefits Similar in concept to traditional thermal‐based power plants.  Carbon emissions can be 

partially or fully offset through CO2 sequestration by the replacement feedstock.  

Risks 

 

Currently about twice the cost of other renewable energy sources. 

Construction Lead 

Time 

 

5 years. 

NaturalGasResourcesAdvancesinnaturalgasexplorationanddevelopment,suchasdirectionaldrillingandhydraulicfracturing,havedramaticallyincreasedtheamountofprovenreservesintheUSandconsequentlybroughtpricesdowntoaboutone‐fourthoftheirpeakin2008.This,plustheincreasingcostsofcontrollingemissionsfromcoal‐firedpowerplants,hasledtoanincreaseinelectricitygenerationfromnaturalgas‐firedpowerplants,whichnowexceedsgenerationfromcoal‐firedpowerplantsnationally.

Thereareanumberofwaysnaturalgascanbeusedtogenerateelectricity.Aswithotherfossilfuels,itcanbeburnedinboilerstogeneratesteam.Amoreefficientprocess,andtheoneusedpredominantlytogenerateelectricityfromnaturalgas,isthecombinedcycleprocess,whichisdescribedbelow.Finally,naturalgascanbeusedinsimplecyclecombustionturbinestoproduceelectricity.Thistechnologyisnotasefficientascombinedcyclebuthasoperationaladvantagesoversteamandcombinedcycletechnologies,suchascyclingonandoffmorefrequently(andatlesscost)andchangingitsoutputmorerapidlytofollowrapidloadchangesortocompensateforrapidpowerchangesfromsolarandwindresources.CombustionturbinesthushavethemostvaluewhenusedasgridbalancingresourcesandarediscussedfurtherinChapter7.

Naturalgascombinedcycletechnologyisthemostefficientandcost‐effectivewayofgeneratingelectricityfromnaturalgas.ThebasicprincipleofNGCCistoproducepowerinagasturbinewhichcanbeconvertedtoelectricpowerbyacoupledgenerator,andtousethehotexhaustgasesfromthegasturbinetoproducesteaminaheatrecoverysteamgenerator(HRSG).Thissteamisthenusedtodriveaturbineandgeneratortoproducemoreelectricpower.Theuseofbothgasandsteamturbinesinasingleplantresultsinhigherconversionefficienciesandloweremission.Additionally,naturalgascanbefiredintheHRSGtoproduceadditionalsteamandassociatedoutputformeetingpeakloads–aprocesscommonlyreferredtoasductfiring.Theheatratewillincreaseduringduct‐firedoperation,butthisincrementalduct‐firedheatrateisgenerallylessthantheresultantheatratefromasimilarlysizedsimplecyclenaturalgaspowerplant.

Page 161: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐161

NGCCTechnologySummaryTechnology and Fuel  Natural Gas Combined Cycle (NGCC)

Characteristics 

Uses natural gas to power one or more combustion turbines whose exhaust is used 

to generate steam for an additional turbine, resulting in a highly‐efficient electricity‐

generation process. 

Benefits 

Produces electricity more efficiently and with fewer emissions than other fossil‐

fired technologies.  Capable of changing out put more rapidly and following load 

more closely than other fossil‐fired technologies. 

Risks Over the long term, costs are subject to natural gas prices and greenhouse gas 

regulations. 

Construction Lead Time 

 

3 years. 

Page 162: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐162

CoalResourcesAsshownonChart34,below,thepercentageofU.S.electricpowergenerationfromcoalhasbeenonadeclinesince2008.Thisdeclineislargelyduetoreducedcostsofcompetingsourcesofgenerationsuchasnaturalgas,solarandwind.However,in2017and2018,asnaturalgaspricesareexpectedtoincrease,coalispredictedtoregainsomeshareoftheelectricitygenerationmix,andcoalproductionisexpectedtoincreaseslightly.

Chart34‐U.S.NetElectricityGeneration

Source:U.S.EnergyInformationAdministration,Short‐TermEnergyOutlook,February201729

TheU.S.EnergyInformationAdministrationexpectstheshareofU.S.totalutility‐scaleelectricitygenerationfromnaturalgaswillfallfrom34%lastyear(2016)toanaverageof32%in2017asaresultofhigherexpectednaturalgasprices.Theforecastnaturalgasshareisforecasttoriseslightlyto33%in2018.Coal'sgenerationsharerisesfrom30%in2016toaverage31%inboth2017and2018.Non‐hydropowerrenewablesareforecasttoprovide9%ofelectricitygenerationin2017and10%in2018.

29https://www.eia.gov/todayinenergy/detail.php?id=29872#

0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Thousands of MWhs

Axis Title

Coal Gas Solar

Page 163: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐163

PulverizedCoalTechnologySummaryandCosts

Technology and Fuel  Sub‐Critical Design,  Pulverized Coal

Characteristics 

Unit capacity can range in size from 250 to 600 MW.  Performance characteristics 

range anywhere from 9,500 to 10,500 Btu per kWh.  Annual capacity factors for 

these units range from 80 to 90%  Units  

Benefits 

Mature technology.  Fuel price stability and abundant supply.  Resources are 

used to serve base load obligations. Coal plant plants are often used for system 

regulation and meeting spinning reserve requirements.   

Risks 

 

Coal plants are typically sited in remote locations requiring high capital 

investment in both plant and transmission.  High CO2 emissions risk and high 

cooling water requirements. 

Construction Lead Time 

 

7 Years 

IntegratedGasificationCombined‐Cycle(IGCC)

Technology and Fuel  Combined Cycle Plants, Coal Gasification

Characteristics 

Newer technology. Unit capacity can range in size from 400 to 600 MW.  

Performance characteristics range anywhere from 9,000 to 11,000 Btu per kWh.  

Annual capacity factors for these units average  75% 

Benefits Designs that incorporate carbon capture and storage (CCS) are projected to be 

less expensive than coal facilities equipped with CCS.  

Risks 

 

Higher capital costs than other coal and natural gas resources.  Carbon capture 

and storage technology unproven.  

Construction Lead Time 

 

8 Years for IGCC without CCS, 9 Years for IGCC with CCS 

Page 164: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐164

CoalMarketPricesTEPcurrentlyhasownershipsharesinfourcoal‐firedpowerplantsinArizonaandNewMexico,mostofwhichareunderlong‐termcontractsforcoalsupply.

Chart35–TEPCoalPriceAssumptions

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

$3.50

$4.00

$4.50

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

Nominal $/m

mBtu

Baseline High Technology High Economy

Page 165: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐165

NuclearResourcesWhenlarge‐scalenuclearpowerplantswentonlineover60yearsago,itwasapromisingtechnologythatdeliveredsafe,reliableandmostimportantly,cleanenergy.In2015,nuclearenergyproductionwasapproximately800TWhor20%ofthetotalU.S.electricgeneration.Thedownsidetonuclearpowerplantsisthecost.Theplantsareexpensivetodevelop,constructandexpensivetooperate.Asthecostofrenewableenergycontinuestodeclineandnewtechnologiesdeliverlowcarbonpowermorereliably,thecostsofnuclearplantsbecomemoreunattractive.Combinethesefactorswithprojectedlownaturalgasprices,nuclearbecomesevenmorecostlybycomparison.Inthelast5years,ahandfulofnuclearpowerplantshavebeenretired,includingSanOnofreinsouthernCaliforniain2012and2013.PacificGas&Electric,ownerandoperatorofDiabloCanyonPowerPlant,announcedthatitwillretire2,160MWwhenlicensesexpireinin2024and2025.

SmallModularNuclearReactorsSmallmodularnuclearreactors(SMR),approximatelyone‐thirdthesizeofcurrentnuclearplants,arecompactinsize(300MWorless)andareexpectedtooffermanybenefitsindesign,scale,andconstruction(relativetothecurrentfleetofnuclearplants)aswellaseconomicbenefits.Asthenameimplies,beingmodularallowsforfactoryconstructionandfreighttransportationtoadesignatedsite.Thesizeofthefacilitycanbescaledbythenumberofmodulesinstalled.Capitalcostsandconstructiontimesarereducedbecausethemodulesareself‐containedandreadytobe“dropped‐in”toplace.

AWorldNuclearAssociation2015reportonSMRstandardizationoflicensingandharmonizationofregulatoryrequirements,saidthattheenormouspotentialofSMRsrestsonanumberoffactors:

Becauseoftheirsmallsizeandmodularity,SMRscouldalmost becompletelybuiltinacontrolledfactorysettingandinstalledmodulebymodule,improvingthelevelofconstructionqualityandefficiency.

Theirsmallsizeandpassivesafetyfeaturesmakethemfavorabletocountrieswithsmallergridsandlessexperiencewithnuclearpower.

Size,constructionefficiencyandpassivesafetysystems(requiringlessredundancy)canleadtoeasierfinancingcomparedtothatforlargerplants.

Moreover,achieving‘economiesofseriesproduction’foraspecificSMRdesignwillreducecostsfurther.

TheWorldNuclearAssociationliststhefeaturesofanSMR,including:

Smallpower,compactarchitectureandusuallyemploymentofpassiveconcepts(atleastfornuclearsteamsupplysystemandassociatedsafetysystems).Therefore,thereislessrelianceonactivesafetysystemsandadditionalpumps,aswellasACpowerforaccidentmitigation.

Thecompactarchitectureenablesmodularityoffabrication(in‐factory),whichcanalsofacilitateimplementationofhigherqualitystandards.

Lowerpowerleadingtoreductionofthesourcetermaswellassmallerradioactiveinventoryinareactor(smallerreactors).

Potentialforsub‐grade(undergroundorunderwater)locationofthereactorunitprovidingmoreprotectionfromnatural(e.g.seismicortsunamiaccordingtothelocation)orman‐made(e.g.aircraftimpact)hazards.

Themodulardesignandsmallsizelendsitselftohavingmultipleunitsonthesamesite.

Page 166: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐166

Lowerrequirementforaccesstocoolingwater–thereforesuitableforremoteregionsandforspecificapplicationssuchasminingordesalination.

Abilitytoremovereactormoduleorin‐sitedecommissioningattheendofthelifetime

Figure3050MWeNuScalePowerModule

TheWorldNuclearAssociationwebsitehasdetailedinformationrelatedtoSMRs.Thewebsiteislocatedat:http://www.world‐nuclear.org/info/nuclear‐fuel‐cycle/power‐reactors/small‐nuclear‐power‐reactors/

NuScalePowerTMisdeveloping50MWemodulesthatcanbescaledupto600MWe(12modules).ThescalabilityofSMRsallowsforsmallutilitieslikeTEPtoconsidertheirviabilitywhilelesseningthefinancialrisk.InDecemberof2013,NuScalewasawardedagrantbytheDOEthatwouldcoverhalf(upto$217million)tosupportdevelopmentandreceivecertificationandlicensingfromtheNuclearRegulatoryCommission(NRC)onasinglemodule.

Inthefallof2014,NuScalesignedteamingagreementswithkeyutilitiesintheWesternregion,whichincludeEnergyNorthwestinWashingtonStateandtheUtahAssociationofMunicipalPowerSystems(UAMPS),representingmunicipalpowersystemsinUtah,Idaho,NewMexico,Arizona,Washington,Oregon,andCalifornia.Thisinitialproject,knownastheUAMPSCarbonFreePowerProject,wouldbesitedineasternIdahoandisbeingdevelopedwithpartnersUAMPS,whichwillbetheplantowner,andEnergyNorthwest,whichwillbetheoperator.Theteamexpectsthatthe12‐moduleSMRwillbeoperationin2024.

Page 167: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐167

Figure31‐NuScaleCross‐sectionofTypicalNuScaleReactorBuilding

 

PermittingandTimetoCommercialOperationAsmentionedabove,theUAMPSCarbonFreePowerProjectisexpectedtobeinoperationby2024.Theprojecttimelineandmilestonetargetsaretightlycoordinatedtocompletetheprojectin11years.Designandengineeringiscompleteinthefirst7yearsanditoverlapswiththelicensingtimeline.Constructionandfabricationspanstheremaining5yearsoftheschedule.

SMRTechnologySummaryTechnology and Fuel  Small Modular Nuclear Reactor (SMR), Plutonium

Characteristics 

Unit Capacity can range in size and modules are combined to achieve economy 

of scale.  SMR is typically considered under 300 MW.  Base‐load type capacity 

factors (95%).  NuScale Power is developing a power plant with funding and 

partnership with the DOE. 

Benefits Zero emissions and high capacity factors.  Modular and factory‐built, 

assembled on site. 

Risks 

 

High capital costs and no large scale production.  Prototypes are being 

developed.  Spent nuclear fuel disposal and maximum security required. 

Construction Lead Time  11 years 

Page 168: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐168

 

Page 169: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐169

 

CHAPTER 7 

GRID BALANCING AND LOAD LEVELING RESOURCES 

EnergyStorageNewchallengespresentedbygreateramountsofrenewablegenerationhavepromptedagreaterinterestinelectricenergystorage.ThetermEnergyStorageSystem(ESS)coversmanydifferenttypesoftechnology.Eachtechnologyhasspecificattributesandapplicationsthatleadtousingthembasedonindividualsystemrequirementsforanidentifiedneed.Theenergystoragetechnologiesaremadeupofsystemssuchaspumpedhydro,compressedairenergystorage,varioustypesofbatteries,andflywheels.

PumpedHydro‐PowerThistechnologyhasbeeninusefornearlyacenturyworldwide.PumpedhydroaccountsformostoftheinstalledstoragecapacityintheUnitedStates.Pumpedhydroplantsuselowercostoff‐peakelectricitytopumpwaterfromalow‐elevationreservoirtoahigherreservoir.Whentheutilityneedstheelectricityorwhenpowerpricesarehigher,theplantreleasesthewatertoflowthroughhydroturbinestogeneratepower.

Typicalpumpedhydrofacilitiescanstoreenoughwaterforupto10ormorehoursofenergystorage.Pumpedhydroplantscanabsorbexcesselectricityproducedduringoff‐peakhours,providefrequencyregulation,andhelpsmooththefluctuatingoutputfromothersources.Pumpedhydrorequiressiteswithsuitabletopographywherereservoirscanbesituatedatdifferentelevationsandwheresufficientwaterisavailable.Pumpedhydroiseconomicalonlyonalarge(250‐2,000MW)scale,andconstructioncantakeseveralyearstocomplete.

Theround‐tripefficiencyofthesesystemsusuallyexceeds70percent.Installationcostsofthesesystemstendtobehighduetositingrequirementsandobtainingenvironmentalandconstructionpermitspresentsadditionalchallenges.Pumpedhydroisaproventechnologywithhighpeakusecoincidence.

Page 170: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐170

CompressedAirEnergyStorage(CAES)Aleadingalternativeforbulkstorageiscompressedairenergystorage.CAESisahybridgeneration/storagetechnologyinwhichelectricityisusedtoinjectairathighpressureintoundergroundgeologicformations.CAEScanpotentiallyoffershorterconstructiontimes,greatersitingflexibility,lowercapitalcosts,andlowercostperhourofstoragethanpumpedhydro.ACAESplantuseselectricitytocompressairintoareservoirlocatedeitheraboveorbelowground.Thecompressedairiswithdrawn,heatedviacombustion,andrunthroughanexpansionturbinetodriveagenerator.Thedispatchtypicallywilloccurathighpowerpricesbutalsotomeetsystemneeds.

CAESplantscanuseseveraltypesofair‐storagereservoirs.Inadditiontosaltcaverns,undergroundstorageoptionsincludedepletednaturalgasfieldsorothertypesofporousrockformations.EPRIstudiesshowthatmorethanhalftheUnitedStateshasgeologypotentiallysuitableforCAESplantconstruction.Compressedaircanalsobestoredinabove‐groundpressurevesselsorpipelines.Thelattercouldbelocatedwithinright‐of‐waysalongtransmissionlines.Respondingrapidlytoloadfluctuations,CAESplantscanperformrampingdutytosmooththeintermittentoutputofrenewablegenerationsourcesaswellasprovidespinningreserveandfrequencyregulationtoimproveoverallgridoperations.

BatteriesSeveraldifferenttypesoflarge‐scalerechargeablebatteriescanbeusedforESS,includingleadacid,lithiumion,sodiumsulfur(NaS),andredoxflowbatteries.Batteriescanbelocatedindistributionsystemsclosertoenduserstoprovidepeakmanagementsolutions.Anaggregationoflargenumbersofdispersedbatterysystemsinsmart‐griddesignscouldevenachievenearbulk‐storagescales.

Inaddition,ifelectricandplug‐inhybridelectricvehiclesbecomewidespread,theironboardbatteriescouldbeusedforESS,byprovidingsomeofthesupportingor“ancillary”servicesintheelectricitymarket,suchasprovidingcapacity,spinningreserve,orregulationservices,orinsomecases,byprovidingload‐levelingorenergyarbitrageservicesbyrechargingwhendemandislowtoprovideelectricityduringpeakdemand.

FlywheelsTheserotatingdiscscanbeusedforpowerqualityapplicationssincetheycanchargeanddischargequicklyandfrequently.Inaflywheel,energyisstoredbyusingelectricitytoacceleratearotatingdisc.Toretrievestoredenergyfromtheflywheel,theprocessisreversedwiththemotoractingasageneratorpoweredbythebrakingoftherotatingdisc.

Flywheelsystemsaretypicallydesignedtomaximizeeitherpoweroutputorenergystoragecapacity,dependingontheapplication.Low‐speedsteelrotorsystemsareusuallydesignedforhighpoweroutput,whilehigh‐speedcompositerotorsystemscanbedesignedtoprovidehighenergystorage.Amajoradvantageofflywheelsistheirhighcyclelife—morethan100,000fullcharge/dischargecycles.

Scale‐powerversionsofthesystem,a100kWversionusingmodifiedexistingflywheelswhichwasaproofofconceptonapproximatelya1/10thpowerscale,performedsuccessfullyindemonstrationsfortheNewYorkStateEnergyResearchandDevelopmentAuthorityandtheCaliforniaEnergyCommission.

Page 171: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐171

EnergyStorageApplicabilityAlthoughthelistofenergystoragetechnologiesdiscussedaboveisnotall‐inclusive,itbeginstoillustratethepointthatnoteverytypeofstorageissuitableforeverytypeofapplication.Typicaluseapplicationsforenergystoragetechnologiesmayinclude:

EnergyManagement–Batteriescanbeusedtoprovidedemandreductionbenefitsattheutility,commercialandresidentiallevel.Batteriescanbedesignedtoreplacetraditionalgaspeakingresources.Theycanalsobeusedasshort‐termreplacementduringemergencyconditions.

LoadandResourceIntegration–Energystoragesystemscanbedesignedtosmooththeintermittencycharacteristicsofspecificloadsand/orrenewableenergysystems.

AncillaryServices–Flywheels,batteriesandpumpedhydrohavethepotentialtobalancepowerandmaintainfrequency,voltageandpowerqualityatspecifiedtolerancebands.

GridStabilization–PumpedHydro,CAESandvariousbatteriescanimprovetransmissiongridperformanceaswellasassistwithrenewablegenerationstabilization.

NextEraEnergyResources(10MW)

Lithiumnickel‐manganese‐cobaltbattery

DeMossPetrieSubstation

In‐serviceJanuary2017

AncillaryServiceTarget:

FrequencyResponse10MWIn10secondsto15minutes(2.5MWh)

Page 172: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐172

Becauseofthedifferentusecasepotentialsthetechnologiescanbeimplementedinaportfoliostrategy.

Therearefourchallengesrelatedtothewidespreaddeploymentofenergystorage:

CostCompetitiveEnergyStorageTechnologies(includingmanufacturingandgridintegration) ValidatedReliability&Safety EquitableRegulatoryEnvironment IndustryAcceptance

TEPshowstheneedtodevelopaportfoliooffuturestoragetechnologiesthatwillsupportlong‐termgridreliability.Theneedforfuturestoragetechnologiesisfocusedonsupportingtheneedforquickresponsetimeancillaryservices.Theseservicesarelistedbelow:

LoadFollowing/Ramping Regulation VoltageSupport PowerQuality FrequencyResponse

Figure32–EnergyStorageValueProposition

Page 173: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐173

EnergyStorageTechnologySummary

Batteries

Technology and Fuel  Batteries 

Characteristics  Various storage chemistries and energy/power configurations are available.

Benefits 

High degree of flexibility in terms of siting, application (e.g., energy vs ancillary 

services), and scalability.  Single systems can serve multiple purposes.  Prices for 

most battery types are rapidly declining. 

Risks 

 

Levelized costs are still higher than other forms of energy storage, industry 

standards are still evolving, and some benefits can be difficult to monetize. 

Construction Lead Time  6 months.

PumpedHydro

Technology and Fuel  Pumped Hydro

Characteristics Water is pumped from a lower reservoir to a higher reservoir, and the energy is 

recovered by releasing the water through hydro turbines. 

Benefits Mature technology capable of storing large amounts of energy for use over 

many hours at a time. 

Risks Requires suitable topography for the upper and lower reservoirs and a large up‐

front capital investment. 

Construction Lead Time  5 years. 

CompressedAirEnergyStorage

Technology and Fuel  Compressed Air Energy Storage (CAES)

Characteristics Air is compressed, typically in underground geologic formations, and the energy 

is recovered by using the compressed air to supply a combustion turbine. 

Benefits Mature technology capable of storing large amounts of energy for use over 

many hours at a time. 

Risks Very little commercial experience and requires a large up‐front capital 

investment. 

Construction Lead Time  3 years. 

Page 174: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐174

FastResponseThermalGenerationTEP’s30%by2030renewableenergytargetwillnecessitatetheconstructionoracquisitionoffast‐respondinggeneratingresources.Reciprocatinginternalcombustionengines(RICE)andcombustionturbines(CTs)arethepreferredtechnologythatwillassistinmitigatingrenewableenergyintermittencyandvariability.RICEhavequickerstart‐upandrampingcapabilitiesthanmostCTs.AeroderivativeCTsarebasedonaircraftjetenginedesignwithincreasedcyclingcapabilities.Theseunitscanrampfasterthanlargeframecombustionturbinesmakingthemwell‐suitedforpeakingandload‐followingapplications.LargeframeCTshavehigherheatratesthanaeroderivativeandRICEbuttheyproducehighertemperatureexhaust,soitmakesthemmoresuitableforcombinedcycleconfigurations.

ReciprocatingInternalCombustionEnginesRICEaresimplycombustionenginesthatareusedinautomobiles,trucks,railroadlocomotives,constructionequipment,marinepropulsion,andbackuppowerapplications.Moderncombustionenginesusedforelectricpowergenerationareinternalcombustionenginesinwhichanair‐fuelmixtureiscompressedbyapistonandignitedwithinacylinder.RICEarecharacterizedbythetypeofcombustion:spark‐ignited,likeinatypicalgaspoweredvehicleorcompression‐ignited,alsoknownasdieselengines.

Figure33–Wartsila‐50SG

Anemerginguseoftheseenginesisinlarge‐scaleelectricutilitygeneration.Thecombustionengineisnotanewtechnologybutadvancesinefficiencyandtheneedforfast‐responsegenerationmakeitaviableoptiontostabilizevariableandintermittentelectricdemandandresources.RICEhasdemonstratedanumberofbenefits;

FastStartTimes–Theunitsarecapableofbeingon‐lineatfullloadwithin5minutes.Thefastresponseisidealforcyclingoperation.RICEcanbeusedto‘smooth’outintermittentresourceproductionandvariability.

RunTime‐Theunitsoperateoverawiderangeofloadswithoutcompromisingefficiency,andcanbemaintainedshortlyaftershutdown.Aftershutdown,theunitmustbedownfor5minutes,ataminimumtoallowforgaspurging.

ReducedO&M–CyclingtheunithasnoimpactonthewearofRICE.Theunitisimpactedbyhoursofoperationandnotbystartsandcyclingoperationsasisthecasewithcombustionturbines.

FastRamping–Atstart,theunitcanramptofullloadin2minutesonahotstartandin4minutesonawarmstart.Oncetheunitisoperational,itcanrampbetween30%and100%loadin40seconds.Thisrampingiscomparabletotheratethatmanyhydrofacilitiescanrampat.

Page 175: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐175

MinimalAmbientPerformanceDegradation–ComparedtoAeroderivativeandFrametypecombustionturbines,RICEoutputandefficiencyisnotasdrasticallyimpactedbytemperature.ThesitealtitudedoesnotsignificantlyimpactoutputonRICEbelow5,000feetmeansealevel.

GasPressure–RICEcanrunonlowpressuregas,aslowas85PSI.MostCT’srequireacompressorforpressureat350PSI.

ReducedEquivalentForcedOutageRate(“EFOR”)–EachRICEhasanEFORoflessthan1%.AfacilitywithmultipleRICEwillhaveacombinedEFORthatisexponentiallylessbyafactorofthenumberofunitsatthefacility.

LowWaterConsumption–RICEuseaclosed‐loopcoolingsystemthatrequiresminimumwater. Modularity–EachRICEunitisbuiltatapproximately2to20MWsandisshippedtothesite.

AnintriguingapplicationforRICEisitspotentialforregulatingthevariabilityandintermittencyofrenewableresources.

Figure34–ReciprocatingInternalCombustionEngineFacility

Page 176: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐176

RICETechnologySummaryTechnology and Fuel  Reciprocating Internal Combustion Engine (RICE), Natural Gas or Diesel

Characteristics 

Unit capacity can range in size, TEP is evaluating 10 and 20 MW sized units that 

run on natural gas.  Expected heat rate is approximately 8,000 Btu/kWh.  These 

engines have a proven performance record as they’ve been used in marine crafts 

for decades.  The units scaled for electric generation will deliver load‐serving and 

grid‐balancing services.  The units are quick starting and fast responding. 

Benefits 

RICE meets the need for peak capacity and more importantly for fast response to 

renewable intermittency and variability.  The units use circulating water for 

cooling and therefore require minimal water.  RICE is modular in size and can 

start within 2 to 5 minutes. 

Risks 

 Natural gas price volatility 

Construction Lead Time 

 2 years 

LargeFrameCombustionTechnologySummary

Technology and Fuel  Combustion Turbines (Large Frame),  Natural Gas

Characteristics 

Unit capacity can vary from 50 to 350 MW.  Expected heat rate can range from 

9,300 Btu/kWh for the larger units while the smaller units demonstrate a heat 

rate near 11,000 Btu/kWh.  Typical start time is slower than RICE or 

Aeroderivative but equipment options from manufacturers can bring them 

closer. 

Benefits 

Large frame CTs can meet a need for intermediate and base‐load applications.  

The units can be coupled for combined‐cycle generation.  Capital cost per kW are 

below Aeroderivative and RICE. 

Risks  Natural gas price volatility

Construction Lead Time  2.5 years 

Page 177: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐177

AeroderivativeCombustionTurbineTechnologySummary

DemandResponseDemandResponsereferstoaclassofprogramsofferedbytheutilitytoincentivizecustomers,generallyC&Icustomerswithhighenergydemand,toreducetheirenergydemand(kW)basedonsystemneeds.DRprogramsmaybeusedtosupportstandardbenefitswhichincludeavoidedfirmcapacityrequiredtomeetreserverequirements,reducedoravoidedopen‐marketpowerpurchasesduringperiodsofhighenergyprices,andgreatergridstabilityandreductioninoutagesduetoreducedgriddemand.AlthoughDRhastraditionallybeenfocusedonproviding“capacity”throughareduction(i.e.curtailment)incustomerdemandduringpeakperiods,itisincreasinglybeingconsideredforadditionalservicessuchasrampingorloadleveling,whereinenergydemandis“rescheduled”versuscurtailed.

CustomersenterintoDRagreementsvoluntarilyandindoingsoreceiveafinancialincentive,suchasareducedelectricityrate,inexchangeforcommittingsomeportionoftheirenergydemandtotheutility’scontrol.Theseagreementstypicallyhavelimitationsincludingtheamountofenergydemandthecustomercommitstotheutility,aswellasthenumberanddurationofeventsduringwhichtheutilitycancallonthedemandreductions.Someagreementsevenprovidecustomerstheoptionto“optout”ofaparticularcallevent,whichmakescertainportionoftheDRcapacitylessthan100%dispatchable.

StrategiesusedbycustomersunderDRagreementsinclude:

ReductionofHVACload Reductionofothermechanicalload(compressors,motors) Reductionoflightingload Curtailmentofproductionlines

Technology and Fuel  Combustion Turbines (Aeroderivative),  Natural Gas

Characteristics 

Unit capacity can vary from 20 to 100 MW.  Performance during summer peak 

conditions is approximately 10,000.  Faster start and ramp than large frame 

simple cycle CTs   

Benefits 

Meet the need for peaking capacity and load following applications.  The units 

can be sited locally and help to reduce transmission infrastructure.  Reduced 

water consumption. 

Risks Natural gas price volatility

 

Construction Lead Time 3 years 

 

Page 178: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐178

ThespecificstrategiesthatcustomersusetomeettheirDRcommitmentswilldependoncertainexternalconditionssuchastimeofday,season,weather,etc.,andcanalsodependontheamountofadvancenoticeprovidedbytheutility.Becausecustomershaveenergyneedsspecifictotheirlineofbusiness,DRprogramsaremosteffectiveatmeetingpredictableutilityneedssuchassummerpeakwhereautilitycanprovideaday‐aheadnoticebasedonhighforecasttemperatures.DRislesseffective(i.e.lessdispatchable)atmeetingunexpectedorintermittentenergydemands.

DemandResponseTechnologySummary

Technology   Utility installed thermostats and switches at customer site used to control customer 

demand. 

Characteristics  The goal of DR is to reduce customer peak demand rather than overall energy use.  

Programs target summer peak periods to offset the utilities’ need to procure 

additional resource capacity.  Programs may utilize cycling methodologies, load 

shifting, or direct interruption during summer peaks or system emergencies.  

Benefits  Depending on program design, DLC is often utilized as a dispatchable resource as part 

of utility operations.   Can decrease utility ramping demand as well as well as load 

leveling and providing peak capacity, potentially deferring or delaying the need for 

additional generation or transmission capacity.   

Risks 

 

Challenges include limited customer participation, minimum yearly call options and 

low dispatch duration.  

Program Lead Time  1 Year 

RateDesignOneelementoftheprovisionofelectricutilityservicesthataffectscustomerusagepatternsand,therefore,impactsfuturecapacityneedsisretailratedesign.However,considerationoftheimpactofratedesignonresourceplanningisoftenneglectedintheIRPprocess.ThissectionprovidesanoverviewofapproachestoretailratedesignthatmayaffectfutureresourceneedsandshouldbeconsideredascomponentsoftheIRPprocess.Thetwobroadratedesigncategoriesdiscussedinthissectionaredemandratesandtime‐varyingrates.ThatisfollowedbyabriefdiscussionoftheeffectsofincreasedpenetrationofDGonsystemoperationsandfuturecapacityneedsandtheimplicationsforratedesign.ThesectionendswithanoverviewofTEP’sapproachretailratedesignasitrelatestoresourceplanning.

Page 179: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐179

DemandRatesThemostbasicelectricutilityratedesignisthetwo‐partrate,whichconsistsofafixedbasicservicechargeandvolumetricenergychargesassessedonthekWhconsumedduringabillingperiod.Mostresidentialandsmallcommercialcustomersreceiveserviceonatwo‐partratestructure.

Demandrates,orthree‐partrates,assesschargesonacustomer’speakdemandduringabillingperiodinadditiontoafixedchargeandvolumetricenergycharges.Thepeakdemanduponwhichthecustomerisbilledmaybemeasuredasthecustomer’smaximumkWovertimeintervalsrangingfrominstantaneoustoaone‐hourinterval.Billingdemandmayalsobedefinedasthemaximumdemandovertheentirebillingperiodoronlyduringdefinedon‐peakperiodsandmayincorporateademandratchet.Ademandratchetfurtherdefinesbillingdemandasthemaximumofmeasureddemandandsomepercentageofmaximumbillingdemandforasetnumberofpriorbillingperiods.Becausesystempeakdemandisamajordriverintheneedforadditionalgeneratingcapacity,chargingcustomersdirectlyfortheircontributiontosystempeakmayprovideapricesignalthatreducespeakdemandandthereforeresultsindelayingtheneedforfuturecapacityadditions.Mediumandlargecommercialcustomersandindustrialcustomersusuallytakeserviceonsomevariationofathree‐partdemandrate.

Time‐VaryingRatesTime‐varyingrates,ifdesignedproperly,maybeusedtoinduceloadshiftingfrompeaktooff‐peakperiodsbyprovidingapricesignalthatresultsinhigherpricesduringpeakperiodsandlowerpricesduringoff‐peakperiods.Shiftingloadsmayreducetheneedforadditionalcapacitybyreducingtheneedforenergysupplyatpeaktimes.Time‐varyingratesmayalsobeusedinathree‐partdemandratestructureandboththedemandandenergycomponentsoftheratedesigncanhavetime‐varyingelements.

Time‐varyingelectricratesincludeTime‐of‐use(TOU)rates,criticalpeakpricing,andreal‐timepricing(RTP).TOUisthemostbasicandbyfarthemostcommonlyusedoftime‐varyingapproachestoretailelectricpricingandconsistsofpre‐definedpeakandoff‐peaktimeperiodswithdifferentiatedpricingforeach.RTPisthemostsophisticatedandvariableapproach,withhourlypricesdeterminedbyday‐aheadmarketpricesorreal‐timespotmarketpricesforelectricity.Criticalpeakpricingratesarefixedrateswherecustomersarechargedhigherpricesduringpeakdemandeventsthatareannouncedinadvance.Avariationofcriticalpeakpricingisapricingregimewherecustomersreceivearebateforreducingusageduringapre‐announcedpeakdemandevent.

DistributedGenerationTheincreasedpenetrationofDG,predominantlyrooftopsolar,intheTEPserviceareacreatessomechallengesforbothsystemoperationsandsystemcapacityplanningandtheCompanyrecognizestheneedtoadaptitsratedesigntoaddressthesechallenges.ThepeakperiodforrooftopsolarproductionoccursduringmiddayanddoesnotcoincidewiththeTEPsystempeakperiods,whichoccurinthelateafternoonduringthesummerandmorningandlateafternoontoearlyeveningduringthewinter.Asaresult,rooftopsolarenergyoutputishighestonthesystemduringmiddaywhenenergyresourcesareabundant.However,increasingsolargenerationmayhaveonlyaminorimpactonreducingsystempeakdemand.Therefore,futureratedesignsshouldfocusmoreonshiftingconsumptionawayfromthesystempeakperiodsintotheperiodsofpeaksolarproduction,whichhasthebenefitofimprovingsystemloadfactorandoperationsandalsoalleviatestheneedforfuturecapacityadditionstoservepeakdemand.Fromaratedesignperspective,combiningTOUrateswithdemandratesandexpandingoff‐peakhourstoincludemorehourswithabundantrooftopsolarenergywillservetomodernizeutilityratedesignandaddressthechallengesputforthbyincreasedDGdevelopment.

Page 180: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐180

TEPRateDesignCurrently,TEPoffersoptionalTOUratestoallretailcustomerclassesexceptLargePowerService(LPS)customerswhotakeserviceonlyonaTOUrate.ResidentialandSmallGeneralServicecustomershavehistoricallytakenserviceontwo‐partratesandtheLGSandLPScustomerclasseshavemandatorythree‐partdemandratestructures.TEPhasformedaMediumGeneralService(MGS)customerclasswherecustomerswillbemovedpredominantlyfromtheSmallGeneralServiceclassandplacedonathree‐partdemandratefollowingatransitionperiod.

TEPrecognizestheimpactsthatincreasingrooftopsolarpenetrationwillhaveonsystemloadshapesandthechallengesthatposesforsystemoperationsandcapacityplanning.IntheCompany’s2015ratecase,TEPproposed,andtheACCapproved,severalchangestoitsexistingretailratestoaddressthesechallengeswithamoremodernratedesign.Forexample,TEPexpandedrateoptionsforResidentialandSmallGeneralServicecustomerstoincludethree‐partdemandrates.TheserateoptionsalsohaveTOUvariantsforenergychargesandbillingdemandisdefinedasthemaximumone‐hourmeasuredkWdemandduringon‐peakperiodsforalloptions.Inaddition,TEPexpandedthesummerandwinteroff‐peakhoursinitsResidentialTOUandResidentialTOUdemandratetariffs.

MoreinformationcanbefoundatTEP’swebsite:https://www.tep.com/rates/

Page 181: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐181

DesertSouthwestWholesalePowerMarkets‐TransformationWholesalePowerMarketOverview

Historically,thewholesalepowermarketshaveservedtheDesertSouthwestasanefficientmechanismforutilityoperatorstobuyandsellstandardmarket‐basedproductsasameanstooptimizetheirresourceportfolios.However,withtherapidincreaseinrenewableresourcepenetrationthroughouttheregion,atransformationofmarketfundamentalsiscurrentlyunderwayandischanginghowbothload‐servingentitiesandwholesalemerchantstransactwithinthesemarkets.Whilethesechangeswillhaveeconomicimplicationsforday‐aheadandreal‐timeoperations,resourceportfoliosofthefuturewillalsoneedtoadaptwithfaststart,fast‐ramping,flexiblegenerationinordertotakeadvantageofshortdurationpricefluctuationsinordertominimizeportfoliocostsforcustomers.

Non‐DispatchableRenewableMustRunResources

Becausemostsolarandwindresourcesarenon‐curtailableresources,utilityoperatorsmustdispatcharoundthesolarandwindoutput.Intoday’swholesalepowermarkets,solargenerationtypicallydisplaceson‐peakgeneration,causingadownwardshiftinmarketpricesfromthehoursof8AMto4PM.Insomehoursthroughouttheyear,thissurpluspowerresultsinthemarketclearingpricegoingnegativeduetogenerationexceedingsystemdemand.

Chart36–ImpactofSolarSurplusontheWholesalePowerMarkets

Page 182: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐182

ImpactsonBaseloadGenerationResourcesInadditiontosurplusrenewablegeneration,lowcostshalegasproductionhasalsoplayedasignificantroleintransformingthesupplyanddemandeconomicsofnaturalgas.Aswesawin2015and2016,expandednaturalgasproductionfromshaleformationsisdirectlyimpactingtheeconomicviabilityofmanybaseloadcoalandnuclearresources.Unlikerenewables,mostthermalplantslikecoalandnuclear,havehigheroperatingcoststhatcannotbefullyrecoveredinthewholesalemarket.Thus,theultimateeffectofhighpenetrationsofrenewablesandlowcostnaturalgaswilllikelybeanacceleratedretirementofolderandhighercostcoalandnuclearresources.Alternatively,resourceslikeNGCCunitsthathaveloweroperatingcostsaremorecompetitiveintoday’swholesalepowermarkets.ThiscompetitiveadvantagewilllikelysetthestageforNGCCunitstodisplacecoalandnuclearasbaseloadresourcessincetheyarebetterpositionedtomaintainprofitabilityinamarketdrivenbylownaturalgasprices.

Chart37‐ComparisonsofCoalvs.NaturalGasCombinedCycleResources

Page 183: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐183

ReductioninOverallNaturalGasDemandandCommodityPricesInadditiontothemarketchangeslistedabove,renewableresourcesaredramaticallyreducingthepowersector’soveralldemandfornaturalgasconsumption.30Lowloadgrowthcoupledwithahigherpenetrationofrenewableenergyandhistoricallylownaturalgasprices,haveresultedinlowwholesalepowerpricesduringthelasttwoyears.Thistrendislikelytocontinueforsometimeduetotheincreasedefficienciesinshaleproductionandthedecliningcostofrenewableenergyresources,whicharebelowthecostoftraditionalfossilfuelresourcesonalong‐termlevelizedbasis.AsnotedintheWoodMacKenzieBaseCase,despiteuncertaintyregardingU.S.energypolicychanges,recentanalysissuggestslownaturalgaspricesareoneofthebiggestdisruptorsofthepowersector.Thislowpricetrajectorywillcausenaturalgastoincreasinglydisplacecoalintheforeseeablefuture.Becauseofthistrendandsteadygrowthinrenewables,wholesalepowerpriceswilllikelystaydepressedoverthelongterm.31

30NRELStudy:ARetrospectiveAnalysisoftheBenefitsandImpactsofU.S.RenewablePortfolioStandards.https://emp.lbl.gov/sites/all/files/lbnl‐1003961.pdf31 Long‐termforecastprojectionsbasedonWood‐Mackenzie,NorthAmericaGas,PowerandCoalMarkets–NoCarbonCase.February2017.

Page 184: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐184

ArizonaGasStorageProject

AsTEPreducesitsrelianceoncoal,cleaner,moreefficientnaturalgaswillplayabiggerroleinmaintainingtheCompany’sgridoperations.Today,TEPreliesontheElPasoandTranswesternpipelinenetworkstodelivernaturalgasprimarilyfromtheSanJuanandPermiansupplybasinstosupportitslong‐term,aswellasreal‐timepowergenerationneeds.Inotherregionsofthecountry,naturalgasstorageprovidesareliabilitybackstoptoamultitudeofpipelineoperationalconstraintsthatcanimpactthedeliveryofnaturalgas.However,inArizonatherearecurrentlynonaturalgasstoragefacilities.AspartoftheCompany’s2017IRPintegrationstrategy,TEPisintheprocessofevaluatinglocalnaturalgasstorageasaresourcewhichmayinimproveTEP’ssystemreliabilitybymeetingitsfuturehourlygasbalancingandgenerationrampingrequirementsastheCompanyintegrateshigherlevelsofrenewableresources.

KinderMorgan2017OpenSeason

OnJanuary31,2017,KinderMorganissuedanopenseason32foranArizonabasednaturalgasstorageprojectthatwouldofferstoragerelatedservicesincludingno‐noticetransportation(NNT)33.AGSprojectwillconsistoffourtoeightnaturalgassaltstoragecavernstobelocatedinPinalCountyArizona,nearEloyhavinganinitialdesignworkinginventoryofone(1)billioncubicfeet(Bcf)percavernforatotalcapacityofatleastfourBcfandhavingaprojectedminimumaggregateinjectioncapacityof168,000‐183,000thousandcubicfeet(Mcf)perdayandaprojectedminimumaggregatewithdrawalcapacityof400,000Mcfperday.TEPisstillevaluatingtheproposalfromKinderMorganandwillcontinuetoevaluateproposalsfromentitieswhichpresentthegreatestopportunityforincreasingsystemflexibility,andprovidingthegreatestsupportforreliabilityattheleastcost.

32Anaturalgasconstructionprojectcantakeanaverageofaboutthreeyearsfromthetimeitisfirstannounceduntiltheprojectisplacedinservice.Thefirststepintheprocessistoconductanopenseasontodeterminemarketinterest.Anopenseasonisheldfor1‐2months,givingpotentialcustomersanopportunitytoenterintoanagreementtosignupforaportionofthecapacityrightsthatwillbeavailable.Ifenoughinterestisshownduringtheopenseason,thesponsorswilldevelopapreliminaryprojectdesignandmoveforward.Ifnotenoughinterestisevident,theprojectwillmostlikelybedroppedorplacedonindefinitehold.http://passportebb.elpaso.com/WesternPipes‐Notices/EPNG‐Notices/NOTICE_16834_Arizona_Gas_Storage_Project.pdf33No‐noticetransportationservicesallowLDCsandutilitiestoreceivenaturalgasfrompipelinesondemandtomeetpeakserviceneedsforitscustomers,withoutincurringanypenalties.Theseservicesincludeaccesstostoragefacilitiesthatprovideincreasedflexibilitytoreceiptanddeliverypointsonareal‐timebasis.

Page 185: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐185

 

CHAPTER 8 

REGIONAL TRANSMISSION PLANNING 

OverviewNinthBiennialTransmissionAssessmentTEPparticipatesintheBiennialTransmissionAssessment(BTA)conductedbytheCommissiontoassesstheadequacyofArizona’stransmissionsystemtoreliablymeetexistingandfutureenergyneedsofthestate.The9thBTAconcludedthattheexistingandplannedtransmissionsystemisadequatetoreliablyservetheneedsofthestateduringthestudyperiod.

ReliabilityMustRun(RMR)AssessmentAnRMRconditionexistsfortheTucsonloadpocketbecausetheTEPloadexceedsthesystemimportlimitoftheexistingandplannedtransmissionsystem.However,theprojectedloadcanbeservedthroughacombinationofpowerimportsandlocalgeneration.Inthe7thBTA,theCommissionorderedthesuspensionofRMRstudiespendingreviewofcriteriathatwilltriggerrestartingRMRstudies.TEPhasnotmetanyofthecriteria,therefore,RMRstudieswerenotperformedforthe9thBTA.

TenYearSnapshotStudyTEPparticipatedintheTenYearSnapshotStudyconductedbytheSouthwestAreaTransmissionArizonaSubcommittee(SWAT‐AZ)participants.ThisstudyconcludedthattheArizona2025transmissionplanisrobustandcanwithstandsimulatedcontingenciesandthatdelayinganysingleplannedprojectbeyond2025didnothavesignificantimpactonsystemperformance.

ExtremeContingencyStudyTEPconductedpowerflowanalysisofoutagesinvolvingTEPcorridorsthatinclude3ormorelinesandTEPsubstationsthatinclude3ormoretransformerswithalowsidevoltageof100kVandhigher.ThisevaluationisconsideredCriticalEnergyInfrastructureInformation(CEII)andwasfiledwiththeCommissionunderaconfidentialityagreement.

EffectsofDistributedGenerationandEnergyEfficiencyProgramsAsrequiredinthe8thBTA,TEPperformedasensitivityanalysistodeterminetheeffectsofDGandEEprogramsonfuturetransmissionneeds.Thisanalysisdeterminedthatnoadditionaltransmissionfacilitiesarerequiredduetotheseprograms.

Page 186: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐186

WestConnectTEPactivelyparticipatesinWestConnectregionalplanningandinterregionalcoordinationactivitiesincompliancewithFERCOrder1000.WestConnectisoneoffourplanningregionsthatwasestablishedtodevelopandimplementFERCapprovedregionalplanningprocessesdesignedtofacilitatejointregionaltransmissionplanningamongthetransmissionowningentitiesthatparticipateintheWestConnectPlanningRegion.

ParticipantsmayjoinoneoffivesectorsconsistingoftheTransmissionOwnerwithLoadServingObligations(TOLSO)34,TransmissionCustomer,IndependentTransmissionDeveloper(ITD),StateRegulatoryCommissionandKeyInterestGroup.Currentlythereareeighteen(18)TransmissionOwnersintheTOLSOsector,eight(8)developersintheITDsectorandone(1)participantintheKeyInterestGroup.TheTransmissionCustomerandStateRegulatoryCommissionsectorshavenoparticipants.MembersofsectorsparticipateinWestConnectgovernancethatconsistsofthePlanningManagementCommittee(PMC)withsubcommitteesincludingPlanningSubcommittee(PS),CostAllocationSubcommittee(CAS),ContractsandComplianceSubcommitteeandLegalSubcommittee.TEPisactiveonthePMC,PSandCASaswellasonvarioustaskforcesasrequired.WestConnect’sregionalplanningprocessisbiennialandisimplementedaccordingtothefollowingtimeline.

Figure35‐WestConnectPlanningTimeline

CoordinationwiththeotherthreeWesternPlanningRegions(CAISO,ColumbiaGrid(CG)andtheNorthernTierTransmissionGroup(NTTG))occursthroughouttheprocessbeginningwithdevelopmentofthestudyplan.ThefootprintsoftherespectiveWesternPlanningRegions(WPR)areshowninthefollowingWesternPlanningRegionsmap.

34TEP/UNSEisanenrolledmemberofTOLSO.

Page 187: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐187

Map11‐WesternPlanningRegions

ParticipatinginWestConnectandinterregionalcoordinationactivitiesisessentialtomaintainingdataandmodelingaccuracyandtoensuringconsistencyamonglocal,regionalandWesternInterconnection‐widetransmissionplans.CoordinationwithWECC,asdescribedinthefollowingsectionisevolving.

WECCTEPparticipatesonthePlanningCoordinatingCommittee(PCC)andTransmissionExpansionPlanningPolicyCommittee(TEPPC),aswellastheirrespectivesubcommittees.ThesecommitteesareintheprocessofbeingreplacedbytheReliabilityAssessmentCommittee(RAC)asapprovedbytheWECCBoardonDecember6,2016.Theapprovedproposalstates,“TheRACwouldreplacethecurrentTEPPCandPCCandassumeresponsibilityforallproductscurrentlyunderthepurviewofbothcommittees.TheRACwouldbeasinglereliability

Page 188: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐188

assessmentorganizationwithinWECCthatwouldfacilitateaunifiedapproachtoevaluatingpotentialreliabilityrisksandefficientlyusestakeholders’expertise”.35

RACgovernanceisaccomplishedthroughfoursubcommitteesconsistingoftheScenarioDevelopment,Studies,ModelingandDataSubcommitteesreportingtotheRAC.RepresentationoneachofthesubcommitteesincludesasinglememberrepresentingthefourWPRplustwoInternationalPlanningRegions(IPR)36,alongwiththeotherparticipantsasdescribedintheWECCBoardapprovedRACproposal.

ThekeydeliverableofRACisaprocesstocreateanAnchorDataSet(ADS)thatwillbeginandconcludewiththebiennialTransmissionPlansoftheWPR.TheADSwillbeacombinationofsolvedpowerflowandproductioncostmodelsthatmaybeusedbyWECC,theWPR’sandotherentitiesasaconsistentstartingpointforreliabilityassessmentandotherregionalstudies.TEPparticipatedwithWestConnectondevelopmentoftheADSprocessincollaborationwiththeotherthreeWPRandWECC.

Multi‐Regional&Interconnection‐WideTransmissionPlanningTEPparticipatesintheSouthwestAreaTransmission(SWAT)Groupthatiscomprisedoftransmissionregulators/governmentalentities,transmissionusers,transmissionowners,transmissionoperatorsandenvironmentalentities.SWATTransmissionOwnermembershipsystemsareincludedinthestatesofTexas(ElPaso),NewMexico,Arizona,NevadaandCalifornia.SWATparticipatesintheWestConnectregionalplanningprocess,representingitsmembers,primarilyincoordinatingmodeldevelopment.TheinitialinvestigationoftheimplicationsofpendingEPAruleswascoordinatedthroughSWAT.ThisstudyeffortwassubsequentlyexpandedtothesystemsinWestConnect,Californiaandbeyond.

SWATcreatedaCoalReductionAssessmentTaskForce(CRATF)inFebruary2013forthepurposeofassessingthereliabilityimpactsofanticipatedaswellashypotheticalcoalretirementsinthesouthwest.IntheEighthBTA,theCRATFreportedonthefirstphaseofareliabilitystudyandwasorderedinDecisionNo.74785tofiletheresultsofthestudywithin30daysofcompletion.CurrentlybeingledbyTEP,theultimategoalistoevaluatetheimpactsfromreducedavailabilityofcoalgenerationwithinthescopeandtimelineoftheWestConnectRegionalStudyPlan.

TEPparticipatedwithArizonaElectricPowerCooperative(AEPCO),ArizonaPublicServiceCompany(APS),SRPandtheWesternAreaPowerAdministration(WAPA),indevelopingarealisticArizonaUtilityCleanPowerPlan(CPP)CompliantscenariothatwassubmittedtoWestConnect.TheWestConnectPMCadoptedthatscenarioasa“WestConnect”Utilityscenariothatiscurrentlyintheprocessofevaluation,alongwithotherhigherrenewablepenetration/coalretirementscenarios,toidentifytransmissionsystem“opportunities”.

TheWestConnectcasesandstudyworkwillbeusedtoassesstheimpactoftheCPPonthereliabilityoftheArizonatransmissionsystemasorderedbytheACCinthe9thBTA.TheobjectiveofcoordinatingwiththeWestConnectbiennialregionalplanningprocesswastogainaccesstothemostcurrentandaccuratedatasetsforthesystemssurroundingArizona.

EvolvingResourceMixChallengesTheArizonatransmissionsystemwasdesignedtoaccommodatethelargecoalgenerationfleetthatisgeographicallydistantfromtheloadcenters.Theintegrationofrenewableenergyprojectsandthesimultaneousreductionofcoalresourcesislikelytohaveanimpactontheoperationofthetransmissiongrid.

35Source:Recommendation1.CreateaReliabilityAssessmentCommittee(RAC)oftheJPTRTFProposal–RevisedOctober5,2016.36TheIPRincludetheBajaMexicoandwesternCanadianregions.

Page 189: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐189

Thelossofsysteminertiaanddynamicreactivecapability,aswellaschangesinpowerflows,posesignificantrisksandupdatesshouldcontinuetobefiledintheBTAprocess.

TEPgaveapresentationattheRETI2WesternOutreachWorkshopinLasVegasonSeptember1,2016.Themainpurposewas,“…tobetterunderstandthetransmissionimplicationsofaccessingrenewableenergyfromelsewhereintheWest,aswellasidentifyingpotentialmarketsforCalifornia'sownexcessrenewableenergyproductionthatmayhelpmeetCalifornia’s2030RPSandGHGgoalsmostefficiently”.KeyconcernsexpressedbyTEPwere:

AnIntegratedRegionalResourcePlanthatdefinesthenecessaryenergyresourcesandtransmissionassetswithacoordinatedstrategytodeploythemdoesnotyetexist

SuchanIntegratedRegionalResourcePlanisnecessarytoconductcomprehensiveregionallycoordinatedreliabilitystudies.

Shorttimelineforexpectedrateofrenewableresourcedeploymentandcoalplantretirements

KeyIssues: CoalPlantRetirements/ReplacementResourcesareuncertain ChangingCaliforniaImports/ExportsdrivenbyNuclearandGasOTCRetirements,IncreasingRenewablePenetrationandWindResourcesfromNewMexico&Wyoming

Lossof“inertia”associatedwithcoalplantshutdown,resultinginpossiblestabilityand/orfrequencyresponseimpact

ChangeingenerationpatternandresourcemixwillimpactPathRatings Newrequirementsthatinclude,butarenotlimitedto,ramping,frequencyresponse,voltageregulationanddynamicreactivecapabilitywillhavetobedeterminedthroughseparatestudiesamongtheregions.

ThereforeTEPisinterestedinobtainingfrequencyresponseandstabilityinformationbasedonsystemanalysesthattakerapidlychangingoperatingconditionsresultingfromhighrenewableresourcepenetration,coal‐andgas‐firedgenerationretirementsandmateriallyrevisedresourcemixintoconsideration.Suchanalysisisintendedtobeusedtoidentifyadditionalalternativemarketmechanismsbasedondemonstrationofactualanticipatedphysicaltransmissionsystembenefits.TheseeffortswillrequirefurthercontinuedcoordinationandcooperationamongtheArizonautilitiesandstakeholders,SWAT,WestConnect,theotherWPRandIPR,andWECC.TheADSwillbeamongthemostcriticalassetstoallowcredibleanalysestobecompletedtoinformresourceandtransmissionplanningdecisions.

Page 190: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐190

OtherRegionalTransmissionProjectsOtherlargeprojectsproposedforinterconnectionineasternandsoutheasternArizonamayinfluenceTEP’slong‐termresourceplanningdecisions.

NogalesDCIntertieTheNogalesInterconnectionProjectisaproposeddirectcurrentinterconnection,commonlyknownasaDCtie,whichwillallowforanasynchronousinterconnectionbetweentheelectricgridsinsouthernArizonaandthenorthwestregionofMexico.Theprojectwillsupportthereliabilityoftheelectricsystem,includingprovidingbidirectionalpowerflowandvoltagesupport,aswellasemergencyassistance,asneeded,fortheelectricsystembothnorthandsouthoftheborder.

Map12‐NogalesDCIntertieStudyAreaandRoute

Thefirstphasewouldconsistofanew150MWDCtielocatedonpropertycurrentlyownedbyTEP;anew3‐mile138kilovolt(kV)transmissionlinethatwouldoriginateatUNSE'sValenciaSubstationinNogales,ArizonaandextendtothewestandsouthtothenewGatewaySubstation;andanewapproximately2‐mile230kVtransmissionlinethatwouldextendsouthfromtheGatewaySubstationtotheU.S.‐MexicoborderwhereitwouldinterconnectwithatransmissionlinetobeconstructedinMexico.ThesecondphasewouldexpandtheDCTiecapacityto300MW.Thetimingofthesecondphaseisnotyetcertain.

Page 191: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐191

Picture1–SharylandHVDContheTexas‐MexicoBorder

SunZiaSouthwestTransmissionProjectSunZiaisadouble‐circuit500kVlinethatwilloriginateincentralNewMexicoataproposedsubstationnearAncho,NewMexicoandterminateattheproposedPinalCentralsubstationnearCasaGrande,Arizona.ItisbeingplannedtoprovideNewMexicoandArizonaadditionalaccesstorenewableenergyresources.SunZiacouldincreaseimportcapacityfromNewMexicobyasmuchas3,000MW.

TheSunZiaSouthwestTransmissionProjectisplannedtobeapproximately515milesoftwosingle‐circuit500kVtransmissionlinesandassociatedsubstationsthatinterconnectSunZiawithnumerous345kVlinesinbothstates.SunZiawillconnectanddeliverelectricitygeneratedinArizonaandNewMexicotopopulationcentersintheDesertSouthwest.

TheelectricitydistributedbySunZiashouldhelpmeettheSouthwestRegionandCalifornia’sdemandforrenewableenergy.

OnJanuary23,2015,theBLMissuedaRecordofDecision(ROD)thatapprovedSunZia’sapplicationforaright‐of‐wayacrossfederallyownedproperty.TheRODconcludedthesixandhalfyearefforttocomplywithNEPA.

Page 192: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐192

Map13‐SunziaProposedProjectRoute

TheSouthlineTransmissionProjectTheSouthlineTransmissionProjectisaproposedtransmissionlinedesignedtocollectandtransmitelectricityacrosssouthernNewMexicoandsouthernArizona,bringingpotentialelectricsystembenefitstotheDesertSouthwest.Theprojectisbeingdesignedtominimizelandandresourceimpactsbydevelopingaroutealongexistinglinearfeaturesandbyupgradingexistingtransmissionlineswherefeasible.Theprojectwillprovideupto1,000megawattsoftransmissioncapacityinbothdirections,andwillinterconnectwithupto14existingsubstationlocations.Theprojectconsistsoftwosections:

TheNewBuildSectionwouldinvolvetheconstructionofapproximately240milesofnew345kVdouble‐circuitelectrictransmissionlinesinNewMexicoandArizona.TheNewBuildisdefinedbyendpointsoftheexistingAftonSubstation,southofLasCruces,NewMexico,andtheexistingApacheSubstation,southofWilcox,Arizona.

TheUpgradeSectionwouldconsistofdouble‐circuit230‐kVlinesconnectingtheApacheSubstationtotheexistingSaguaroSubstationnorthwestofTucson,Arizona.TheUpgradeSectionwouldrebuildapproximately120milesofexistingsingle‐circuit115‐kVtransmissionlines,currentlyownedbyWAPA,providingupto1,000MWoftransmissioncapacitybetweenthesesubstations.Anewlinesegmentapproximately2milesinlengthwillberequiredtointerconnectwiththeexistingTEPVailSubstation,locatedjustnorthoftheexistingWesternline.TheupgradesectionwillalsointerconnectatTEP’sTortolitaandDeMossPetriesubstations.

Page 193: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐193

Map14‐SouthlineProposedProjectRoute

WesternSpiritCleanLineTheWesternSpiritCleanLinewillcollectrenewablepowerfromeast‐centralNewMexicoanddeliverapproximately1,000MWofpowertomarketsinthewesternUnitedStatesthathaveastrongdemandforrenewableenergy.Theenergywillbetransportedviaanapproximately140‐miletransmissionlinetotheexistingelectricgridinnorthwesternNewMexicowhereitinterconnectswiththeTEPtransmissionsystematSanJuan.

Page 194: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐194

Figure36‐WesternSpiritCleanLineProject

EnergyImbalanceMarketsEnergyimbalanceonanelectricalgridoccurswhenthereisadifferencebetweenreal‐timedemand,orloadconsumption,andgenerationthatisprescheduled.Priortotheemergenceofrenewableenergytechnologyonthegrid,balancingoccurredtocorrectoperatinglimitswithin30minutes.Flowsareoftenmanagedmanuallybysystemoperatorsandtypicallybilaterallybetweenpowersuppliers.Theintermittentcharacteristicsofwindandsolarresourceshaveraisedconcernsabouthowsystemoperatorswillmaintainbalancebetweenelectricgenerationanddemandinsmallerthanthirtyminuteincrements.EIMscreateamuchshorterwindowmarketopportunityforbalancingloadsandresources.AnEIMcanaggregatethevariabilityofresourcesacrossmuchlargerfootprintsthancurrentbalancingauthoritiesandacrossbalancingauthorityareas.Thesubhourlyclearing,insomecasesdownto5minutespotentiallyprovideseconomicadvantagetoparticipantsinthemarket.EIMsproposetomoderate,automateandeffectivelyexpandsystem‐widedispatchwhichcanhelpwiththevariabilityandintermittencyofrenewableresources.EIMsboasttocreatesignificantreliabilityandrenewableintegrationbenefitsbysharingresourcereservesacrossmuchlargerfootprints.

CAISO–EnergyImbalanceMarketEIMOnNovember1,2014,theCAISOwelcomedPacifiCorpintothewesternEIM.Nevada‐basedNVEnergybeganactiveparticipationintheEIMonDecember1,2015.RecentlyArizonabasedArizonaPublicServiceandWashingtonbasedPugetSoundEnergyenteredintothereal‐timemarketonOctober1,2016.ThisvoluntarymarketserviceisavailabletoothergridsintheWest.SeveralWesternutilitieshavecommittedtojointheEIM.PortlandGeneralElectrichasfiledtheirintenttojoininOctoberof2017.IdahoPowerhasannouncedtheirintenttojointhewesternEIMinAprilof2018.InDecemberof2016,SeattleCityLightsignedanagreementtojointhemarketinAprilof2019.AndMexicogridoperatorCENACEhasformallyagreedtoexploreparticipationofitsBajaCaliforniaNortegridinthemarket.

The project will begin near Corona, New Mexico and will terminate northwest of Albuquerque at the Public Utility of New Mexico's (PNM) Rio 

Puerco substation. Clean Line and RETA have worked with a wide range of interested parties to select a route, including federal, state and 

county agencies, environmental NGOs, and Native American tribes. Clean Line will meet with each landowner affected by the Western Spirit 

Clean Line and will take landowner feedback into consideration when determining structure placements and possible route adjustments.  

Page 195: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐195

ParticipantsintheEIMexpecttorealizeatleastthreebenefits: 

Produceeconomicsavingstocustomersthroughlowerproductioncosts ImprovevisibilityandsituationalawarenessforsystemoperationsintheWesternInterconnection Improveintegrationofrenewableresources

TEPcontractedwiththeenergyconsultingfirmE3toperformastudytoevaluatetheeconomicbenefitsofTEPparticipatingintheenergyimbalancemarket.E3evaluatedtheEIMbenefitstoTEPbasedonasetofstudyscenariosdefinedthroughdiscussionswithTEPtoreflectTEPsysteminformation,includingloads,resources,andpotentialtransmissionconstraintsforaccesstomarketsforreal‐timetransactions.TheprojectanalysisbeganinFebruary2016andwascompletedinDecember,2016.

Resultsofthestudyplaceapproximatelytwo‐thirdsofanyestimatedsavingoccurring7%ofthetimefromextremereal‐timepricing.WiththesizeofTEP’sgenerationfleetcombinedwith40%ofTEP’sgenerationlimitedfromEIMparticipationduetosystemrestrictions,TEPestimatesanannualbenefitofapproximately$2.5million.Itisexpectedthatthisbenefitwilldiminishovertime.

TEPhasstartedtheprocessofdeterminingtherelevantcostsassociatedwithjoiningtheCAISOEIMmarketaswellasevaluatingwhatotherwesternEIMmarketoptionsmaybeavailable,ifany.Itisestimatedthatthecostanalysiswillbecompletedsometimeduringthesummerof2017.

Page 196: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐196

Map15‐CAISOEIMMap

Page 197: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐197

RegionalTransmissionOrganizations(RTOs)Agroupconsistingofinvestorownedutilities,cooperativepowerprovidersandpublicpowerentitieswasformedtoconsiderandanalyzepotentialalternativestojoiningtheCAISOEIM.Thegroup,knownastheSouthwestRegionalEIMAlternativesWorkingGroup(“WorkingGroup”)wasformedinordertoevaluatethepotentialregionalsynergiesandopportunitiesofjoiningorformingaregionalmarket.BasedontherecentexpansionoftheCAISOEIM,bothintermsofparticipantsandmarketopportunities,theWorkingGrouprecognizedtheneedtoevaluatethemeritsoftheCAISOEIMandalternativemarketstructures.Theworkinggroupalsorecognizedtheneedtoevaluatetheimplicationsforexistingbi‐lateralmarketsandpotentialimpactstoregionalgridoperationsintheSouthwest

Map16‐WestConnectSubregionalPlanningGroups

Page 198: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐198

TheWorkingGroupincludesAEPCO/ACESEnergyManagement;ElPasoElectricCompany(EPE);PublicServiceCompanyofNewMexico(PNM);SRP;Tri‐StateGenerationandTransmissionAssociation(“Tri‐State”);TEP;UNSE;andWAPA.TheobjectivesoftheWorkingGroupareasfollows:

Determineeconomicbenefitsofpotentialalternativesandweighopportunitiesformarketparticipation,

DetermineiftheCAISOEIMandregulatedmarketsintheMidwestandMountainwestoffercertaineconomicbenefitsrelatedtomoreefficientutilizationofgeneratingassetsandtransmissioninfrastructure,

Evaluateoperationalbenefitsespeciallyastheyrelatetorenewableresourceintegrationandsystemregulation,

EstablishifEIM/RegulatedMarketsandcertainalternativesmayofferreliabilitybenefitsrelatedtothegridoperations,and

Considergovernancestructureandimplicationsforresourcecontrol.

TheWorkingGroupevaluatedthecostsandbenefitsofvariousregionalmarketoptionsincluding1)establishingaregionalmarketbyjoininganexistingmarket,2)establishingitsownregionalmarketor3)ahybridofthetwooptions(i.e.usingresourcesofanexistingmarketoperatortoestablishandoperateanascentsouthwestmarket).TheWorkingGroupdiscussedvariousoptionswiththeCAISO,theSouthwestPowerPool,andtheMountainWestTransmissionGroup.Atthispointthereisrecognizablevaluetoestablishingaregionalmarketaswellaspotentialbenefits.However,thecostofjoiningorestablishingaregionalmarkethaveyettobedeterminedandfullyevaluated.TEPwillcontinuetoengagewithmarketoperatorstodeterminethebestpathforwardforitscustomers.

Page 199: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐199

 

CHAPTER 9 

TEP EXISTING RESOURCES 

TEP’sExistingResourcePortfolioThissectionprovidesanoverviewofTEP’sexistingthermalgeneration,renewablegeneration,andtransmissionresources.Forthethermalgenerationresourcesitprovidesdetailsoneachstation’sownershipstructure,fuelsupply,environmentalcontrols,historicalemissions,andabrieffutureoutlook.Fortherenewablegenerationresources,itprovidescapacityandtechnologyinformationaswellascertaindetailsontheconstructionofthefacilities.Informationonconnectionstothebulkelectricsystemisprovidedinthetransmissionsection.Inaddition,thischapterhighlightsitscurrentuseofthewholesalepowermarketforfirmcapacityresources.

TEP’sexistingthermalresourcecapacityis2,649MW.Inaddition,theCompanyalsoreliesonthewholesalemarketforfirmcapacityPPAstomeetitssummerpeakobligations.Table18belowprovidesasummaryofTEP’sexistingthermalresources.

Table18‐TEPExistingThermalResources

Generating Station  Unit  Fuel Type 

Net Nominal Capability 

MW 

Commercial Operation 

Year 

Operating Agent 

TEP’s Share % 

TEP Planning Capacity 

Springerville  1  Coal  387  1985  TEP  100  387 

Springerville  2  Coal  390  1990  TEP  100  406 

San Juan  1  Coal  340  1976  PNM  50  170 

San Juan  2  Coal  340  1973  PNM  50  170 

Navajo  1  Coal  750  1974  SRP  7.5  56 

Navajo  2  Coal  750  1975  SRP  7.5  56 

Navajo  3  Coal  750  1976  SRP  7.5  56 

Four Corners  4  Coal  785  1969  APS  7  55 

Four Corners  5  Coal  785  1970  APS  7  55 

Sundt  Steam  1‐4  Gas  422  1958‐1967  TEP  100  422 

Luna Energy Facility  1‐2  Gas  555  2006  PNM  33.3  184 

Gila River   3  Gas  550  2003  TEP  75  413 

Combustion Turbines    Gas/Oil  219  1972‐2001  TEP  100  219 

Total Planning Capacity        2,649 

Page 200: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐200

Map17‐TEPSystemMap 

Page 201: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐201

CoalResources

Map18‐MapofCoalGenerationandPrimaryFuelSources

Page 202: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐202

SpringervilleGeneratingStation

SpringervilleGeneratingStation(“Springerville”)isafourunit,base‐loadcoal‐firedsteamelectricgeneratingstationlocated15milesnortheastofSpringerville,Arizona.TEPoperatesallfourunits.Units1and2areownedbyTEP.Tri‐StateGenerationandTransmissionownsUnit3,andSaltRiverProjectownsUnit4.

OwnershipStructure:

Units Capacity (MW) 

In‐Service Date 

Planned Retirement 

Unit 1  387  1985  Not Planned 

Unit 2  406  1990  Not Planned 

Unit 3  415  2006  Not Planned 

Unit 4  417  2009  Not Planned 

ParticipationAgreement:ExpiresJanuary1,2078

CoalSupply:AgreementsignedJune17,2003withPeabodyEnergysourcedfromElSegundo/LeeRanch,expiresDecember31,2020.

PollutionControls:

Unit  SO2  NOx  PM  Hg 

1  SDA  LNB SOFA  FF  ACI, CaBR2 

2  SDA  LNB SOFA  FF  ACI, CaBR2 

3  SDA  SCR  FF  ACI, CaBR2 

4  SDA  SCR  FF  ACI CaBR2 

SDA – Spray Dry Absorber FF – Fabric Filter (Bag house) LNB SOFA – Low NOx burners – Separated overfired air SCR – Selective catalytic reduction  

CaBR2 – Calcium bromide (added to coal) 

ACI – Activated carbon injection 

Outlook:Units1and2willbesubjectto“ReasonableProgress”provisionsoftheRegionalHazerule,whichcouldmandateemissionreductionsinthe2025to2027timeframe.Givencurrentcontrolsandrecentreductionsatotherregionalplants,TEPdoesnotbelieveadditionalcontrolsarelikely.

TEP793 MW

SRP417 MW

Tri‐State415 MW

 ‐

 5,000

 10,000

 15,000

 20,000

 25,000

2000 2003 2006 2009 2012 2015

SO2 and NOx, tons

Historical Emissions, TEP Share

SO2 NOx

SpringervilleGeneratingStation

Page 203: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐203

SanJuanGeneratingStation

SanJuanGeneratingStation(“SanJuan”)isafourunit,coal‐firedbase‐loadsteamelectricgeneratingstationlocated17mileswestofFarmington,NewMexico.PublicServiceCompanyofNewMexico(PNM)istheoperatingagentforallfourunits.Units1and2areownedbyTEPandPNM.Units2and3willberetiredattheendof2017.RemainingownerswillincludeTEP,PNM,theCityofFarmingtonNewMexico,theCountyofLosAlamos,NewMexicoandtheUtahAssociatedMunicipalPowerSystem(UAMPS)

OwnershipStructure(after2017):

Units Capacity (MW) 

Entered Service 

Planned Retirement 

Unit 1  340  1976  2022 (1) 

Unit 2  340  1973 December 

2017 

Unit 3  496  1979 December 

2017 

Unit 4  507  1982  Not planned 

(1) TEP does not plan to extend its participation 

agreement for San Juan 1 beyond June 2022.  

ParticipationAgreement:ExpiresJune30,2022

CoalSupply:AgreementwithWestmorelandCoalCompanysourcedfromSanJuanMineiseffectivefromJanuary2016throughJune2022.

PollutionControls:Unit  SO2  NOx  PM  Hg 

1  FGD  SNCR  FF  ACI  

2  FGD  LNB SOFA  FF  ACI  

3  FGD  LNB SOFA  FF  ACI  

4  FGD  SNCR  FF  ACI  

FGD – Flue Gas Desulphurization‐wet FF – Fabric Filter (Bag house) LNB SOFA – Low NOx burners – Separated overfired air SNCR – Selective non‐catalytic reduction  ACI – Activated carbon injection 

Outlook:TEPintendstoenditsparticipationinSanJuanattheendofJune2022,coincidingwiththeexpirationoftheplantparticipationagreement.

PNM496 MW

TEP170 MW

COF108 MW

Los Alamos36 MW

UAMPS37 MW

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

2000 2003 2006 2009 2012 2015

SO2 and NOx, Tons

Historical Emissions, TEP Share

SO2 NOx

SanJuanGeneratingStation

Page 204: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐204

NavajoGeneratingStation

NavajoGeneratingStation(“Navajo”)isathreeunit,coal‐firedbase‐loadsteamelectricgeneratingstationlocatedfivemileseastofPage,ArizonaSaltRiverProjectistheoperatingagentforallthreeunits.PlantparticipantsincludeTEP,SRP,USBureauofReclamation,LosAngelesDepartmentofWaterandPower,ArizonaPublicService,andNVEnergy.

OwnershipStructure:

Units Capacity (MW) 

In‐Service Date 

Planned Retirement 

Unit 1  750  1974  2019 

Unit 2  750  1975  2019 

Unit 3  750  1976  2019 

ParticipationAgreement:Extendstotheexpirationdateoftheplant’sleasewiththeNavajoNation,whichisDecember20,2019.InFebruary2017,TEPjoinedotherNavajoownersinvotingintocontinueoperationsattheplantthroughDecember2019ifaleaseextensionagreementcanbereachedwiththeNavajoNation.

CoalSupply:AgreementwithPeabodyEnergysourcedfromKayentaMineexpiresDecember2019.

PollutionControls:Unit  SO2  NOx  PM  Hg 

1  FGD  LNB SOFA  ESP  ACI, CaBR2 

2  FGD  LNB SOFA  ESP  ACI, CaBR2 

3  FGD  LNB SOFA  ESP  ACI, CaBR2 

FGD – Flue Gas Desulphurization‐wet 

ESP – Electrostatic Precipitator 

LNB SOFA – Low NOx burners – Separated overfired air 

ACI – Activated carbon injection 

CaBR2 – Calcium bromide (added to coal) 

Outlook:FinalRegionalHazerequirementsforNavajocallfortheretirementofoneunitattheendof2019,andtheadditionofSelectiveCatalyticReductionontheremainingunitsbytheendof2030.

Aleaseextensionwouldcontinuepowerproduction,maintainplantemploymentandpreserverevenuesfortheNavajoNationandHopiTribe,providingcontinuedsupportfortheareaeconomythrough2019.Withouttheleaseextension,theownerswouldbeforcedtoceasepowerproductionin2017toallowfordecommissioningworktobecompletedbeforethecurrentleaseexpires.TEPhasexpresseditswillingnesstoworkwiththeNavajoNationinsearchoflong‐termsolutionsforNavajothatbalancestheneedsoftheplant’smanystakeholdersandservesthebestinterestsofTEP’scustomers.

SRP965 MW

APS315 MW

USBR547 MW

NV Energy255 MW

TEP168 MW

 ‐

 1,000

 2,000

 3,000

SO2 and NOx, tons

Historical Emissions, TEP Share

SO2 NOx

NavajoGeneratingStation

Page 205: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐205

FourCornersPowerPlant

FourCornersPowerPlant(“FourCorners”)isatwounit,coal‐firedbaseloadsteamelectricgeneratingstationlocated18mileswestofFarmington,NewMexico.APSistheoperatingagentforbothunits4and5.PlantparticipantsincludeTEP,APS,SRPandPNM.

OwnershipStructure:

Units(1) Capacity (MW) 

In‐Service Date 

Planned Retirement 

Unit 4  770  1969  2031 

Unit 5  770  1970  2031 

(1)APSshutdownunits1‐3inDecember2013tocomplywithRegionalHazeBARTrequirements.

ParticipationAgreement:Co‐tenancyagreementexpiresJuly2041.

CoalSupply:AgreementwithNavajoTransitionalEnergyCompanysourcedfromtheNavajoMineexpiresJuly2031.

PollutionControls:Unit  SO2  NOx  PM  Hg 

4  FGD  SCR (1)  FF  WFGD, FF, CaBR2 

5  FGD  SCR (1)  FF  WFGD, FF, CaBR2 

(1) Required by end of July 2018 to comply with Regional Haze 

BART requirements 

FGD – Flue gas desulfurization‐wet FF – Fabric Filter (Bag house) SCR – Selective catalytic reduction  

CaBR2 – Calcium bromide (added to coal) 

Outlook:TEPanticipatesthattheplantwillcloseafterexpirationofcurrentcoalsupplycontractin2031.TEPwillcontinuetoevaluatethelong‐termviabilityofitscoaloperationsatFourCornersinsubsequentIRPplanningcycles.

APS1,080 MW

PNM200 MW

SRP150 MW

TEP110 MW

 ‐

 500

 1,000

 1,500

 2,000

 2,500

2000 2003 2006 2009 2012 2015

SO2 and NOx, Tons

Historical Emissions, TEP Share

SO2 NOx

FourCornersPowerPlant

Page 206: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐206

H.WilsonSundtGeneratingStation

SundtGeneratingStation(“Sundt”)isafourunit,peakandintermediate‐load,steamelectricgeneratingstationlocatedinTucson,Arizona.Units1,2,and3aregasoroilburninggeneratingunitsandUnit4firesnaturalgasandlandfillgas.

Ownership:SundtGeneratingStationis100%ownedandoperatedbyTEP.

Units Capacity (MW) 

Entered Service 

Planned Retirement 

Unit 1  81  1958  2020 

Unit 2  81  1960  2022 

Unit 3  104  1962  2030 

Unit 4  156  1967  Not Planned 

FuelSupply:TheprimaryfuelatSundtGeneratingStationisnaturalgas.ThestationissuppliedbygaspurchasedonthespotmarketandthroughgashedgingagreementsthatareconsistentwithTEP’shedgingpolicy.NaturalgasisdeliveredthroughtheKinderMorgannaturalgaspipelinewhichislocatedadjacenttotheSundtproperty.

PollutionControls:Unit  SO2  NOx  PM  Hg 

1  NA  LNB  NA  NA 

2  NA  LNB  NA  NA 

3  NA  LNB  NA  NA 

4  NA  LNB SOFA  NA  NA  

LNB SOFA – Low NOx burners – Separated overfire air 

NA – Not Applicable  

Outlook:In2015,thedepletionoftheCompany’sexistingcoalinventoryattheSundtGenerationStationandlownaturalgaspricessupportedthepermanenttransitionofSundtUnit4fromcoaltonaturalgastwoandonehalfyearsaheadoftheDecember2017deadlineinitsagreementwiththeEPA.ThistransitiontonaturalgashasreducedTEP’snear‐termfuelsupplycostsforcustomersandmarkstheendofSundt’s27yearsofoperationsoncoal.

H.WilsonSundtGeneratingStation

Page 207: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐207

LunaEnergyFacility

LunaEnergyFacility(“Luna”)isa555MWnaturalgas‐firedpowerplantconsistingofasingle2on1combinedcyclepowerblock.ThepowerblockutilizestwoGE7FAgasturbines,twoheatrecoverysteamgenerators(HRSGs),andaGED11steamturbine.ThefacilityislocatedthreemilesnorthofthetownofDeming,NewMexico.

Ownership:Lunaownershipsharesaredividedbyone‐thirdPNM,one‐thirdTEPandone‐thirdSamchullyCo.Ltd.PNMistheplantoperator.

Units Entered Service 

Planned Retirement 

Power Block 1  2006  Not Planned 

FuelSupply:EachLunaparticipantmanagesitsowngassupply.TEPpurchasesnaturalgasonthespotmarketandthroughhedgingcontractsthatareconsistentwiththeUNSEnergyHedgingpolicy.

PollutionControls:LunaEnergyFacilityisanaturalgas‐firedcombinedcyclecombustionturbinewithdryLNBandSCRforNOxcontrol.Asagreenfieldsite,aPreventionofSignificantDeterioration(PSD)permitwasobtainedpriortoconstruction.APSDpermitrequiresthatBestAvailableControlTechnology(BACT)beappliedforcontrolofSO2andNOx,andthefacilitymustcomplywiththeAcidRainprogramlimitsforSO2andNOx.

Unit  SO2  NOx  PM  Hg 

1  NA  SCR  NA  NA 

2  NA  SCR  NA  NA  SCR – Selective Catalytic Reduction NA – Not Applicable  

Outlook:Luna’sfastrampingcapabilitiesprovideTEPwithlow‐cost,intermediateloadresourcetosupporttheintegrationofrenewables.

TEP184 MW

PNM184 MW

Samchully184 MW

LunaEnergyFacility

Page 208: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐208

GilaRiverGeneratingStation

GilaRiverGeneratingStation(“GilaRiver”)isa2200MWfourblock,2on1naturalgas‐firedcombinedcycleelectricgeneratingstationlocatedthreemilesnorthofthetownofGilaBend,inMaricopaCounty,Arizona.

Ownership:Units1and2areownedbyBealBank,Unit3isowned75%byTEPand25%byUNSE.Unit4waspurchasedin2016bySaltRiverProject.Underthatagreement,SaltRiverProjectwilltakeownershipoftheunitin2017.

Units Capacity (MW) 

Entered Service 

Planned Retirement 

Power Block 1  550  2006  Not Planned 

Power Block 2  550  2006  Not Planned 

Power Block 3  550  2006  Not Planned 

Power Block 4  550  2006  Not Planned 

FuelSupply:EachGilaRiverparticipantmanagesitsowngassupply.TEPandUNSEpurchasesnaturalgasonthespotmarketandthroughhedgingcontractsthatareconsistentwiththeUNSEnergyHedgingpolicy.

PollutionControls:Block  SO2  NOx  PM  Hg 

1  NA  SCR  NA  NA 

2  NA  SCR  NA  NA 

3  NA  SCR  NA  NA 

4  NA  SCR  NA  NA  

SCR – Selective Catalytic Reduction 

NA – Not Applicable 

Outlook:LownaturalgaspricesmakeGilaRiverBlock3oneoflowestcostgenerationassetsforbothTEPandUNSE.GilaRiver’sfastrampingcapabilities,alongwithitsreal‐timeintegrationintoTEP’sbalancingauthority,providebothTEPandUNSElectricwithanidealresourcetosupporttheintegrationoffuturerenewables.

Beal Bank1,100 MW

TEP412 MW

UNSE138 MW

SRP550 MW

GilaRiverGeneratingStation

Page 209: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐209

CombustionTurbines

TheCompanyhas219MWofgasoroilfiredcombustionturbinesforpeakingcapacity.Thiscapacityiscomprisedof6unitsatthreelocations,50MWsplitbetweentwounitsatSundt,94MWsplitbetweenfourunitsatNorthLoop,andone75MWunitatDeMossPetrie.AlllocationsareinoraroundTucsonandarealloperatedfromtheSundtStation.

Ownership:Thecombustionturbinesare100%ownedbyTEP.

Units Capacity (MW) 

Entered Service 

Planned Retirement 

Sundt CT Unit 1  25  1972  2027 

Sundt CT Unit 2  25  1973  2027 

DeMoss Petrie Unit 1 

75 2001 

Not Planned 

North Loop Unit 1  25  1972  2027 

North Loop Unit 2  25  1972  2027 

North Loop Unit 3  23  1972  2027 

North Loop Unit 4 21 

2001 Not 

Planned 

 

FuelSupply:TheCompanypurchasesnaturalgasforitscombustionturbinesonthespotmarket.NatualgasfortheunitsatNorthLoopandDeMossPetrieisdeliveredthroughSouthwestGas.NaturalgasforthetwoSundtturbinesisdeliveredfromTEP’sSundtconnectiontotheKinderMorganpipeline.

NorthLoopGeneratingStation

CombustionTurbines

Page 210: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐210

FuturePlantoMovetoCyclingOperationsTEPiswellonitswaytoachievinga30%renewabletargetby2030.InChapter3ofthisdocument,wediscussthechallengescharacteristicofhighsolarPVpenetration,asitpertainstothesummerpeakdemand.Chapter3dealsprimarilywiththetopicofresourceadequacy;thetaskofsecuringoracquiringresourcestomeetthesummerpeakdemand.Thischapteralsopresentsadiscussionofoperationsandintrahourdispatch.AsTEPmovesforwardtoachievingitsrenewabletarget,theissueofcoalgenerationminimumsandpotentialthermalunitcyclingarises,especiallyonclear‐sky,wintermonths.

Chart38–TypicalWinterLoadandDispatchOperations

Chart38aboveillustratesatypicalwinterday,withadualpeakandaprogressing‘duckcurve’withadeeperbellythroughtheyears.Thetopmostshape(dotted)representsatypical24‐hourwinterretaildemandprojectedfor2030.ThethickblacklinerepresentsretaildemandthatisadjustedforsolarPV(utility‐scaleandDG).Weimmediatelyobservethatthebellyofthe‘Net(with2017solar)’curveisintersectingwiththeaggregatecoalunitminimumgeneration(for2017).ThisisnotyetaproblemasTEPmakessystemsalesthatkeeptotalloadabovethisminimum.

InthisIRP,however,TEPassumesthatitdivestsitselfoftheNavajoandSanJuancoalplants,withSpringervilleandFourCornersremaining.Theminimumcoalgenerationfor2023dropstoapproximately400MWandremainsatthatleveluntil2031.TEPwillcontinuetopushagainstitsgeneratorminimumswithadditionalsolargenerationby2030.TEPisbeginningtoexploresolutionsatitspowerplantsformodificationstogeneratingunitsthatwillallowforlowerminimumsand/orpotentialcyclingcapabilities.Ifaplantiscapableofcyclingduringtheday,largermeasuressuchasseasonalshut‐downsmaybeavoided.

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

MW

Typical Peak Day (Hours)

Net (with 2030 solar) Retail (2030) Net (with 2017 solar)

Net (with 2020 solar) Net (with 2025 solar)

2023 Coal Minimum Generation

2017 Coal Minimum Generation

Page 211: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐211

ExistingRenewableResourcesOverthelastseveralyears,TEPhasconstructedorenteredintopurchasedPPAsforsolarandwindresourcestoproviderenewableenergyforitsserviceterritory.ThisispartofTEP’scommitmenttomeetingtheArizonaRESrequirementofserving15%ofitsretailloadwithrenewableenergyby2025.Table19belowlistsTEP’sexistingsolarandwindrenewableresources.

Table19–TEP’sExistingSolarandWindRenewableResources

Project Name  Owned or PPA  Location  Operator     Completion/Estimated Date  Capacity MWdc 

Fixed Photovoltaic

Springerville  Owned  Springerville, AZ TEP Dec‐2010 6.41

Solon UASTP II  Owned  Tucson, AZ TEP Jan‐2012 5

Gato Montes  PPA  Tucson, AZ Astrosol Jun‐2012 6

Solon Prairie Fire  Owned  Tucson, AZ TEP Oct‐2012 5

TEP Roof tops  Owned  Tucson, AZ TEP Dec‐2012 0.55

Ft Huachuca I  Owned  Sierra Vista, AZ TEP Dec‐2014 17.2

Ft Huachuca II  Owned  Sierra Vista, AZ TEP Jan‐2017 5

   

Single‐Axis Tracking Photovoltaic

Solon UASTP I  Owned  Tucson, AZ TEP Dec‐2010 1.6

E.ON UASTP  Owned  Tucson, AZ TEP Dec‐2010 6.6

FRV Picture Rocks  PPA  Tucson, AZ Macquire Oct‐2012 25

NRG Solar Avra Valley  PPA  Tucson, AZ First Solar Oct‐2012 34.41

E.ON Valencia  PPA  Tucson, AZ Areva Jul‐2013 13.2

Avalon Solar I  PPA  Sahuarita, AZ Avalon Dec‐2014 35

Red Horse Solar  PPA  Willcox, AZ Torch  Sep‐2015 51.25

Avalon Solar II  PPA  Sahuarita, AZ Avalon Feb‐2016 21.53

Cogenera  PPA  Tucson, AZ SunPower Dec‐2015 1.38

Concentrated Photovoltaic

Amonix UASTP II  PPA  Tucson, AZ Amonix Apr‐2011 2

White Mountain  Owned  Springerville, AZ TEP Dec‐2014 10

Concentrated Solar Power

Areva Solar  Owned  Tucson, AZ TEP Dec‐2014 5

Wind

Macho Springs  PPA  Deming, NM Element Power Nov‐2011 50.4

Red Horse Wind  PPA  Willcox, AZ Torch  Sep‐2015 30

 

Notes:    PPA – Purchased Power Agreement ‐ Energy is purchased from a third party provider 

  Fixed PV – Fixed Photovoltaic – Stationary Solar Panel Technology 

  SAT PV – Single Axis Tracking Photovoltaic 

  CPV – Concentrated Photovoltaic 

  Not listed is the Sundt’s Landfill Gas project.  Its capacity is estimates at 4 MW, representative of capacity 

that would have been utilized by Sundt Unit 4 if burning conventional natural gas 

Page 212: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐212

Existing Fixed Axis Solar PV Projects 

SpringervilleSolarTEPcurrentlyhas6.4MWdcofsolarattheSpringervillesite.ThesolarprojectisafixedPVfacilitylocatedonthepropertyoftheSpringervilleGeneratingStation,12milesnorthofSpringerville,Arizona.TEPexpandedits4.6MWsolarfacilityinSpringervilleattheendof2010byaddinganadditional1.8MWsolarfieldadjacenttothecurrentsite.Thecombinedsystemsgenerateenoughelectricitytopowerabout1,350homes.

Picture2‐SpringervilleSolar

Thesystemproducesthemostpowercapacityduringthecoolermonthsoftheyearwhenthesunisnearlatitudeangle.ThesystemoperatesasanunmannedsiteandismonitoredcontinuouslyviaanInternetbasedcommunicationschannel.TheSpringervillelocationhasroomforexpansion.Technologiesofvarioustypesforanyfutureexpansionarebeingconsidered,includingFixedTiltPVandSATPV.TEPwillcontinuetoevaluatethesetechnologiesandtheirrelativeperformanceovertimetoaidinfuturedesignconsiderations.

Page 213: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐213

Solon/TEPUASTPIISOLONIIisa5MWdcfixedPVsystemdesignedandbuiltbySOLONCorporation,andinstalledatUniversityofArizonaScienceandTechnologyPark(UASTP).Thefixedtiltarraysitson34acresandispoweredbytwenty‐onethousandhighefficiencymodules.

Picture3‐SolonIISolar

GatoMontesGatoMontesisa6MWdcPVsystemdesignedandbuiltbyAstroenergy,andinstalledattheUASTP.DukeEnergynowownstheGatoMontessite.ThesolarPVthinfilm,amorphoussilicontechnologyusedinthisprojectisafirstintheDukeEnergyRenewablesFleet.Thistechnologymakesthesolarmodulesextremelythincomparedtootherpolycrystallinemodules.ItbeganoperationinDecember2012andconsistofover48,000panelswhichproducesenoughenergytopowerover1,200homes.DukeEnergysellsitsoutputtoTEPthrougha20‐yearPPA.

Picture4‐GatoMontesSolar

Page 214: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐214

SolonPrairieFirePrairieFireisa5MWdcsolarfacilitylocatedinPimaCountyoffValenciaRoadeastofKolbRoadinTucson.ThePVtechnologyusedisacrystallinefixedsystemmodule.Theplantconsistsof17,604panels.PrairieFirebeganprovidingpowertoTEPcustomersinlateDecember2012.TEPownsandoperatesthissystem,andwillcontinuetomanageoperations,monitoringandmaintenance.

Picture5‐SolonPrairieFireSolar

Page 215: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐215

Ft.Huachuca–PhaseIFortHuachucaPhaseIisownedbyTEP.PhaseIisa17.2MWdcfixedPVsysteminstalledattheFt.HuachucaArmybaseinSierraVista,Arizona.Thefixedtiltarrayissitedon300acresandispoweredby57,600highefficiencymodulesmanufacturedbyBYDCompanyLimited.ThisprojectbeganprovidingpowerinDecemberof2014andisthelargestsinglesiteownedbyTEP.

Picture6‐Ft.HuachucaPhaseI

Ft.HuachucaPhase‐IIPhaseIIisa5MWdcfixedPVsystempoweredby46,480FristSolar107.5Wattmodules.PhaseIIwascommissionedinJanuaryof2017bringingFortHuachuca’stotalsolarplantcapacityto22.6MWdc.

Picture7‐Ft.HuachucaPhaseII

Page 216: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐216

Existing Single Axis Tracking Projects 

CogeneraCogeneraisa1.38MWdcSATsystemthatusestheCogeneraproprietaryDenseCellInterconnecttechnologyof72cellsolarmodules,whichcandeliver15%morepowerthanconventionalsolarmodulescoveringthesamearea.TheCogeneraisinstalledattheUASTPandisownedbyWashingtonGasandElectric.

Picture8‐CogeneraDCITechnology

SolonUASTPIBringingsolarpowertoTucsonresidents,SOLONCorporationdesignedandinstalledthisturnkey,1.6MWsingle‐axistrackingsystemin2010forTEP'sBrightTucsonCommunitySolarProgramattheUASTP.

 Picture9‐SolonUATSPISolar 

Page 217: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐217

E.ONUASTPThis6.6MWsingle‐axistrackingplantislocatedintheSolarZoneattheUASTP.TheprojectrepresentsE.ON’sfirstsolarprojectintheU.S.Theprojectconsistsofover23,000crystallinePVmodulesinstalledonasingle‐axistracker,situatedon37‐acres.TEPpurchasespowergeneratedattheplantthrougha20‐yearPPA.

Picture10‐EONUATSPSolar

PictureRocksThis25MWdcsingle‐axistrackingsystemislocatedona305‐acresiteownedbyTucsonWaterjustwestofTucson.Theprojectdeploysover89,000poly‐crystallinemoduleswhicharemountedonhorizontal‐axistrackersthatrotatewiththesun’spositioninordertooptimizeelectricityproduction.

Picture11‐PictureRocksSolar

Page 218: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐218

E.ONValenciaThe13.2MWdcEONValenciaprojectislocatednearValenciaroadandtheI‐10freewayinTucson,Arizona.E.ONownsthisSATsystemthatutilizesmorethan47,500poly‐crystallinemodules.E.ONsellsitsoutputtoTEPthrougha20‐yearPPA.

Picture12‐EONValenciaSolar

AvalonSolarIandIIAvalonSolarIandAvalonSolarIIareadjacentlylocatedneartheAsarcoLLCMissionMine12milessouthofTucson,ArizonaandbotharesingleaxistrackingPVsystem.AvalonIisa35MWplantandAvalonIIisa21.5MWplant.Theplantsusesimilarsingle‐axis‐trackingtechnologywithAvalonIdeployingover116,000polycrystallinesolarmodulesandAvalonIIover71,000.Combined,theplantsproducejustundera100GWhofenergyorenoughenergytopower12,000homes.BothplantsweredevelopedbyIdahobasedClenera,LLCandconstructedbySwinertonRenewableEnergy.

Picture13‐AvalonSolarI

Page 219: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐219

AvalonSolarIwascommissionedinDecemberof2014andwassoldtoCoronalEnergy.AvalonSolarIIwascommissionedinMarchof2016,andCleneraretainedownership.TEPwillbuypowerfromtheseprojectundera20‐yearPPA.

Picture14‐AvalonSolarII

RedHorseSolarIIAtthisuniquerenewableenergyprojectinWilcox,Arizona,a51.3MWPVsolararrayiscomplementedbya30MWwindfarm.Solarandwindcomponentsarefairlyclosetogether,withthewindturbinesonamountainridgenexttothesolarfield(formoreinformationonthewindfarmpleaseseetheWindAssetssectionbelow).RedHorseIIdeploysover170,000polycrystallinesolarmodulesmountedonasingle‐axis‐trackertomaximizeproduction.TheprojectwasdevelopedbyDEShawandTEPpurchaseselectricitygeneratedfromtheprojectthroughaPPA.

Picture15‐RedHorseII

Page 220: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐220

NRGSolarThe34.4MWdcNRGSolarprojectisaSATPVsystemlocatedon320acresontheLupariFarminAvraValley,Arizonaabout20milesnorthwestofTucson.Thefacilitywillproduceclean,renewableelectricitythatwillbesoldtoTEPundera20‐yearPPA.Atfullcapacity,theAvraValleySolarProjectwillgenerateenoughpowertosupplyapproximately7,300homes.

Picture16‐NRGSolar

RedHorseIISolar

Page 221: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐221

Existing Concentrating PV Projects 

AmonixUASTPIIAmonixUASTPIIisa2MWdcCPVsystemdesignedandbuiltbyAmonix,Inc.,andinstalledattheUASTP.Theprojectconsistsof12acreslinedwith34dual‐axistrackersthatreachupto50feetoffthegroundonpedestalsthattrackthesunhorizontallyandvertically.AmonixwillsellitsoutputtoTEPthrougha20‐yearPPA.

Picture17‐AmonixConcentratingPVSystem

Page 222: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐222

WhiteMountainWhiteMountainSolar,alsolocatedattheSpringervillesite,isacombinationofSingleAxisTrackingCPVandfixedtiltPV.The10MWplantconsistsoftwotypesoftechnology.Aninnovative7.3MWlow‐concentratedPVsingle‐axistrackingsystemusesmultiplemirrorstoreflectandconcentratesunlightontoarowofPVcells.ProducedbySunPower,thisisthethirdarrayofitskindinuseintheUnitedStates.Thesecondsystemincludes2.83MWsofSunPower’sT5rooftoppanelsmountedonaspecializedrackandangledtomaximizeproduction.

Picture18‐SunPowerT5Technology

Picture19‐SunPowerC7Technology 

Existing Concentrating Solar Power Projects 

Page 223: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐223

ArevaSolarArevaSolarisTEP’sfirstuseofsolarthermaltechnologytoaugmentexistingsteamgenerationattheSundtGeneratingStation.NamedtheSundtSolarBoostProject,theprojectisa5MWequivalentrenewableresource.IntegratedwiththeexistingSundtUnit4,theArevaadditionisexpectedtoboostpeakcapacityoftheunitby5MW.

Areva'sCompactLinearFresnelReflectortechnologyusesmirrorstoconcentratesunlighttodirectlycreatesteampower.Ratherthanusingtrough‐ordish‐shapedmirrorscommontootherconcentratingsolarsystems,Areva'stechnologyusesasystemofnearlyflatmirrors,arrangedinlouverlikearraysandmotorizedtotrackthesun,toheatupwaterpassingoverheadthroughalinearabsorber.TheArevasystemalsoisdesignedtoheatwaterdirectly,comparedwithothersystemsthatgeneratesteamindirectlywithheat‐transferfluidssuchasoilormoltensalt.

Picture20‐ArevaSolar–SundtGeneratingStation

Page 224: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐224

Existing Wind Resources 

MachoSpringsMachoSpringsWindFarm,locatedinLunaCounty,NewMexicocommencedoperationinNovember2011.Thewindfarmislocatedapproximately20milesnortheastofDeming,NM,andisownedbyCapitalPower.The50MWwindfarm,consistingof28VestasV100‐1.8MWwindturbines,willgenerateenoughcleanenergytoprovideelectricityformorethan20,000homes.Theprojectissituatedonapproximately1,900acresofprivatelyownedland.Eachofthe28turbinesisinstalledonan80‐meter(264feet)tower,andhasarotordiameterof100‐meters(328feet).TheenergyoutputfromtheprojectiscontractedtoTEPthroughalongtermPPA.Theproject’soutputisdeliveredviaElPasoElectric’sexistingtransmissionlinethatrunsthroughtheprojectarea.

Picture21–MachoSpringsWindFarminNewMexico(50MWProject)

Page 225: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐225

RedHorse2WindProjectTheRedHorseWindprojectisa30‐megawattwindfarmincludingfifteen2MWwindturbinessitedon220acres.Eachturbinestandsmorethan450feethighandisownedbyRedHorse2LLCwhichwasformedbyTorchRenewablesEnergy.Theproject,locatedatAllenFlat,about20mileswestofWilcox,Arizona,achievedcommercialoperationinAugustof2015.TEPbuyspowerfromthisprojectundera20‐yearPPA.

Picture22‐RedHorse2WindProject

Page 226: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐226

Existing Biomass Projects 

SundtBiogasTEPusesmethanegasfromtheLosRealesLandfillinTucsonandpipesit3.5milestoTEP'sSundtGeneratingStationtoco‐firewithpipelinenaturalgasintheUnit4boiler.Methanegasisabyproductofdecayinlandfills,andithasaGlobalWarmingPotentialthatis22timesmorethancarbondioxide.

Picture23–LosRealesLandfill

TheLosRealesLandfillcoversapproximately370acresinTucson,ArizonaandisownedandoperatedbythecityofTucson'sDepartmentofEnvironmentalService.

   

Page 227: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐227

TEP’sEnergyStorageProjectsTheprimaryadvantageofanEnergyStorageSystem,inthecontextofalargeutility,isofteninitsabilitytoveryrapidlychangepoweroutputlevels,muchfasterthantheproportionalgovernorresponserateofanyconventionalthermalgenerationsystem.ThisnaturallyleadstotheusagecasesofanESSbeingcenteredonshorttermbalancing‐typeactivities.AnadditionalstrengthisthatoperatingcostsofanESSaregenerallyfixedandindependentofusage.Incontrast,gasturbinesystemshavealimitednumberofstartandstopcyclesandthereforehaveanappreciablecosttoactivate,andtheyarenotnecessarilyonlinewhenneeded.

Inthespringof2015,TEPissuedarequestforproposalsfordesignandconstructionofautility‐scaleenergystoragesystem.TEPsoughtaprojectpartnertobuildandowna10MWstoragefacilityundera10‐yearagreement.TEPwaslookingforacost‐effective,provenenergystoragesystemthatwouldhelpintegraterenewableenergyintoitselectricgrid.

Figure37–LithiumIonBatteryStoragePlant

Theaggressivenatureofthebiddingcompaniesfarexceededexpectations.InitssolicitationTEPreceivedatotalof21bids;20bidsforbatterytechnologyandonebidforflywheeltechnology.Withinthebatterycategory,thereweresevendifferentbatterytypesproposed.Ultimately,TEPwasabletoselecttwowinningbids.Oneincludinga10MW,LithiumNickel‐Manganese‐Cobaltbattery;andaseparateoneincludinga10MW,LithiumTitanatebatterytogetherwitha2MWsolarfacility.Withtheseprojects,TEPwillbeabletoassesstheoperationalimpactsoftwoofthepredominantLithiumtechnologiesavailabletoday.Bothsystemswerecommissionedduringtheearlymonthsof2017.

Page 228: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐228

DistributedGenerationResourcesDistributedGenerationresourcesaresmall‐scalerenewableresourcessitedoncustomerpremises.TheRenewableEnergyStandardrequiresthataportionofrenewableenergyrequirementsbeobtainedfromresidentialandcommercialDGsystems.TherequiredDGpercentageintheArizonaRESis30%ofthetotalrenewableenergyrequirement.

Bytheendof2016,TEPhadapproximately190MWofrooftopsolarPV.DGisexpectedtosupplyatleast342GWhofenergyin2017.OnlyaverysmallportionofthisgenerationisattributabletotheTEP‐ownedrooftopsolarprogramthatwasinitiatedin2015.

Map19–TEP’sDistributedSolarResourcesSites

Page 229: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐229

DavisMonthanAirForceBaseDistributedGenerationProjectTheFebruary2014completionofa16MWsolaradditionatDavisMonthanAirForceBase(DM)hasexpandedthetotalsolarresourcesforthebaseto21MWsmakingDMthesiteoftheDepartmentofDefense’slargestsolarfacility.The2014additioniscomprisedofover57,000fixedtiltpanelson170acres.OwnedbySunEdison,itiscontractedtosupplytheAirForcebasewithpoweroverthenext25yearsforanexpectedtaxpayersavingsof$500,000peryear.

Picture24–DavisMonthanAirForceBaseDistributedGenerationProject

Page 230: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐230

Transmission 

OverviewTransmissionresourcesareakeyelementinTEP’sresourceportfolio.AdequatetransmissioncapacitymustexisttomeetTEP’sexistingandfutureloadobligations.TEP’sresourceplanningandtransmissionplanninggroupscoordinatetheirplanningeffortstoensureconsistencyindevelopmentofitslong‐termplanningstrategy.Onastatewidebasis,TEPparticipatesintheACC’sBTAwhichproducesawrittendecisionbytheACCregardingtheadequacyoftheexistingandplannedtransmissionfacilitiesinArizonatomeetthepresentandfutureenergyneedsofArizonainareliablemanner.

TEP’sExistingTransmissionResourcesTEP’sexistingtransmissionsystemwasconstructedoverseveraldecadestosupportthedeliveryofthebaseloadcoalgenerationresourcesinnorthernArizonaandNewMexico.Today,TEPownsapproximately473milesof46kVlines,405milesof138kVlines,andisownerandpartownerof1,110milesof345kVlinesand655milesof500kVlines.AsshowninMap20theTucsonserviceterritoryareaisinterconnectedtotheWesternInterconnectionBulkElectricSystem(BES)via345kVinterconnectionsattheSouthLoopandVailsubstations,anda500kVinterconnectionattheTortolitasubstation.ThesethreesubstationsinterconnectanddeliverenergyfromtheEHVtransmissionnetworktothelocalTEP138kVsystem.

Map20‐TEP’sExistingTransmissionResources(includesrightsonothersystems)

Page 231: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐231

PinalCentraltoTortolita500kVTransmissionUpgrade

InNovember2015,TEPenergizeditsnewest500kVtransmissionexpansionprojectthatinterconnectsatthe500kVPinalCentralSwitchyard.ThePinalCentraltoTortolita500kVlineaddsasecondextrahighvoltage(EHV)transmissionconnectionbetweenTucsonandthePaloVerdewholesalepowermarket.ThislinetiesinattheexistingSaltRiverProjectSoutheastValleytransmissionprojectthatextendsfromPaloVerdetoPinalCentralintoTortolita.ThisnewtransmissioninterconnectionimprovesTEP’saccesstoawiderangeofrenewableandwholesalemarketresourceslocatedinthePaloVerdeareawhileimprovingTEP’ssystemreliability.

Map21‐PinalCentral‐Tortolita500kVProject

Page 232: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐232

PinalWesttoSouthUpgradeProjectThePinalWesttoSouth345kVlineisundergoingequipmentreplacementthatwillincreasethethermalratingoftheline.ThisisexpectedtoincreasetheTotalTransferCapabilityoftheline,whichwillallowTEPtoschedulemorepowertotheTEPloadpocketfromremoteresources.

Page 233: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐233

 

CHAPTER 10 

FUTURE RESOURCE REQUIREMENTS 

FutureEnergyEfficiencyAssumptionsTEP'sEEprogramswillcontinuetocomplywiththeArizonaEEStandardthattargetsacumulativeenergysavingsof22%by2020.ForthisIRP,EEismodeledasaresourceandisdispatchedtomeetloadbasedontheEEshapedescribedinChapter5.Theenergysavingsreflectedinourreferencecaseforecastthrough2020,representanestimateoftheenergysavingsneededtomeetthestandard,excludingsavingsassociatedwithprogramcredits37.From2021throughtheendoftheplanningperiod,theestimatedannualsavingsarebasedonanassessmentof“achievablepotential”inenergysavingsfromEEprogramsconductedbyEPRI38.This“achievablepotential”represents“anestimateofsavingsattainablethroughactionsthatencourageadoptionofenergyefficienttechnologies,takingintoconsiderationtechnical,economic,andmarketconstraints39.”Marketconstraintsincludebothmarketacceptancefactorssuchastransactional,informational,behavioral,andfinancialbarriers,aswellasprogramimplementationfactorswhichaccountforrecentutilityexperiencewithEEprograms40.

TEPwillpursuearangeofcost‐effectiveandindustry‐provenprogramstomeetfutureEEtargets.TEP’sproposedEEportfolio,inadditiontomaintainingcompliancewiththeArizonaEEStandard,isalsoexpectedtobecompliantreadyundertheprovisionsoftheCPP.GiventheuncertaintyaroundthestatusoftheCPP,TEPnotesthatEEisaneffectivecompliancetoolundervirtuallyanypolicyaimedatreducingcarbonemissions.Underamass‐basedapproach,EEaidsincompliancebydisplacingactualfossilgenerationandtheassociatedemissions.Underarate‐basedapproach,similartotheCPP,EEmeasuresthatundergoappropriate,Evaluation,MeasurementandVerification(EMV),canbeusedtoreducetheemissionrateofaffectedfossil‐firedgenerators.By2032,thisoffsettofutureretailloadgrowthisexpectedtoreduceTEP’sannualenergyrequirementsbyapproximately1,894GWhandreduceTEP’ssystempeakdemandby318MW.

37ArizonaAdministrativeCode,R14‐2‐2404C.‐G.38U.S.EnergyEfficiencyPotentialThrough2035,ElectricPowerResearchInstitute,datedApril2014.http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=00000000000102547739Ibid,p.v40Ibidp.2‐20

Page 234: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐234

FutureRenewableEnergyAssumptionsIntheCompany’smostrecentgeneralratecaseproceeding,TEPcommittedtodiversifyingitsgenerationresourceportfoliowithagoalofserving30%ofitsretailloadwithcost‐effectiverenewableresources.Thestate’srenewablerequirementremainsat15%by2025,andtheCompanyexpectstoachieve15%bytheendof2020.Asoftheendof2016,theCompanyhasnearly400MWofcombinedutilityscalerenewablegenerationcapacityonitssystem,andsuppliedapproximately10%ofitsretailsaleswithrenewableresources.TheCompanyanticipatesaddingapproximately800MWofrenewableenergycapacityby2030,basedoncurrenttechnologyandcostprojections,inordertoachieveits’desired30%renewabletarget.

TEPrecentlysigneda100MWwindPPAwithNextEraEnergyResources,scheduledforcompletionbyearly2019.TEPisalsoevaluatingresponsesfroma100MWsolarRFP,alsoscheduledforcompletioninearly2019.Immediatelybeyondthesesignificantadditions,TEPexpectstofocusontheintroductionoflargescalestoragefacilitiesandfastresponsethermalgenerationtofacilitatetheadditionofthenexttrancheoflargescalerenewablesystems.

Page 235: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐235

TEP’s2017ReferenceCasePlan–PortfolioEnergyMix

Coal Generation, 

69%Natural Gas, 11%

Market Purchases, 9%

Utility Scale Renewable Resources, 7%

Distributed Generation (DG), 4%

2017 Portfolio Energy Mix

Coal Generation, 

50%Natural Gas, 28%

Market Purchases, 3%

Utility Scale Renewable Resources, 14%

Distributed Generation (DG), 5%

2023 Portfolio Energy Mix

Coal Generation, 

38%

Natural Gas, 26%Market Purchases, 5%

Utility Scale Renewable Resources, 26%

Distributed Generation (DG), 5%

2032 Portfolio Energy Mix

The portfolio energy charts shown above represents the energy resource mix to serve TEP’s retail customers.  Wholesale 

market sales are excluded from these results.  By 2030, TEP’s retail customers will be served from 30% renewables.  This is 

based on a combination of utility‐scale and distributed generation resources. 

Page 236: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐236

TechnologyConsiderationsInordertoachievetheCompany’sstatedgoals,theCompanycontinuestoevaluateonanon‐goingbasis,themostcost‐effectiverenewableenergyoptionscurrentlyavailable.Thisevaluationincludesthemostcurrentmarketcostsofrenewabletechnologysuchaswindandsolar,systemintegrationavailabilityandassociatedtechnologiestofacilitategreaterrenewablepenetration,aswellasexistingandplannedtransmissionavailabilityforregionslocatedoutsidetheCompany’sserviceterritory.Asexpectedwiththecurrenttechnologycostdeclines,currenttaxincentivepolicies,andsolarinsolationvaluesinsouthernArizona,utility‐scalePVsolaristheleastcostresourceonanenergy‐onlybasis,followedcloselybyhigher‐capacitywindresourceslocatedincentraleasternportionsofArizonaandwesternregionofNewMexico.

AlthoughtheCompanyexpectstohaveahigherpercentageofsolarresourceswithinitsserviceterritory,primarilyduetofavorableproductioncurves,lowcosts,andlackofavailabletransmissiontoimportotherresources,thiswillultimatelyresultinoperationalchallengesasdiscussedaboveinChapter3,includingtheCompany’sabilitytomanageitsown“duckcurve”.Theseintegrationissues,includingtheadditionwindresources,willrequirenewtechnologiestomanagethevariabilityoftheseresources.TheCompanyseesthischallengeasanopportunitytobothexploreandutilizenewer,fast‐actingstoragetechnologiestomitigatesystemvariabilityduetotheintermittentnatureoftheseresources.

DiversityofResourcesAstheCompanyhaspreviouslydiscussed,thepotentialimpactongridoperationsduetoincreasedrenewablepenetrationisexpectedtodramaticallyaltertheCompany’straditionalresourceportfolio,requiringgreaterflexibilityandnewerfast‐actinggenerationresources.Inordertominimizetheimpactofvariablegenerationresourcesandtheirimpactonoperations,theCompanymustmaintainamixofvariablerenewablegenerationresources.ThesetechnologieswillfocusonthosetechnologiesreadilyavailabletotheCompanywiththecapabilitytobedeliveredtotheconsumer.

ThismixoftechnologieswillprimarilybelargescalewindresourcesineasternArizonaandwesternNewMexicothatareabletoutilizeexistingtransmissionfacilitiesandcapacity,includingexpectedavailablecapacityfromplannedplantretirements,andmultiplesolarresources.ThesolarresourceswillbeamixoffixedPVandtrackingPV,inthescaleof25‐100MW,whichcanbemoreeasilyinterconnectedwiththeCompany’ssub‐transmissionanddistributionsystems.TheCompanyhaschosennottopursuePVorsolartechnologiesthathaveahighconsumptionofwater,suchasconcentratingsolarthermal.

UtilityScaleProjectOwnershipTEPhashadalong‐standingpolicyofutilityinvestmentinlargescalesolarresources.Thispolicyisbasedontheconceptoftheutilityowningandoperatingutilityscalesolarresourcesinordertoprovideabalanceofcontractedversusownedfacilities,aswellasprovidegreateroperationalflexibilitybyhavingtheabilitytoregulateandcurtailoperationsasnecessary.Historically,theCompanyhasstrivedforapproximately25%owned(solar)facilitiesand75%contractedthroughPPA’s.TheCompanybelievesthisisanappropriatebalancetomaintainsomesystemoperationalcontrolwhileprovidingtheindustryanopportunitytosupportsolardevelopmentinsouthernArizona.

WhiletheCompanyfirmlybelievesitshouldmaintainapercentageofrenewableownership,italsorecognizesthechallengesassociatedwithitsrenewableenergydevelopmenttargets.Aspreviouslynoted,significantintegrationofsolarresourcesintotheCompany’sgenerationportfoliowillcreateaconsiderablymorepronounced“TEPduckcurve”.DuetothesignificantlylowerPPApricesassociatedwithsolarandwind,theconceptofcurtailableresourceswhileensuringthethirdpartyownerremainseconomicallyunharmedisin

Page 237: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐237

manycasesoneoftheleast‐costoptionsformitigatingtheimpactsofexcessivegenerationduringperiodsofhighpenetration.

FutureGridBalancingResourcesAsdescribedinChapter3,itiscriticalforTEPtomaintainadequateresourcesthatcanbalanceloadandgeneration,especiallyasincreaseduseofrenewableenergyleadstogreaterintermittencyofgenerationandgreaterrampingrequirementsofnon‐renewableenergyresources.ThissectionoftheIRPdescribestheadditionofnewgrid‐balancingandload‐levelingresourcesassumedintheReferenceCasePlan.

EnergyStorageInadditiontothe20MWofbatteryESSinstalledin2017,theReferenceCasePlanassumestheimplementationofthreebatteryESSs:oneeachintheyears2019,2021,and2031.Thesystemsin2019and2021wouldeachbe50MWwithastoragecapacityof50MWh.Thesystemin2031wouldbe100MWx100MWh.

Theprimarypurposeofthe2019and2021systemsistofacilitatetheintegrationofmorerenewableenergyintoTEP’sresourcemix.Specifically,thesystemswouldprovideancillarypowerservicessuchasfrequencyresponseandregulationandvoltagesupport,whicharemorechallengingfortraditionalpowersourcestomaintainunderthedemandsofasystemwithhighlevelsofrenewableenergypenetration.Thesystemin2019wouldcorrespondwiththelargestadditionofrenewableenergycapacitytoTEP’ssystemovertheplanningperiod(180MW).Thesystemin2021wouldfurthersupportrenewableenergyintegration(e.g.,asmoreDGcomesonline)whileprovidingmoretimetogainexperiencewithbatteryESSsandforsuchsystemstofurtherdeclineincost.Finally,theseESSswouldprovideenergycapacityvalue.IntheReferenceCasePlan,itisassumedthathalfoftheircapacity(50MW)wouldbeavailableifnecessaryunderpeakdemand.

By2031,substantiallymorerenewableenergyisexpectedtobeonline.Thus,theReferenceCasePlanassumesanotherESS(100MWx100MWh)tobeimplementedbythen.Again,theprimarypurposewouldbetoprovidegrid‐balancingandload‐levelingresources.Itisassumedtheseresourceswouldbeprovidedthroughoutmostoftheyear(e.g.,whenrampingrequirementsarehighinthenon‐summermonths),butthatthissystemwouldprovideprimarilyenergycapacityservicesinthesummer(100MW).

AlthoughtheCompanyhashadconsiderablediscussionregardingthelocationoftheinitialstoragefacilities,andtheappropriatevoltagelevelatwhichtoobtainthemaximumsystembenefits,itwasultimatelydeterminedthattheywouldinterconnectatthedistributionsystemlevel.Therewereadvantagestositingthestoragefacilitiesinsidecompanyownedsubstations,aswellastheR&DadvantagesofsitingoneprojectattheUniversityofArizonaScienceandTechPark.Additionally,beingthefirstoftheirtechnologywithinoursystem,jurisdictionalsitingandpermittingpolicieshadtobedeterminedthroughclosecollaborationwiththeCityofTucsonandPimaCounty.

Page 238: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐238

Inthefuture,thesitingoflargerscalestoragefacilitieswilldependonanumberofcircumstances,including:

Primarypurposeoffacility(distributionortransmissionlevelvoltagesupport,frequencyresponse,generationsmoothingandramping,etc.)

Secondaryandtertiaryancillaryservicesavailablefromfacilityrelativetoitslocation Engineeringstudies Sizeoffacility Interconnectionfeasibility Companyorthird‐partyownedfacility

Althoughanumberofinstabilityissueshavebeenidentifiedasaresultoffuturewindandsolarpenetrationonthegrid,actualtransmissionanddistributionsystemoperationswilldeterminetheactuallocationandtimingofanyplannedstorageadditionstothesystem.

TheCompanyiscloselyfollowingthetechnologyadvancesinlargescaleenergystorage,specificallyasitrelatestothedevelopmentoflarge‐scale(>10MW),longduration(>4hrs.),energystorage.TheCompany’sfirstutilityscalestoragefacilitieshavebeenlithium‐ionbasedchemistry,andthischemistryismakingsignificantadvancestowardslonger‐term,highercapacityenergystorage.Additionally,theCompanyistrackingadvancementsthathavebeenmadeinflow‐basedenergysystems,particularlyVanadium,Iron,Zinc,andRedoxFlowtechnologies.Also,TEPiscloselymonitoringtheprogressofpumpedhydrostorageprojectsintheWest.Althoughthesetechnologiesarestillonthehighendofthecostcurve,theirpotentialtoprovidelongterm,highcapacityenergystoragewithlonglifecyclesholdssignificantpromisefortheutilityindustry.

FastResponseThermalGenerationAsrenewablepenetrationincreases,fastrespondingresourceswillbeneededtosmoothouttheoft‐occurringvariabilityofsolarandwindgenerators.Additionally,acertainlevelofthermalresourceswithmechanicalinertiawillhavetobemaintainedinordertohelpbalancetheelectricsystem.RICEsarefasttorespondtorenewablevariabilitybutcanalsoprovide100%ELCCduringpeakperiods.Theunitsareonlydegradedbyrun‐timehoursandcanwithstandmultiplestart‐upswithinaday.Theunitsarealsocapableofrunningat30%oftheirdesignedcapacity.A10MWunitcanidledownto3MWsandspinorstandreadytoreacttodisturbancesorrenewablegenerationreductions.

Initsfleetofgeneratingresources,TEPhastargetedtwoaginggas‐steamgeneratingunitsforretirementatSundtGeneratingStation.Units1and2areeach81MWunitsthatareincreasinglyrequiringmoreO&Mandcapitalexpenditures.These1960’svintageunitshavehighheatratesandareoftenonlyrunforsummerreliabilitycontingencymitigation.SundtUnits1&2arenotwellsuitedtorespondorparticipateinmitigatingrenewablegeneratorintermittency.TEPperformedaninternalstudytodeterminetheeconomicandoperationalbenefitsofreplacingtheseunits.TherecommendationmadeisthatSundtUnits1and2shouldberetiredin2020and2022respectivelyandreplacedinthoseyearswith100MWsofRICE.

ThestudyshowedthatRICEbetteredeachSundtunitbyaLCOEdifferenceofapproximately$26/MWh.ThecapitalexpendedonRICEovercametheSundtunitsbecauseRICEismoreefficientanditperformsathighercapacityfactors.Asmentionedabove,cyclingRICEhasnoimpactonO&Mandthe3to5minutestarttimesarenotequaledbyanyexistinggeneratorintheTEPfleet.TheRICEunitswillequallyprovidesummerpeakingcapabilitybutmoreimportantly,thesefast,responsiveandefficientunitsareabetterfitwithrenewableenergy.Reliabilityisincreasedaswellbecausetheprobabilityofoutagesisspreadacrossmultipleunits.

Page 239: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐239

DemandResponseTEPcurrentlyimplementsavoluntaryDLCprogramforlargercommercialandindustrialcustomersinTEP’sserviceterritory.Duringpeakhours(lateafternoonandevening)ofthesummermonths,commercialandindustrialloadrepresentsatotalofapproximately22%ofsystemdemand.Controlsforchillers,rooftopACunits,lighting,fans,andotherendusesaremodifiedtoallowforcurtailmentofload,thusreducingpowerdemandfromcustomersatspecifiedtimes.Participatingcustomersvoluntarilyreducetheirelectricityconsumptionduringtimesofpeakelectricitydemandorhighwholesaleelectricityprices(whenalertedbyTEP).Customersarecompensatedwithincentivesfortheirparticipationatnegotiatedlevelsthatwillvarydependingonmultiplefactorsincludingthesizeofthefacility,amountofkWunderloadcontrol,andthefrequencywithwhichtheresourcecanbeutilized.

TheprogramhashadslowergrowththanoriginallyexpectedduetothesmallindustrialbasedcustomerloadinTucson.TEPusesathird‐partyvendortoadministertheDLCprogramandistargetingenrollmentofenoughcustomersby2020toreach42MWofsummerpeakdemandreduction,availableforupto80hoursperyear,withatypicalloadcontroleventlasting3‐4hours.Forplanningpurposes,TEPassumesapproximately4%annualgrowthinDRcapacityafter2020resultingin67MWavailablein2032with2%annualincreaseinfeesneededtoachievethatlevelofgrowth.ThesegrowthassumptionswouldlikelyrequireexpandingDLCbeyondtheCommercialandIndustrialsectors.

ComparingthecostofTEP’scurrentDLCprogramtoshort‐termcapacitymarketprices,TEPdoesnotanticipatethatDRwillbeaneconomicallyfeasibleoptionforshort‐termcapacitypriorto2022,andbeyondthattime,TEPdoesnotprojectasignificantneedforshort‐termcapacity.Therefore,TEPintendstoshifttowarddesigningDLCprogramsthatarecapableofcost‐effectivelyaddressingperiodsofsignificantramping,anticipatedwithhighpenetrationofrenewableresources.

Page 240: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐240

FutureTransmissionTransmissionresourcesareakeyelementinTEP’sresourceportfolio.AdequatetransmissioncapacitymustexisttomeetTEP’sexistingandfutureloadobligations.TEP’sresourceplanningandtransmissionplanninggroupscoordinatetheirplanningeffortstoensureconsistencyindevelopmentofitslong‐termplanningstrategy.Onastatewidebasis,TEPparticipatesintheACC’sBTAtodevelopatransmissionplanthatensuresthatArizona’stransmissionorganizationsarecoordinatedintheireffortstomaintainsystemadequacyandreliability.

Ten‐YearTransmissionPlanOnanannualbasis,TEPdevelopsandsubmitstotheCommissionatenyeartransmissionplanforitsEHVandlocaltransmissionnetworks.ThisplanreflectsplannedandconceptualprojectsontheEHVtransmissionnetworkusedtobringpowerfromremoteresourcesintotheTucsonloadpocketandthelocal138kVlocalnetworkusedtodeliverpowertothelocaldistributionsubstations.TEP’sEHVand138kVtransmissionsystemisplannedtomeetperformancerequirementsoftheNERCTransmissionSystemPlanningPerformanceRequirements(TPL‐001‐4)standardandtheWECCTransmissionSystemPlanningPerformance(TPL‐001‐WECC‐CRT‐3.1)criteria.Thisplanincludesneworreconductoredtransmissionprojects,transformercapacityupgrades,andreactivepowercompensationfacilityadditionsat115kVorabove.ThisplanensuresthatTEPhassufficientloadservingcapabilityandTotalTransferCapabilitytoprovideservicetoitscustomersundernormalconditionsandfollowingoutagesasspecifiedintheNERCstandardsandWECCcriteria.

TEP’s2016tenyeartransmissionplanincludedthefollowing:

1plannedEHVtransmissionlineproject 7conceptualEHVtransmissionlineprojects 0EHVplannedorconceptualEHVreactivecompensationprojects 13planned138kVtransmissionlineprojects 5conceptual138kVtransmissionlineprojects 4planned138kVreactivecompensationprojects 0conceptual138kVreactivecompensationprojects

TransmissionSubstationReconfigurationProjectsToimprovesystemreliabilityandmaintainabilityofthetransmissionsystemandmeetnewrequirementsoftheNERCPlanningStandards,TEPisconvertingfoursubstationsfromaringbustoabreaker‐and‐a‐halfconfiguration.TheGreenlee(PhilYoung)andSouthLoop345kVsubstationconversionswilltakeplacein2018.TheIrvingtonandDeMossPetrie138kVconversionswilltakeplacein2020and2021,respectively.

ConceptualFutureLocalArea345kVEHVTransmissionProjectsTheIrvington‐Vail,Irvington‐SouthLoop345kVprojectsaretwoconceptualprojectsthatwereanalyzedaspossiblelongtermtransmissionscenariostoimprovelocalareatransmissioncapacity.ThesearetwophaseprojectsthatarepartofalargerEHVreach‐instrategytoservethegrowingloadinTucsonwithoutrequiringEHVlinesacrossthecentralmetroarea.Inaddition,theseprojectsarecoordinatedwiththepotentialbuildoutoflocalgenerationresourcesatSundtGeneratingStation.InPhase1,anew26mile345kVlinewouldbeconstructedbetweentheIrvingtonandSouthLoopSubstations.Phase2ofthisprojectwouldcompleteanew10mile345kVlineinterconnectingtheIrvingtonandVailSubstations.Phase1wouldbeexpectedtoprecedePhase2byseveralyears.NewPhase1facilitieswouldincludea345kVterminationatVailanda345/138kVsubstationatIrvington.

Page 241: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐241

Map22–LocalAreaConceptual345kVEHVProjects

TransmissionResourcesNeededforNewGeneratingResourcesAdditionaltransmissionresourceswillbeneededforspecificgenerationinterconnections.Forpurposesofthisresourceplan,theresourceplanninggroupdevelopedasetoftransmissioncostassumptionsbasedonthelistofpotentialgenerationresources.Thesegenerationresourceoptionsincludetheadditionalcostsassociatedwithanytransmissionimprovementsthatwouldberequiredtoconnecttheresourcestothetransmissionsystem.

Forexample,someofthelargerbaseloadresourceoptionsareexpectedtobeconstructedfarfromtheTEPserviceterritoryandwouldrequiresignificanttransmissioninfrastructureimprovementswiththeconstructionofthegenerationfacility.SmallergenerationfacilitiessuchasgasturbineswouldlikelybeconstructedwithintheTucsonmetroareaandwouldrequireamuchsmallerinterconnectioninvestment.Finally,inadditiontoconstructioncapital,theresourceplanalsoincludesthecostsoftheon‐goingO&Mthatisrequiredtomaintainthesetransmissionfacilities.

Page 242: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2
Page 243: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐243

 

CHAPTER 11 

ALTERNATIVE FUTURE SCENARIOS AND FORECAST SENSITIVITIES 

Modelingtheperformanceofaresourceportfolioinvolvesmakingassumptionsaboutfutureconditionssuchaseconomicgrowth,fuelandwholesalepowermarkets,regulatoryconditions(e.g.emissionprices),andthepaceoftechnologicaldevelopment.TEPseekstoidentifyareferencecaseportfoliothatprovidessolidperformanceundertheassumptionsselectedwhilemaintainingoptionalitytomakecourseadjustmentsinresponsetoactualemergingconditions.Duetotheinherentuncertaintyaboutthesefutureassumptions,itisnecessarytotesttheperformanceofeachresourceportfolioagainstarangeoffutureconditionstobetterassesswhetheraportfolioisrobustundervaryingconditions.Becausecertainmarketconditionsdonotmoveindependentlyofeachother,alternativefuturescenariosmustbeidentifiedthatcapturearangeoffutureconditions,yetrepresentplausibleoutcomesintermsoftherelativemovementofdifferentmarketforces.

PACEAlternativeFutureScenariosTEPhiredPACEtodevelopabasecasesetofassumptionsandtwoalternativefuturescenariosformodelingtheperformanceofeachresourceportfolio.Thesethreefuturestatesoftheworldarecharacterizedbydiscretescenarioswithvaryingeconomicdriversthatrepresentthreeseparateforecastsofforwardmarketconditions(SeeAppendixA).

Thesescenariosaredefinedas:

1. BaseCaseScenario2. HighTechnologyScenario3. HighEconomyScenario

TheBaseCaseScenariofeaturesexistingregulations,graduallyrisingmid‐termgasprices(inrealterms),continuingtechnologicalgrowth,lowloadgrowthandgenerallymoderatemarketoutcomes.Powermarketparticipantsareabletoadaptandadjustinatimelymannertochangingmarketforces.

TheHighTechnologyScenarioischaracterizedbysignificantadvancesinenergystoragetechnology,renewableenergydeployment,emissionsreductionandCO2removaltechnology,highefficiencynaturalgas‐firedgeneration,andalsonaturalgasextractionproductivityimprovements.Theseconditionstendtosubduefuelprices,powerpricesandcapitalcosts,andputpressureoncoalplanteconomics,resultinginadditionalretirements.However,therearealsosignificantdevelopmentsintechnologiesthatimproveEE,whichhelpstomitigateloadgrowththatmightotherwisebeexpectedina“hightechnology”scenariowithrobusteconomicgrowth.

TheHighEconomyScenarioischaracterizedbyarobustandgrowingU.S.economythatkeepsupwardpressureonallofthemajormarketoutcomecategories,includingloadgrowth,fuelcosts,powerprices,andcapitalcosts.Thisgrowthisintheabsenceofamajortechnologicalbreakthrough.Existinggenerationresourcesareneededtomaintainthiseconomicexpansion,limitingthenumberofretirementswhileacceleratingthenumberofcapacityadditions.Whilethisscenariosharesmanyoftheattributesoftheprevious“HighTechnology”scenario,thepaceoftechnologicalinnovationisnotasdynamicandthereforebeneficialtokeepingpricesandcostsincheck.

Page 244: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐244

UndertheHighTechnologyandHighEconomyScenarios,keymarketindicessuchasfuelprices,emissionprices,andretirementsmoveinoppositedirectionsrelativetothebasecase,therebyprovidingtherangeofoutcomesdesiredforportfoliomodeling.

Thetablebelowrepresentstrendsforeachvariableinthe“BaseCaseScenario”andthedirectionalshiftintrendrelativetothebasecaseoutlookin“L”,“H”,and“M”underthe“HighEconomyScenario”andthe“HighTechnologyScenario”.The“L”symbolrepresentsadeclineorareductionintrendcomparedtothebasecaseprojection,whereasthe“H”symbolrepresentsanincreaseorariserelativetothebasecaseprojectionforthecorrespondingperiod.Finally,the“M”symbolrepresentsidenticalmovementtothebasecaseoraconvergencetothebasecaseforthespecificperiodiftheprevioustrendhascausedthevariabletogoaboveorbelowthebasecase.

Table20–SummaryofPACE’sKeyPlanningDriversScenarios

Key Planning  Base Case Scenario  High Economy Scenario   High Technology Scenario  

Drivers  Base Case Natural Gas Pricing  High Natural Gas Pricing  Low Natural Gas Pricing 

Planning Horizon Short‐Term 

Mid‐Term 

Long‐ Term 

Short‐Term 

Mid‐Term 

Long‐Term 

Short‐Term 

Mid‐Term 

Long‐Term 

Natural Gas Prices  B Upward Trend 

Level  Trend 

B  H  M  B  L  L 

Coal Prices  B Upward Trend 

Upward Trend 

B  H  H  B  L  L 

Load Growth  B Level Trend 

Upward Trend 

B  H  M  B  L**  L** 

CO2 Compliance Prices  B Upward Trend 

Upward Trend 

B  H  H  B  L  L 

Wholesale Power Prices  B Upward Trend 

Level  Trend 

B  H  H  B  L  L 

Capital Costs  B Upward Trend* 

Upward Trend* 

B  H  H  B  L  L 

Coal Plant Retirements  B Upward Trend 

Upward Trend 

B  L  M  B  H  M 

Resource Additions  B Upward Trend 

Upward Trend 

B  H  M  B  H  M 

Notes: 

All scenarios are similar to the Base Case (B) in the short‐term, then move low (L), high (H), or moderate (M) relative to the base case. 

Planning Horizon: Short‐Term = 2016‐2018, Mid‐Term = 2019‐2025, Long‐Term = 2026‐2040 

*Certain renewable technologies are on a downward capital cost trend as the technologies continue to mature 

**Slightly lower 

Page 245: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐245

NaturalGasPricesChart39showstheHenryHubnaturalgaspriceassumptionsforthethreePACEscenarios.

Chart39‐PermianBasinNaturalGasPriceSensitivities

$0.00

$2.00

$4.00

$6.00

$8.00

$10.00

$12.00

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

Nominal $/m

mBtu

Baseline High Technology High Economy

Page 246: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐246

CoalPricesTEPcurrentlyhasownershipsharesinfourcoal‐firedpowerplantsinArizonaandNewMexico,mostofwhichareunderlong‐termcontractsforcoalsupply.

SanJuan:Theplantisamine‐mouthfacilitythatreceivescoalfromtheSanJuanmine.Ithasrecentlysignedashort‐termcontractthroughJuly2022.

Springerville:TheplanthasaccesstolocalcoalfromtheElSegundomineinNewMexicoviaraildeliveries.SpringervillecanburnbothWesternsubbituminouscoalaswellascoalsourcedfromPowderRiverBasin.

Navajo:TheplantreceivescoalfromtheKayentamine,located80milessouthoftheplant,viaadedicatedrailline.TEPisunderalong‐termcoalsupplyagreementthrough2030.

FourCorners:TheFourCornersPowerplantissourcedfromtheNavajoCoalmine,whichismine‐mouthfacility,operatedbytheNavajoTransitionalEnergyCompany.TheFourCorners’coalsupplyagreementrunsthroughJune2031.TEP’sassumptionsforcoalpricesarebasedoncontractindicesandescalatorsthataredrivenbythePACEcoalmarketoutlooktoestablishcoalpriceprojectionsfortheTEPfleet.Chart40reflectstheTEPweightedaveragecoalpricingforthethreescenarios.

Chart40–TEPCoalPriceAssumptions

$0.00

$0.50

$1.00

$1.50

$2.00

$2.50

$3.00

$3.50

$4.00

$4.50

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

Nominal $/m

mBtu

Baseline High Technology High Economy

Page 247: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐247

CapitalCostsThecapitalcostfornewresourcesarebasedontheLazard’sLevelizedCostofEnergyAnalysisv.10.0,whichpresentscostsin2016dollars.FuturenominalcostsincludeaninflationadjustmentaswellasinnovationadjustmentdevelopedbyPACEtoreflectthatthatinstalledcostsofcertaintechnologiesareexpectedtodecreaseasthetechnologyitselfmaturesinadditiontoimprovementsinmanufacturinganddeliveryprocessesandsupplychainefficiencies.Chart41belowpresentsthecapitalcostassumptionsforthetechnologiesrepresentingthemajorityoffutureresourceadditionsforeachofthethreescenarios.

Chart41–CapitalCostAssumptions,SolarTechnology

$0

$200

$400

$600

$800

$1,000

$1,200

$1,400

$1,600

$1,800

2017 2020 2023 2026 2029 2032

Installed Cost, $/kW

Solar Fixed PV

Base Case High Economy High Technology

$0

$200

$400

$600

$800

$1,000

$1,200

$1,400

$1,600

$1,800

$2,000

2017 2020 2023 2026 2029 2032

Installed Cost, $/kW

Solar Single Axis Tracking

Base Case High Economy High Technology

Page 248: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐248

Chart42–CapitalCostAssumptions,Wind

Chart43–CapitalCostAssumptions,NaturalGasTechnology

$0

$500

$1,000

$1,500

$2,000

$2,500

2017 2020 2023 2026 2029 2032Installed Cost, $/kW

Wind Resources

Base Case High Economy High Technology

$0

$500

$1,000

$1,500

$2,000

2017 2020 2023 2026 2029 2032

Installed Cost, $/kW

Natural Gas Combined Cycle

Base Case High Economy High Technology

$0

$500

$1,000

$1,500

$2,000

2017 2020 2023 2026 2029 2032

Installed Cost, $/kW

Reciprocating Engines

Base Case High Economy High Technology

Page 249: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐249

PaloVerde(7x24)MarketPricesChart44showsthePaloVerdemarketpriceassumptionsforthethreePACEscenarios.

Chart44‐PaloVerde(7x24)MarketPriceSensitivities

 

$0.00

$10.00

$20.00

$30.00

$40.00

$50.00

$60.00

$70.00

$80.00

$90.00

2016 2018 2020 2022 2024 2026 2028 2030 2032 2034

Nominal $/m

mBtu

Baseline High Technology High Economy

Page 250: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐250

LoadGrowthScenariosDuetotheneedforcomparabilitybetweenalternativeportfolios,thebasecaseloadassumptionwillbeusedforallalternativeportfolios.VaryingassumptionsonloadgrowthisanalyzedagainsttheReferenceCasePlanportfolioonly.The2017ReferenceCasePlanprojectsTEPpeakdemandgrowingapproximately0.7%peryearbetween2020and2030.Thischangeingrowthishighlyinfluencedbytheassumptionofasignificantminingexpansionoccurringby2022.Otherthanthisexpansion,TEPdoesn’tforecastanysignificantincreaseinloadfromTEP’slargeindustrialandminingcustomers.The2017ReferenceCasePlanalsoshowsasteadydeclineinfirmwholesaleobligationsascurrentcontractsexpire.Fortheloadgrowthscenarios,thesebasecaseconditionswillbemodifiedtocreateaHighLoadandLowLoadscenarios.Theloadgrowthscenariosaredescribedbelow.ResultsofthisscenarioanalysisalongwithchangesthatwouldberequiredintheReferenceCasePlanaresummarizedinChapter12.

Page 251: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐251

HighLoadScenarioForpurposesoftestingtheReferenceCaseportfolioagainstascenariosinwhichenergyuseanddemandaregreaterthaninthebasecase,TEPassumedacontinuationoffirmwholesalecontractsatlevelsconsistentthoseinthenearterm.Underbasecaseload,existingfirmwholesaleobligationsaremodeledaccordingtotheircontracttermsandaredroppeduponthecurrentcontractexpiration.Itislikelythatcertaincontractswillbeextendedornewlong‐termwholesalecontractswillbeenteredinto.Table21representsthefirmwholesaleobligationsundertheHighLoadScenario.

Table21–HighLoadFirmWholesaleObligations,SystemPeakDemand(MW)

Demand MW  2017  2018  2019  2020  2021  2022  2023  2024  2025  2026  2027  2028  2029  2030  2031  2032 

Base Case  Firm Wholesale Demand  223  158  158  154  154  154  129  129  44  44  44  44  44  44  44  44 

Reserve Margin, %  21%  15%  15%  15%  15%  15%  15%  15%  19%  20%  20%  21%  18%  18%  17%  17% 

                                 

High Load Case                                 

Firm Wholesale Demand  223  158  158  154  154  154  160  160  160  160  160  160  160  160  160  160 

Reserve Margin, %  21%  15%  15%  15%  15%  15%  15%  15%  16%  16%  17%  15%  16%  16%  15%  15% 

LowLoadScenarioForpurposesoftestingtheReferenceCaseportfolioagainstascenarioinwhichenergyuseanddemandarelowerthaninthebasecase,TEPassumesnosignificantnewlargecustomerorminingexpansionsoccurwithintheplanninghorizon.Underthisassumption,thereisan80MWreductioninpeakloadbeginningin2022.

Page 252: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐252

Fuel, Market and Demand Risk Analysis  

TEPdevelopedexplicitmarketriskanalyticsforeachportfoliothroughtheuseofcomputersimulationanalysisusingAuroraXMP41.Specificallyastochasticbaseddispatchsimulationwasusedtodevelopaviewonfuturetrendsrelatedtofuelprices42,wholesalemarketprices,andretaildemand.Theresultsofthismodelingwasemployedtoquantifytheriskofuncertaintyandevaluatethecostperformanceofeachportfolio.Thistypeofanalysisensuresthattheselectedportfolionotonlyhasthelowestexpectedcost,butisalsorobustenoughtoperformwellagainstawiderangeofpossibleloadandmarketconditions.

AspartoftheCompany’s2017resourceplan,TEPconductedriskanalysisaroundthefollowingkeyvariables:

NaturalGasPrices

WholesaleMarketPrices

RetailLoadandDemand

DeliveredCoalPrices

41AURORAxmpisastochasticbaseddispatchsimulationmodelusedforresourceplanningproductioncostmodeling.AdditionalinformationaboutAURORAxmpcanbefoundathttp://epis.com/42Bothnaturalgasandcoal.

Page 253: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐253

PermianNaturalGasPricesAspartof2017IRPanalysis,TEPranonehundredrisksimulationstoquantifytheriskofuncertaintyrelatedtoPermiannaturalgasprices.Chart43belowdetailsPACEGlobalBaseCase(CleanPowerPlan)Scenarioandthenaturalgaspricesimulationsagainstwhichtheportfolioswereevaluated.

Chart45‐PermianBasinNaturalGasPriceIterations($/mmBtu)

$0.00

$2.00

$4.00

$6.00

$8.00

$10.00

$12.00

$14.00

$16.00

Jan‐16 Jan‐18 Jan‐20 Jan‐22 Jan‐24 Jan‐26 Jan‐28 Jan‐30 Jan‐32 Jan‐34 Jan‐36

$/m

mBtu

Page 254: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐254

PermianNaturalGasPriceDistributionsChart46showstheexpectedpricedistributionsfornaturalgassourcedfromthePermianBasin.ThesedistributionsarebasedonthestochasticdatasimulationsshowninChart45shownabove.

Chart46‐PermianBasinNaturalGasPriceDistributions($/mmBtu)

 $‐

 $2.00

 $4.00

 $6.00

 $8.00

 $10.00

 $12.00

Jan‐16 Jan‐18 Jan‐20 Jan‐22 Jan‐24 Jan‐26 Jan‐28 Jan‐30 Jan‐32 Jan‐34 Jan‐36

$/m

mBtu

95% Percentile 75% Percentile 50% Percentile 25% Percentile 5% Percentile

Page 255: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐255

PaloVerde(7x24)WholesalePowerPricesAspartofthe2017IRPanalysis,TEPranonehundredrisksimulationstoquantifytheriskofuncertaintyrelatedtowholesalepowerprices.Chart47belowdetailsPACEGlobalBaseCase(CleanPowerPlan)Scenarioandthewholesalepowerpricesimulationsagainstwhichtheportfoliowereevaluated.

Chart47–PaloVerdeWholesalePowerPriceIterations($/MWh)

$0.00

$20.00

$40.00

$60.00

$80.00

$100.00

$120.00

$140.00

Jan‐16 Jan‐18 Jan‐20 Jan‐22 Jan‐24 Jan‐26 Jan‐28 Jan‐30 Jan‐32 Jan‐34 Jan‐36

$/M

Wh

Page 256: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐256

PaloVerde(7x24)MarketPriceDistributionsChart48showstheexpectedpricedistributionsforwholesalepowersourcedfromthePaloVerdemarket.ThesedistributionsarebasedonthestochasticdatasimulationsshowninChart47shownabove.

Chart48‐PaloVerde(7x24)MarketPriceDistributions

 $‐

 $20.00

 $40.00

 $60.00

 $80.00

 $100.00

 $120.00

Jan‐16 Jan‐18 Jan‐20 Jan‐22 Jan‐24 Jan‐26 Jan‐28 Jan‐30 Jan‐32 Jan‐34 Jan‐36

$/M

Wh

95% Percentile 75% Percentile 50% Percentile 25% Percentile 5% Percentile

Page 257: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐257

LoadVariabilityandRiskAsoutlinedintheprevioussections,loadisalsovariedwithineachofthe100simulationsinaccordancewiththemovementofnaturalgasandwholesalepowerprices.Inthisway,awidevarietyofpossibleloadgrowthscenariosarealsoconsideredinthesimulationanalysisandarethereforeinherentintheresultingriskprofiles.

Chart49‐TEPPeakRetailDemand(MW)

 ‐

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

2016 2019 2022 2025 2028 2031 2034

Peak Dem

and, M

W

Page 258: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2
Page 259: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐259

 

CHAPTER 12 

REFERENCE CASE PLAN 

TEP’s2017IRPReferenceCasePlancontinuestheCompany’slong‐termstrategyofresourcediversificationbytakingadvantageofnear‐termopportunitiestoreduceitshighercostcoalcapacity,expandingthedeploymentofrenewableenergyresourceswithatargetofserving30%ofitsretailloadusingrenewableenergyby2030,continuingdevelopmentandimplementationofcost‐effectiveEEmeasures,andaddinghigh‐efficiencynaturalgasresources.

ResourceDiversificationInSeptember2016,TEPacquiredtheremaining50.5%shareofSpringervilleUnit1,bringingitstotalcapacityatSpringervilleto793MWwithfullownershipandoperationalcontrolofUnits1and2.Aspartofthe2017IRPReferenceCasePlan,TEPplanstomakethefollowingcoalcapacityreductionsoverthenextfiveyears.By2018TEPwillreduceitscoalcapacityattheSanJuanGenerationStationfrom340MWto170MWwiththeretirementofSanJuanUnit2.TEPwillfurtherreduceitsoverallcoalcapacityby169MWassumingtheNavajoGeneratingStationceasesoperationattheendof201943.Finally,TEPwillexitSanJuanentirelywhenthecurrentcoalsupplyagreementendsinJuly2022.

The2017ReferenceCasePlanincludestwolargerenewableenergyprojectscomingonlinein2019.Theseprojects,consistingof100MWofwindand80MWACofsolarPV,arecurrentlyinprocurementasPPAs.Furtherrenewableenergyisassumedtobeaddedtothesystembetween2023and2030,consistingofadiversifiedmixofsolarPV(fixedaxisandSAT)andwind.Tosupportthesysteminlightofthishighpenetrationofintermittentrenewableenergy,andtoprovidereplacementcapacityfortheretirementofolder,lessefficientnaturalgassteamunitsatSundt(Units1and2),itisassumedthatTEPinstallsapproximately192MWofnaturalgasfiredRICEsbetween2020and2022.Additionalrenewableenergysupportandotherancillaryservicesaretobeprovidedwithanumberenergystorageprojectsassumedtocomeonlinebetween2019and2021.Thesesystemsareassumedtobe50MWprojectswithastoragedischargecapacityof50MWh.

43 The2019retirementdateisdependentuponreceivinganextensionoftheleaseagreementtoallowforplantdecommissioningpriortoexpirationofthelease.Withoutanextensionofthecurrentlease,plantclosurewouldneedtotakeplaceasearlyasthisyeartoallowfordecommissioningbytheendof2019.

Page 260: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐260

LoadsandResourceAssessment

Chart50–TEP’s2017LoadsandResourceAssessment

0

500

1000

1500

2000

2500

3000

3500

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

MW

Coal Resources Natural Gas Resources Renewable Resources

Demand Response Market Purchases Net Retail, Firm & Reserves

RICE96 MW2020

NGCC412 MW

&RICE

96 MW2022

RICE144 MW2031

30% Renewablesby 2030

Battery Stroage100 MW

2019 to 2021

Battery Stroage100 MW2031

Page 261: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐261

AdditionofResourcestoMeetSystemRequirementsInconsideringfutureresources,theresourceplanningteamevaluatesamixofloadservingandgridbalancingtechnologies.Thismixoftechnologiesincludesbothcommerciallyavailableresourcesanddevelopingtechnologiesthatarelikelytobecometechnicallyviableinthenearfuture.TheIRPprocesstakesahigh‐levelapproachandfocusesonevaluatingresourcetechnologiesrelevanttotheneedsofthesystem,ratherthanfocusingonspecificprojects.Candidateresourceadditionsdesignedtomeetplanningreserverequirementsareidentifiedformodelingandthroughaniterativeprocess,aspecificconfigurationintermsoftechnology,timingandcapacityisarrivedatbasedoncostfactors(capitalexpenseandNetPresentValue[NPV]),reliabilityneeds,andenvironmentalperformance.Thisapproachallowstheresourceplanningteamtodevelopawide‐rangeofscenariosandcontingenciesthatresultinaresourceacquisitionstrategythatcontemplatesfutureuncertainties.

AdditionofLoadServingResourcesToreplacethenear‐termcoalcapacityreductions(508MWbetween2017and2022),TEPplanstoaddapproximately400MWofNGCCcapacityin2022.NGCCisahigh‐efficiencyintermediatetobaseloadresource,andgiventhecurrentoutlookonnaturalgasprices,representsthelowestLCOEamongfully‐dispatchableload‐servingresources.NGCCunitsarealsocapableofload‐followingand,intheproperconfiguration,canprovidefastrampingresponse.

AdditionofGridBalancingandLoadLevelingResourcesAnadditional150MWofRICEcapacityisassumedtocommenceoperationin2031astherenewableenergycapacityincreases,andasoldercombustionturbineandnaturalgassteamunitsareretired,inadditiontotheretirementofFourCorners.Thehighefficiencyoftheseunitscombinedwiththeirmodulararrangementandfaststartandfastrampcapabilitiesmakethemahighly–flexible,costeffectivealternativeforaddressingrenewableintermittencyaswellaspeakcapacity.Inadditiontothe120MWofbatteryESSinstalledby2021,the2017IRPReferenceCasePlanassumestheadditionofenergystoragein2031.Thissystemwouldbe100MWx100MWhandcouldprovideacombinationofancillary,peakcapacityandload‐levelingservices.

ReferenceCasePlanSummaryandTimelineChart51andChart52showtheReferenceCasePlanresourcecapacityadditionsandretirementsbyyear,respectively.Chart51givesanindicationofthesourceofreplacementandmake‐uppowerduetounitretirementsandincreasingload.Figure38detailsthesignificantresourceplanningdecisionsassumedforthe2017IRPReferenceCasePlan.

Page 262: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐262

Chart51‐ReferenceCasePlan‐NewResourceCapacity

Chart52‐ReferenceCasePlan‐ResourceRetirements

 ‐

 200

 400

 600

 800

 1,000

 1,200

 1,400

 1,600

 1,800

 2,000

2017 2020 2023 2026 2029 2032

Resource Capacity, M

W

New Renewable Resources New Demand ResponseNew NGCC Resources New Peaking ResourcesNew Energy Storage Resources New SMR Resources

 ‐

 200

 400

 600

 800

 1,000

 1,200

2017 2020 2023 2026 2029 2032

Resource Capacity, M

W

Coal Resources Natural Gas Resources Combustions Turbines

Page 263: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐263

Figure38–2017IRPReferenceCasePlanResourceTimeline

Formodelingpurposes,the2017IRPReferenceCasePlandoesnotincludeanysignificantnewtransmissionupgradesoverthe15‐yeartimeframe.TheTEPTen‐YearTransmissionPlanonlyincludesone“Planned”project,whichisarelativelysmallprojectanticipatedforconstructionin201844.Several“conceptual”projectswereidentifiedintheplan,however,thetimingoftheseprojectsisexpectedtobedeterminedthroughfuturetransmissionplanningactivities.TEPwillupdatetheseconceptualprojectdescriptionsinfutureIRPfilingsastheyareclarified.

44Hassayampa–PinalWest–projectisa500kVlineloop‐inof3spansorlesstoconnectanexistinglinetotheJojobaSwitchyard‐

Page 264: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐264

ReferenceCasePlanAttributesTheprimaryobjectiveoftheReferenceCasePlanistoprovideaportfolioofresourcesthatreliablymeetsourcustomers’energyneedsatanaffordablerate,whileidentifyingandaddressingpotentialriskstocostandreliability.TEP’s2017ReferenceCasePlanachievesbothoftheseobjectives.Chart53andChart54,belowshowthegrowingdiversityinenergyandpeakcapacity,respectively,overtheplanningperiod.

Chart53‐ReferenceCasePlan,AnnualEnergybyResource

Chart54‐ReferenceCasePlan,TotalCoincidentPeakCapacity

Page 265: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐265

ExistingRenewableIntegrationRequirementsTEP’sReferenceCasePlantargetsserving30%ofitsretailloadusingrenewableresourcesby2030.Theserenewableresourceadditionsresultinasignificantamountofnewintermittentcapacity,whichrequiresacorrespondingincreaseinGridBalancingservicestoprovide“back‐up”capacitywhenthoserenewableresourcesareunavailable.Asameasureoftheabilitytomaintainreliability,Chart57Chart55,belowshowsTEP’sexisting10‐minuterampingcapacityincomparisontotheCompany’sprojectedreserveandrampingrequirements.Chart56detailsTEP’scurrent10‐minuterampingcapacitybyresource.

Chart55–TEP’sExisting10‐MinuteRampingCapacityversusProjectedRequirements

Chart56‐TEP’sExisting10‐MinuteRampingCapacitybyResource

 ‐

 100

 200

 300

 400

 500

 600

 700

2017 2020 2023 2026 2029

Resource Cap

acity, M

W

Contingency Reserve Required

Spinning Reserve Required

Intermittent Renewable Ramping Requirements

Portfolio 10 Minute Ramping Capacity

 ‐

 50

 100

 150

 200

 250

 300

 350

 400

2017 2020 2023 2026 2029

Resource Cap

acity, M

W

Four Corners Navajo San Juan

Springerville Gila River Luna Energy

Sundt Units 1‐4 DMP and North Loop 4

Page 266: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐266

ReferenceCasePlanRenewableIntegrationRequirementsAsshownonChart57andChart58,TEP’sReferenceCasePlanportfolioadditionsofnewreciprocatingenginesandbatterystorageinthe2020timeframewillenabletheCompanytomeetitsneartermandlongerterm10‐minuterampingrequirementstoreliabilityintegratethetargetof30%renewableresourcesby2030.

Chart57–TEP’sReferenceCasePlan10‐MinuteRampingCapacityversusProjectedRequirements

Chart58–TEP’sReferenceCasePlan10‐MinuteRampingCapacitybyResource

 ‐

 100

 200

 300

 400

 500

 600

 700

2017 2020 2023 2026 2029

Resource Cap

acity, M

W

Contingency Reserve Required

Spinning Reserve Required

Intermittent Renewable Ramping Requirements

Portfolio 10 Minute Ramping Capacity

 ‐

 100

 200

 300

 400

 500

 600

2017 2020 2023 2026 2029

Resource Cap

acity, M

W

Four Corners Navajo San Juan

Springerville Gila River Luna Energy

Sundt Units 1‐4 RICE Units DMP and North Loop 4

New Energy Storage Resources New Demand Response New NGCC Resources

Page 267: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐267

CleanPowerPlanComplianceAsdiscussedinChapter3,TEPassumesthatArizonawouldadoptasubcategorizedratebasedapproachforCPPcompliance,whileNewMexicoandtheNavajoNationwouldadoptamass‐basedapproach.Inaddition,duetotheeconomicadvantagesinherentintrading,TEPassumesthatallthreejurisdictionswouldenteranationaltradingpool.Chart59showsTEP’scompliancepositioninArizonaundertheReferenceCasePlan.TEP’ssignificantinvestmentinrenewableenergyresourcesandcontinuedEEdeploymentresultinasurplusofERC’sthatwouldbeavailableforsaleorcouldbebankedforfuturecomplianceperiods.

Chart59‐TEPReferenceCasePlanCPPCompliance,Arizona

Page 268: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐268

Chart60showsTEP’scompliancepositioninNewMexicoandtheNavajoNation,combined.Thesignificantretirementofaffectedcoal‐firedunitsinthesejurisdictionsresultsinasurplusofemissionallowancesduringeachcomplianceperiod.

Chart60‐TEPReferenceCasePlanCPPCompliance,NewMexicoandNavajoNation

 ‐

 2.00

 4.00

 6.00

 8.00

 10.00

 12.00

2022‐2024 2025‐2027 2028‐2029 2030‐2031

TEP Tribal and New Mexico Emission Allowances(million short tons) 

TEP Affected Emissions TEP Allowances

Page 269: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐269

ReferenceCasePlanRiskDashboardWhiletherearemanyriskfactorsdirectlyorindirectlyassociatedwitheachresourceportfolio,theyallstemfromthefactthatoperatingunderafullyintegratedelectricutilitymodelrequiresverylargecapitalinvestmentsthatgenerallyneedtobepaidforovermanyyears.OurgoalistodevelopaReferenceCasePlanthatprovidesoptionalitytomakeadjustmentsshouldtherebeamajorchangeinfuturemarketandregulatoryoutcomes.Still,riskcannotbeeliminate;therefore,keyriskfactorsneedtobeidentifiedandmeasured.

TEPdevelopedaRiskDashboardbelowasameanstobringattentiontotheprimaryriskfactorseffectingfutureresourcedecisions.

CO2Emissions–WhiletheReferenceCasePlanisevaluatedforcomliancewiththeCPPasdiscussedabove,theultimateoutcomeoftheCPPlitigationisuncertain,andthecurrentIRPplanninghorizonextendsbeyondtheCPPimplementationperiod.TEPbelievesthatCO2emissionreductionswilleventuallyberequired,thoughthetimingandmagnitudeofthosereductionsremainsuncertain.TEPbelievesthattheReferenceCasePlanCO2emissionreductions(inexcessof30%by2032)representsabalancedpositionintheeventofafutureCO2emissioncompliancerequirement.

WaterConsumption–Wateravailabilityforpowergenerationisanongoingconcern,especiallyintheDesertSouthwest.Lowsurfacewaterlevelsduetodroughtandchangingweatherpatterssuggestthatalong‐termgoaltoreducesurfacewaterconsumptionisappropriate.Consumptionofgroundwaterismuchmoresite‐specific.TEPbelievesthatthe100%reductioninsurfacewaterconsumptionandnearly30%reductioninwaterconsumptionoverallby2032realizedundertheReferenceCasePlanisasignificantoutcomeintermsofmanagingfuturewatersupplyrisk.

NaturalGasUsage–Overthepastfivedecades,TEP’sresourcemixhasbeendominatedbycoal‐firedgeneration.Whilemakingastrategicefforttodiversifyitsresourceportfolio,whichincludesreplacingcoal‐firedgenerationwithnaturalgasandrenewableresources,theCompanyismindfulofnotgoing“toofar”,thuscreatinganoverrelianceonnaturalgas.TEPbelievestheReferenceCasePlanresourcemixappropriatelymanagestheriskofoverrelianceononeresourcetype.

CapitalExpenditures–Along‐termresouceplanshouldprovidetheoptionalitytomakecoursecorrectionstoaddressuncertainties(marketperformance,technolgydevelopment,regulatorychanges,etc.)andwellasunforeseencircumstances.Thatoptionalitycanbelostduetolarge,near‐termcapitalinvestments.The2017ReferenceCasePlanportfoliostagesmajorcapitalinvestmentsfarilyevenlyoverthe15‐yearplanningperiod.

Page 270: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐270

Chart61–ReferenceCasePlanRiskDashboard

 

16%

26% 26%

29% 30%

34%

0

2,000

4,000

6,000

8,000

10,000

12,000

0%

5%

10%

15%

20%

25%

30%

35%

40%

201720202023202620292032

Tons (000)

CO2 Emission Reductions

 ‐

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

2017 2019 2021 2023 2025 2027 2029 2031

Water Consumption, million gallons

Surface Water Groundwater

 ‐

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

2017 2020 2023 2026 2029 2032

Natural Gas Usage, GWh

Natural Gas/Purchase Power Coal Renewables

$337 

$643 

$1,512 $1,647 

$1,831 

$2,295 

$0

$500

$1,000

$1,500

$2,000

$2,500

2017 2020 2023 2026 2029 2032

Cumulative CapEx, $millions, Nominal

Page 271: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐271

Load Growth Scenario Analysis 

HighLoadScenarioThehighloadgrowthscenarioassumesacontinuationoffirmwholesalecontractsatlevelsconsistentwiththoseinthenearterm.UndertheReferenceCaseload,firmwholesaleobligationsremainsteadythrough2022atjustover150MW,thenbegintodecreaseascurrentcontractsexpire.Thehighloadscenariomaintainsfirmwholesaleobligationsat160MWfrom2023throughtheendoftheplanningperiod,whichresultsinanincreaseinpeakdemandrangingfrom31to116MWcomparedtotheReferenceCasePlan.

TheReferenceCasePlanhasexcessreservebeginningin2025duetothesignificantincreaseinrenewableenergyaswellastherampingresourcesneededwiththathighlevelofrenewablepenetration.Therefore,thecapacityofadditionalresourcesneededunderthehighloadscenariodonotneedtomatchthe116MWincreaseobservedbetweentheReferenceCaseandthehighloadscenarioinordertomaintainanadequatereservemargin.Between36MWand72MWofadditionalcapacitywasdeterminedtobesufficient.ThehighloadscenarioutilizesRICEresourcestofillthisadditionalcapacityneed.Adjustmentstothe2017ReferenceCasePlantomeetthehighloadscenarioarepresentedonFigure39.

Figure39‐HighLoadScenarioAdjustmentstothe2017ReferenceCasePlan

Page 272: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐272

LowLoadScenarioThelowloadgrowthscenarioassumesthatthereisnonewminingexpansionswithintheplanningperiod,whichresultsinadecreaseinpeakdemand,andload,ofapproximately80MWcomparedwiththeReferenceCasePlan,beginningin2022,andextendingthroughtheendoftheplanningperiod.ThetimingofthisdecreasecoincideswithRICEandNGCCresourceadditionsintheReferenceCasePlan.Therefore,decreasingtheamountofadditionalcapacityisalogicalapproachforadjustingtothisdecreaseinload.Giventhenatureofminingload(approximately85%loadfactor),andthefactthattheRICEsareintendedtosupportincreasesinrenewableenergyresources,thelowloadscenarioreducestheamountofadditionalNGCCcapacityneededin2022.Adjustmentstothe2017ReferenceCasePlantomeetthelowloadscenarioarepresentedonFigure40.

Figure40‐LowLoadScenarioAdjustmentstothe2017ReferenceCasePlan

Page 273: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐273

 

CHAPTER 13 

ALTERNATIVE PORTFOLIOS 

ThefollowingsectionspresentadescriptionandtheresultsofalternativeportfoliosanalyzedaspartofthisIRP.Thelistofportfoliosanalyzedispresentedbelow.

EnergyStorageCasePlan SmallNuclearReactorsCasePlan(combinedwithFullCoalRetirement) ExpandedEnergyEfficiencyCasePlan HighSolarCasePlan(substitutedfortheExpandedRenewablesCasePlan)

ThislistofalternativeportfoliosvariesslightlyfromthelistpresentedintheMarch2016PreliminaryIntegratedResourcePlan.HighloadandlowloadgrowthscenarioswereanalyzedinthecontextoftheReferenceCasePlaninChapter12,whereadjustmentsweremadetotheportfoliotoaccountforthosedifferingloadassumptions.TheFullCoalRetirementCasePlanwascombinedwiththeSmallNuclearReactorCaseplanbasedontheviewthatcoalandnuclearresourcesprovidethesameservice(fullydispatchableloadservingresources),andasameansofmaintainingsomeresourcediversityintheabsenceofcoal‐firedgeneration.AMarket‐BasedReferenceCasePlanwasnotanalyzedbecauseundertheReferenceCasePlan,TEPhascapacityinexcessofthe15%reservemargininallyearsbeyondthefiveyearswheremarketpurchasescanbeincludedintheportfolio.TheExpandedRenewablesCasePlanwassubstitutedwithaHighSolarCasePlanastheReferenceCasePlanportfolioalreadyhadhighrenewableenergyassumptions.TheHighSolarCasePlanallowsforanalyzingtheeffectsoflowerdiversityintherenewableenergymix.

Page 274: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐274

OverviewoftheEnergyStoragePortfolioIntheExpandedEnergyStoragePortfolio,the100MWx100MWhESSimplementedin2031intheReferenceCasePlanisreplacedwithapairof“bulkenergy”storagesystemsimplementedin2022and2025.Eachbulksystemisassumedtobe100MWx400MWh.UnliketheESSsincludedintheReferenceCasePlan,whichareintendedtoprovideancillaryservices,thebulkESSsareintendedtoprovidebothancillaryandenergyservices,suchascapacity,levelizationofthermal‐basedelectricitygeneration,andfollowingofload.

Bulkstoragesystemscanalsoreduceoperatingcostsbystoringenergywhenitisrelativelyinexpensivetogenerateandreleasingitwhenitwouldotherwisebemostexpensivetogenerate,andsucharbitrageopportunitiesareexpectedtobecomemorecommonintheSouthwestastheincreaseduseofrenewableenergycreatesgreaterintra‐daywholesaleelectricitypricevariations.

ThefirstbulkESSinthisportfolioisassumedtobeoperatingby2022.ThiscoincideswiththeexpectedtimingofgreaterarbitrageopportunitiesandthefullretirementoftheSanJuanGeneratingStation,whichwouldhavetheeffectofreducingemissionsassociatedwithrechargingtheESS.ThisESSwouldalsoobviatetheneedforthefiveRICEsassumedtocomeonlinein2022intheReferenceCasePlan,whicharethereforeremovedfromtheEnergyStoragePortfolio.

ThesecondbulkESSisassumedtobeoperatingby2025,whichcoincideswiththehighestyearofassumedrenewableenergyexpansionafter2019.ImplementingthissecondESSin2025,asopposedtoimplementingbothin2022,alsoprovidesmoretimeforESSstoimproveintermsofperformanceandcosts.Infact,analysesbyLazardandDNVGLsuggestthatby2025thecostoflithium‐ionbulkESSswillbeapproximatelythesameaspumpedhydroenergystorage,whichmayalsobeanenergystorageoptionaroundthattime.Finally,a2025implementationdatewouldallowthreecombustionturbinesatNorthLoopandtwoatSundttoretirethreeyearsearlierthanplannedintheReferenceCasePlan.

BothbulkESSsinthisportfolioaremodeledaslithium‐ionbatterytechnology,partlybecauseoftheirrapidlydecliningcostsandpartlybecauseofthegreaterflexibilitytheyprovideovermoretraditionalformsofenergystorageintermsofmodularity,scaling,siting,andmultipleuses–e.g.energyservices,ancillaryservices,andtransmissionanddistributioncostdeferral.However,theresultsoftheanalysiswouldlikelyholdforotherformsofenergystoragesuchaspumpedhydro.ExpandedEnergyStoragePortfolioadjustmentstotheReferenceCasePlanarepresentedonFigure41.

Page 275: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐275

Figure41‐ExpandedEnergyStorageAdjustmentstotheReferenceCasePlan

Page 276: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐276

OverviewoftheSMR‐FullCoalRetirementPortfolioInDecisionNo.75068,asaresultofthe2014IRP,theACCrequestedthatload‐servingentitiesstudyascenariothatincludestheadditionofSMRs.AsorderedbytheACCinthe2012IRP,TEPgeneratedascenariocalled“FullCoalRetirementCase”.Thiscasewasstudiedinthe2014IRPinanticipationofpotentialalternativeoutcomesresultingfromEPARegionalHazemandates.TheCleanPowerPlanfurtherinstigatedareviewofexpandedcoalretirements.

AsTEPwasanalyzinganddesigningeachofthesescenarios,itwasevidentthatanyscenarioinvolvingSMRwouldassumeareplacementofbase‐loadgeneration.Thefullcoalrequirementwouldneedbase‐loadtypereplacement;itonlymadesensetomergethesetwoscenarios.

SmallNuclearReactors–FullCoalRetirementCaseSmallNuclearReactorsareatechnologythatcanbeutilizedtolowerCO2emissions,aswellasotherpollutants,whileprovidingreliable,sustainedandefficientpoweroutput.Inthiscase,TEPstudiedtheimpactofSMRsasaresourcetosupplantretiringbaseloadcoalassets.ThiscasewasdesignedtofullymeettheEEstandardsaswellasexceedtherenewablestandardwiththeTEP30%targetasdescribedthroughoutthisdocument.TheassumptionsintheReferenceCasePlanremain,exceptforthechangesillustratedinFigure42below.InadditiontothecoalunitclosurespresentedintheReferenceCasePlan,thefollowingclosureswerealsoassumed:SpringervilleUnit1in2025,andFourCornersUnits4&5in2028.Replacementcapacityisalsoshowninthefigurebelow‐‐anadditional200MWofRICEand105MWofNGCCisneededin2026.Thestorageprojectassumedfor2031intheReferenceCasePlan,wasadvancedto2028inthisscenario.Theleadtimeforanuclearprojectisover10years,thisscenarioassumesacommissiondatefor500MWsofSMRin2029.

Figure42–SMR&CoalRetirementCaseResourceTimelineforExistingResources

 

Page 277: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐277

OverviewofExpandedEnergyEfficiencyForpurposesofthisportfolio,itisassumedthatTEPrealizesadditionalEEinthetimeperiodfrom2021throughthe2032.ThehigherlevelsofEEassumedunderthisportfolioarebasedonthe“highachievablepotential”estimatedbyEPRI45.Incomparisonwiththe“achievablepotential”assumedintheReferenceCasePlan,inwhichmarketconstraintsincludebothmarketacceptancefactorsaswellasprogramimplementationfactors,the“highachievablepotential”excludesprogramimplementationfactors.

HigherlevelsofenergysavingswillnecessitategreaterinvestmentinDSMprogramactivities.However,itisdifficulttoestimatetheamountofadditionalDSMinvestmentneededtoattainaparticularenergysavingsgoal.Therefore,forthisportfolio,TEPestimatednoannualincrementalDSMprogramcostescalation.Inotherwords,the1st‐year$/MWhcostisthesameintheExpandedEnergyEfficiencyCaseasitisintheReferenceCasePlan.ThislikelyunderestimatesthatcostofachievingthesavingsassumedintheExpandedEnergyEfficiencyCase.

Underthisportfolio,thetotalenergysavingsrealizedbytheCompanyin2032is2,140GWh,comparedwith1,894GWhinthereferencecase(seeChart62).TotalDSMprograminvestmentfortheperiodfrom2021through2032undertheExpandedEnergyEfficiencyportfoliowas$584Mcomparedwith$365Minthereferencecase.Combiningsystemfuelsavingswithadditionalprogramexpenses,theExpandedEnergyEfficiencyportfoliowas$35MnetpresentvaluemoreexpensivethantheReferenceCasePlanovertheplanningperiod.However,forprogramsinthelatterpartoftheplanningperiod,energysavingsextendingbeyondtheplanningperiodarenotcapturedinthenetpresentvaluecalculation.

Theadditionalenergysavingsinthisportfolioalsoprovidesaslightcapacitybenefit,astheaveragereservemarginform2025to2030is19.6%comparedwith18.4%inthereferencecase.However,forpurposesofthisportfolio,nodeferralsinadditionalcapacityorearlierretirementofexistingcapacityweredeemedappropriate.Muchoftheexcessreservemarginisassociatedwitharampupinrenewableenergystartingin2023,incombinationwithfirmresourcesneededtobalancetheintermittencyofthatrenewableenergy.

Chart62‐ProjectedEnergySavings(GWh)

45 U.S.EnergyEfficiencyPotentialThrough2035,ElectricPowerResearchInstitute,datedApril2014.http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001025477

0

500

1,000

1,500

2,000

2,500

2016 2019 2022 2025 2028 2031

GWh

Reference Case This Case

Page 278: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐278

DuetotheuncertaintyinestimatingtheDSMprograminvestmentneededtoachievetheenergysavingsprojectedintheExpandedEnergyEfficiencyportfolio,itmaybeinformativetodividethefuelsavingsresultingfromtheexpandedenergysavings(basedonEPRI’s“highachievablepotential”)bythetotalincrementalenergysavings,withoutconsideringanyincrementalDSMprogramcosts.Thisprovidesa“target”investmentforadditionalDSMprogramsaspresentedinTable22below.

Table22‐TargetInvestmentforAdditionalEnergySavings

IncrementalNPVFuelSavings $30,950,000

IncrementalEnergySavings 1,286GWh

TargetInvestment(2017$) $24.07/MWh

Asstatedpreviously,TEPdoesnotanticipatethatDRwillbeaneconomicallyfeasibleoptionforshort‐termcapacitypriorto2022,andbeyondthattime,TEPdoesnotprojectasignificantneedforshort‐termcapacity.Therefore,TEPdidnotincorporateexpandedDRprogramsintothisportfolio.TEPintendstoshifttowarddesigningDLCprogramsthatarecapableofcost‐effectivelyaddressingperiodsofsignificantramping,anticipatedwithhighpenetrationofrenewableresources,andwillevaluatehigherlevelsofDRinfutureIRPplanningcycles.

Page 279: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐279

OverviewoftheExpandedRenewablePortfolioTheReferenceCasePlanimplementsadiversifiedrenewableportfoliothattargetsserving30%ofTEP’sretailloadby2030.TherenewableportfolioundertheReferenceCasePlaniscomprisedof60%solarresourcesand40%windresources.Incomparison,theExpandedRenewableplanexaminesthelong‐termcostimpactsofaheavysolarportfolio.EventhoughsolarprojectsareprojectedtobelessexpensiveandthesolaroutputhasagreatercoincidencewithTEP’ssystempeak(particularlysingleaxistracking),theheavysolarportfolioresultsinhigher10‐minuterampingrequirements.IncomparisonwiththeReferenceCasePlan,theExpandedRenewableportfoliorequiresadditional100MWoffaststartreciprocatingenginesin2026.TheExpandedRenewableportfoliowithahighconcentrationofsolarresourcesisshowninFigure43below.

Figure43–ExpandedRenewablePortfolio(HeavySolar)vs.ReferenceCasePlan

Page 280: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐280

Chart63showshowthe10‐minuterampingrequirementsundertheExpandedRenewableportfoliowithahighconcentrationofsolarresourcesincreasesbeyondthe10‐minuterampingrequirementsintheReferenceCasePlan.Chart64showsthe10‐minuterampingrequirementsfortheReferenceCasePlan.

Chart63–ExpandedRenewablePortfolio10‐MinuteRampingRequirements

Chart64–ReferenceCasePlan10‐MinuteRampingRequirements

 

 ‐

 100

 200

 300

 400

 500

 600

 700

 800

2017 2020 2023 2026 2029

Resource Cap

acity, M

W

Contingency Reserve Required

Spinning Reserve Required

Intermittent Renewable Ramping Requirements

Portfolio 10 Minute Ramping Capacity

Wind12%

Solar SAT50%

Solar Fixed38%

 ‐

 100

 200

 300

 400

 500

 600

 700

 800

2017 2020 2023 2026 2029

Resource Cap

acity, M

W

Contingency Reserve Required

Spinning Reserve Required

Intermittent Renewable Ramping Requirements

Portfolio 10 Minute Ramping Capacity

Wind40%

Solar SAT33%

Solar Fixed27%

Page 281: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐281

OverviewofMajorIRPAssumptionsbyPortfolioTable23belowsummariesthemajorassumptionsandenvironmentalupgradesthatareincludedineachcase.

Table23–MajorIRPAssumptionsbyCase

Major Assumptions  Reference Expanded Storage 

Expanded Renewables 

Expanded  Energy Efficiency 

SMR ‐ Coal Retirement 

Energy Efficiency 

Fully compliant with the Arizona EE Standard (22% by 2020).  From 2021 on, EE Programs 

based on EPRI’s estimate of “Achievable” 

Savings. 

Same as Reference Case 

Plan 

Same as  Reference Case  

Plan 

Same as Reference Case Plan.  From 2021 on, EE 

Programs based on EPRI’s estimate of “High Achievable” 

Savings 

Same as  Reference Case  

Plan 

Renewable Energy 

Targets Serving 30% of Retail Load from both 

Utility Scale Renewables and DG by 2030. 

60% Solar & 40% Wind (utility scale) 

Same as Reference Case 

Plan 

Targets 30% by 2030 

  Sourced from   90% Solar &  10% Wind  

 

Same as Reference Case Plan 

Same as  Reference Case  

Plan 

Storage Resources 220 MW 205 MWh 

 In‐Service by 2031 

 320 MW 905 MWh  

In‐Service by 2025 

Same as  Reference Case  

Plan 

Same as Reference Case Plan 

Same as  Reference Case  

Plan 

Coal Capacity Reductions 

36% by 2022 56% by 2032 

Same as Reference Case 

Plan 

Same as  Reference Case  

Plan 

Same as Reference Case Plan 

63% by 2026 100% by 2032 

     

Production Changes 2017 versus 2032 

Reference Case Plan Expanded Storage 

Expanded Renewables 

Expanded  Energy Efficiency 

SMR ‐ Coal Retirement 

Water Consumption  ‐17%  ‐17%  ‐17%  ‐17%  ‐33% 

CO2 Emissions  ‐21%  ‐21%  ‐24%  ‐22%  ‐75% 

NOx Emissions  ‐40%  ‐40%  ‐40%  ‐40%  ‐90% 

SO2 Emissions  ‐17%  ‐17%  ‐17%  ‐17%  ‐100% 

Natural Gas Consumption 

+91%  +91%  +78%  +84%  +136% 

           

CapEx (Nominal $millions) 

Reference Case Expanded Storage 

Expanded Renewables 

Expanded  Energy Efficiency 

SMR ‐ Coal Retirement 

CapEx 2017‐2024  $993  $1,164  $1,031  $993  $993 

CapEx 2025‐2032  $480  $641  $851  $480  3,892 

Total CapEx  $1,473  $1,805  $1,882  $1,473  $4,885 

Page 282: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐282

SummaryofNPVRevenueRequirementsbyScenarioChart65belowsummarizesthenetpresentvaluerevenuerequirements(NPVRR)foreachofthePACEGlobalscenariosmodeledinthe2017IRP.TheReferenceCasePlanresultsinthelowestcostportfolioundertheBaseCaseandtheHighEconomyscenarioswhereastheExpandedRenewableCaseisthelowestcostportfolioundertheHighTechnologyscenariobecausecapitalcostsforsolartechnologiesdeclineatafasterratethanthatofwind.

Chart65–NPVRevenueRequirementsbyScenario

 

$13,000,000

$13,500,000

$14,000,000

$14,500,000

$15,000,000

$15,500,000

Reference ExpandedStorage

ExpandedRenewable

High EnergyEfficiency

SMR ‐ CoalRetirement

Portfolio

 Net Present Value ($000)

High Economy Scenario Base Case High Technology Scenario

Page 283: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐283

SummaryofNPVRevenueRequirements–BaseCaseScenarioTable24belowsummariestheNPVRRforeachportfolioundertheBaseCasescenario.

Table24–NPVRevenueRequirements–BaseCaseScenario

Non Fuel Revenue Requirements, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

 Existing T&D Resources   $4,061,825  $4,061,825  $4,061,825  $4,061,825   $4,061,825 

 Existing Generation Resources   $3,909,337  $3,905,335  $3,909,337  $3,909,337   $3,732,095 

 New Generation Resources   $695,575  $593,721  $758,243  $695,575   $1,707,209 

 Storage Resources   $140,203  $454,732  $140,203  $140,203   $149,131 

New Renewable Resources  $79,736  $79,736  $176,658  $79,736   $79,736 

 Total Non‐Fuel Revenue Requirements   $8,886,676  $9,095,349  $9,046,266  $8,886,676   $9,729,996 

  Existing Transmission Expenses  $237,009  $237,009  $237,009  $237,009   $237,009 

 Total Non‐Fuel Revenue Requirements   $9,123,685  $9,332,358  $9,283,275  $9,123,685   $9,967,005 

 

Fuel & Purchase Power, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

Total PPFAC Costs  $4,133,336  $4,074,618  $3,955,869  $4,102,386   $4,170,264 

 

Energy Efficiency and Renewables, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

Energy Efficiency  $285,450  $285,450  $285,450  $351,404   $285,450 

Demand Response  $39,714  $39,560  $39,532  $39,665   $39,803 

Total Energy Efficiency  $325,164  $325,010  $324,982  $391,069   $325,253 

 

Total Renewables  $400,139  $400,139  $451,998  $400,139   $400,139 

 

Total Energy Efficiency and Renewables  $725,303  $725,149  $776,980  $791,208   $725,392 

 

Total System Revenue Requirements  $13,982,324  $14,132,125  $14,016,124  $14,017,279   $14,862,661 

 

NPV Difference from Reference Case Plan     $149,800  $33,799  $34,954   $880,336 

Page 284: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐284

SummaryofNPVRevenueRequirements–HighEconomyScenarioTable25belowsummariestheNPVRRforeachportfolioundertheHighEconomyscenario.

Table25–NPVRevenueRequirements–HighEconomyScenario

Non Fuel Revenue Requirements, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

 Existing T&D Resources   $4,061,825  $4,061,825  $4,061,825  $4,061,825   $4,061,825 

 Existing Generation Resources   $3,909,337  $3,905,335  $3,909,337  $3,909,337   $3,732,095 

 New Generation Resources   $753,202  $648,331  $818,773  $753,202   $1,766,772 

 Storage Resources   $144,302  $481,654  $144,302  $144,302   $151,944 

New Renewable Resources  $94,246  $94,246  $204,728  $94,246   $94,246 

 Total Non‐Fuel Revenue Requirements   $8,962,912  $9,191,391  $9,138,965  $8,962,912   $9,806,882 

  Existing Transmission Expenses  $237,009  $237,009  $237,009  $237,009   $237,009 

 Total Non‐Fuel Revenue Requirements   $9,199,921  $9,428,400  $9,375,974  $9,199,921   $10,043,891 

 

Fuel & Purchase Power, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

Total PPFAC Costs  $4,677,093  $4,563,367  $4,457,733  $4,635,803   $4,840,984 

 

Energy Efficiency and Renewables, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

Energy Efficiency  $285,450  $285,450  $285,450  $351,404   $285,450 

Demand Response  $40,167  $39,969  $39,904  $40,100   $40,305 

Total Energy Efficiency  $325,617  $325,419  $325,354  $391,504   $325,755 

 

Total Renewables  $299,841  $299,841  $382,211  $299,841   $299,841 

 

Total Energy Efficiency and Renewables  $625,458  $625,260  $707,565  $691,345   $625,596 

 

Total System Revenue Requirements  $14,502,472  $14,617,027  $14,541,272  $14,527,069   $15,510,471 

 

NPV Difference from Reference Case Plan     $114,555  $38,800  $24,597   $1,007,999 

 

Page 285: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐285

SummaryofNPVRevenueRequirements–HighTechnologyScenarioTable26belowsummariestheNPVRRforeachportfolioundertheHighTechnologyscenario.

Table26–NPVRevenueRequirements–HighTechnologyScenario

Non Fuel Revenue Requirements, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

 Existing T&D Resources   $4,061,825  $4,061,825  $4,061,825  $4,061,825   $4,061,825 

 Existing Generation Resources   $3,909,337  $3,905,335  $3,909,337  $3,909,337   $3,732,095 

 New Generation Resources   $622,882  $525,553  $681,195  $622,882   $1,620,599 

 Storage Resources   $129,934  $380,104  $129,934  $129,934   $145,764 

New Renewable Resources  $62,402  $62,402  $104,930  $62,402   $62,402 

 Total Non‐Fuel Revenue Requirements   $8,786,380  $8,935,219  $8,887,221  $8,786,380   $9,622,685 

  Existing Transmission Expenses  $237,009  $237,009  $237,009  $237,009   $237,009 

 Total Non‐Fuel Revenue Requirements   $9,023,389  $9,172,228  $9,124,230  $9,023,389   $9,859,694 

 

Fuel & Purchase Power, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

Total PPFAC Costs  $3,464,140  $3,453,215  $3,344,143  $3,449,172   $3,411,727 

 

Energy Efficiency and Renewables, $000  Reference Expanded Storage 

Expanded Renewable 

High Energy Efficiency 

SMR ‐ Coal Retirement 

Energy Efficiency  $285,450  $285,450  $285,450  $351,404   $285,450 

Demand Response  $39,282  $39,199  $39,186  $39,255   $39,314 

Total Energy Efficiency  $324,732  $324,649  $324,636  $390,659   $324,764 

 

Total Renewables  $525,799  $525,799  $538,852  $525,798   $525,799 

 

Total Energy Efficiency and Renewables  $850,531  $850,448  $863,488  $916,457   $850,563 

 

Total System Revenue Requirements  $13,338,060  $13,475,891  $13,331,861  $13,389,018   $14,121,984 

 

NPV Difference from Reference Case Plan     $137,831  ($6,199)  $50,958   $783,924 

   

Page 286: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐286

DistributionofNPVRevenueRequirementsbyPortfolioThedegreetowhicheachportfolioisabletoadequatelymeetfutureloadservingrequirementsatareasonablecostismeasuredbyexaminingthedistributionofitsNPVRRoutcomesforeachportfolioacrossmultiplestochasticiterations.Theperformanceofeachportfolioissummarizedinthefollowingcharts.Chart66showseachhistogramcomparingthefrequencyofoutcomesforeachofthecandidateportfolios.Allhistogramsarerepresentedonthesamescale.Portfoliosshowingalargenumberofoutcomes(higherbars)ontherightsideofthegraphrepresenthighcostoptionsrelativetotheothersresourceportfolios.Higherriskisreflectedbylowerbarsspreadovermoretranches.

Chart66–DistributionofNPVRRbyPortfolio

0

5

10

15

20

25

30

35

 13,850,000

 13,925,000

 14,000,000

 14,075,000

 14,150,000

 14,225,000

 14,300,000

 14,375,000

 14,450,000

More

Frequency

NPV Revenue Requirements ($000)

Reference Case Portfolio

0

5

10

15

20

25

30

35 13,850,000

 13,925,000

 14,000,000

 14,075,000

 14,150,000

 14,225,000

 14,300,000

 14,375,000

 14,450,000

More

Frequency

NPV Revenue Requirements ($000)

Expanded Storage Portfolio

0

5

10

15

20

25

30

35

 13,850,000

 13,925,000

 14,000,000

 14,075,000

 14,150,000

 14,225,000

 14,300,000

 14,375,000

 14,450,000

More

Frequency

NPV Revenue Requirements ($000)

Expanded Renewable Portfolio

0

5

10

15

20

25

30

35

 13,850,000

 13,925,000

 14,000,000

 14,075,000

 14,150,000

 14,225,000

 14,300,000

 14,375,000

 14,450,000

More

Frequency

NPV Revenue Requirements ($000)

Expanded EE Portfolio

Page 287: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐287

DistributionofNPVRevenueRequirementsbyPortfolioChart67belowshowsthedistributionofNPVRRonthesamechart.

Chart67–AggregatedNPVRRbyPortfolio

 

0

5

10

15

20

25

30

35

 13,850,000

 13,875,000

 13,900,000

 13,925,000

 13,950,000

 13,975,000

 14,000,000

 14,025,000

 14,050,000

 14,075,000

 14,100,000

 14,125,000

 14,150,000

 14,175,000

 14,200,000

 14,225,000

 14,250,000

 14,275,000

 14,300,000

 14,325,000

 14,350,000

 14,375,000

 14,400,000

 14,425,000

 14,450,000

 14,475,000

 14,500,000

More

Frequency

NPV Revenue Requirements ($000)

Reference Case PortfolioExpanded EE PortfolioExpanded Renewable PortfolioExpanded Storage Portfolio

Page 288: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐288

NPVRRMeanandWorstCaseRiskChart68summarizeseachportfoliowithrespecttoboththeexpectedaverageNPVRRandthe“worstcase”outcomeriskasrepresentedbythe95thpercentileofitsNPVRRoutcomes.Valuesloweronthegraphandfarthertotheleft,representlowerriskandlowercostportfolios.

Chart68–SummaryofNPVRRMeanandRisk

 13,900,000

 14,000,000

 14,100,000

 14,200,000

 14,300,000

 14,400,000

 14,500,000

 14,600,000

 14,700,000

 14,800,000

 14,900,000

 15,000,000

 13,800,000  14,000,000  14,200,000  14,400,000  14,600,000  14,800,000  15,000,000  15,200,000

95th Percentile  of NPVRR ($000)

Expected Nominal NPVRR ($000s)

ReferenceCase

ExpandedRenewables

Coal Retirement &SMR Portfolio

ExpandedStorage

ExpandedEE

Page 289: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

Page‐289

 

CHAPTER 14 

FIVE‐YEAR ACTION PLAN 

The2017ReferenceCasePlanwaschosenasthepreferredportfolioplanbasedoncurrentforecastsandassumptions.TEPhasdevelopedafiveyearactionplanbasedontheresourcedecisionsthatarecontemplatedinthisIRP.Underthisactionplan,additionaldetailedstudyworkwillbeconductedtovalidatealltechnicalandfinancialassumptionspriortoanyfinalimplementationdecisions.TEP’sactionplanincludesthefollowing:

TEPplanstocontinuewithitscommunity‐scalebuildoutofrenewableenergytoachieveadiverseportfoliothattargets30%ofretailloadfromrenewablegenerationby2030.Asaresult,overthenextfiveyears,TEPistargetingtheadditionof100MWofutility‐scalewindand100MWofutility‐scalesolarresources.

AspartofTEP’sportfoliodiversificationstrategy,theCompanyisreducingitscoalresourcecapacityby508MWoverthenextfiveyears,whichrepresents36%ofourcurrentcoalcapacity.TheseplannedcoalretirementswillenableTEPtotakeadvantageofnear‐termopportunitiestoreducecostsandrebalanceitsresourceportfoliooverthelonger‐term.Thisreductionincoalresourceswillresultinsignificantcostssaving46forTEPcustomersandwillresultinmeaningfulreductionsinairemissionsandwaterconsumption47.

Inordertoaccommodateincreasedrenewableenergyresources,andtoallowfortheretirementofoldergassteamunitsattheSundtGeneratingStation,TEPplanstomoveforwardwithageneratingresourcemodernizationplanatSundtoverthenextfewyears.Aspartofthiscurrentresourceplanningcycle,TEPconductedaFlexibleGenerationTechnologyAssessment48withBurns&McDonnellin2017.TheresultsofthisstudyindicatethatRICEtechnologyisthepreferredtechnologythatwillprovidecapacityandassistinmitigatingrenewableenergyintermittencyandvariability.TEPplanstomoveforwardwithissuingaRequestforProposalforthesefast‐respondingresourcesthatwillmeetthe2020and2022timeline.

TEPwillcontinuetoimplementcost‐effectiveEEprogramsbasedontheArizonaEEStandard.TEPwillcloselymonitoritsEEprogramimplementationsandadjustitsnear‐termcapacityplansaccordingly.TEPwillcontinuetomonitorcloselyandimplementDRprogramsthataremutuallybeneficialtotheCompanyanditscustomers.

TEPisoptimisticaboutthepotentialofenergystoragesystemsasatechnologyandasaneconomicallyviablesolutiontoprovidepeakcapacityandrenewableintermittencymitigation.TheReferenceCase

46Aspartofthe2014IRPanalysis,TEPavoidedapproximately$165inpollutioncontrolswithitscommitmenttoretireSanJuanUnit2attheendof2017.Inthe2017IRPanalysis,TEP’scustomerswillrealizeanadditionalnetpresentvaluesavingsofapproximately$179millionrelatedtotheretirementofTEP’sownershipinterestinNavajoattheendof2019andtheretirementofTEP’sownershipinterestinSanJuanUnit1attheendofJune2022.47TheretirementofbothNavajoandSanJuanUnits1and2resultsinreductionsinTEP’stotalsystememissionsof15.8%forcarbondioxide(CO2),29.8%fornitrousoxides(NOx),and9.8%forsulfurdioxide(SO2).Inaddition,theretirementoftheNavajoandSanJuanunitsshowwaterconsumptionisreducedbyapproximately2,599acrefeetperyear,anoverallsavingsof16.18%.48Seethe2017FlexibleGenerationTechnologyAssessmentinAppendixB.

Page 290: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

Page‐290

Planincludestheadditionofa50MWbatteryprojectfor2019andanother50MWsfor2021.TEPwillcontinuetomonitortheadvanceofESSandmayopttoissueaRFPinthenearfuture.

TEP’s2017ReferenceCasePlanrecommendstheadditionof413MWofnaturalgascombinedcyclecapacityin2022.Aspartofitsnear‐termportfoliostrategy,TEPwillcontinuetoutilizethewholesalemarketforthepurchaseofshort‐termmarketbasedcapacityproducts.Inaddition,TEPwillcontinuetomonitorthewholesalemarketforotherresourcealternativessuchlong‐termPPAsandnear‐termlowcostplantacquisitions.TEPwillalsomonitorandadjustitsnaturalgashedgingrequirementsasitreducesitsrelianceoncoalbasedgenerationinfavorofnaturalgasresources.Recommendationswillbemadeonpotentialfuelhedgingchangesiftheybecomenecessary.

TEPandotherArizonautilitiescontinuetoevaluatethepotentialbenefitsofin‐groundnaturalgasstorage.Localstoragewouldimprovetheabilityofnaturalgasgenerationunitstorespondtochangingloadsaswellastheintermittencycausedbyrenewableresource.DuetothedistanceofArizona’slargestloadpocketsofPhoenixandTucsonfromtheSanJuanandPermiannaturalgasproductionbasins,localnaturalgasstorage(ifavailableandconstructed)wouldbeabletomorequicklysupplynaturalgasduringshortfallsandstoreexcessnaturalgasduringperiodswhenthenaturalgasmainlinesexperiencedoperationallimitations.

Aswithanyplanninganalysis,the2017IRPrepresentsasnapshotintimebasedonknownandreasonableplanningassumptions.ItisimportanttonotethateventualclosureofSanJuanandNavajoGeneratingStationsisgivenahighprobabilitytooccur.Evenafterthe2017IRPfilingdate,TEPanticipatesthattheplantparticipantswillcontinuetoworkthroughthecomplexissuessurroundingplantoperatingagreements,fuelcontracts,landleases,economicanalysisandenvironmentalimpactreviewsbeforethefinalresourcedecisionsaremade.Giventheconfidentialnatureofthesedecisions,TEPplanstocommunicateanymajorchangeinitsanticipatedresourceplanwiththeACCaspartofitsongoingplanningactivities.TEPhopesthisdialogwillengagetheCommissiononimportantresourceplanningissueswhileprovidingTEPwithgreaterregulatorycertaintywithregardstofutureresourcedecisions.TEPrequeststhattheCommissionapproveits2017IntegratedResourcePlanasprovidedinA.A.C.R14‐2‐704.B.andtheassociatedactionsherein.

Figure44‐TEP’s2017IRPReferenceCasePlan–MilestoneTimeline

Page 291: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

 

APPENDIX A 

PACE GLOBAL FUTURE STATES OF THE WORLD  

 

Page 292: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

TucsonElectricPower

 

 

Page 293: Tucson Electric Power Company 2017 Integrated Resource ... · PDF file2017 Integrated Resource Plan April 3, 2017 Tucson Electric Power Company. Tucson Electric Power Page ‐ 2

2017IntegratedResourcePlan

 

APPENDIX B 

2017 FLEXIBLE GENERATION TECHNOLOGY ASSESSMENT