Turbulent Flow(Final)

  • Upload
    milad

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

  • 8/16/2019 Turbulent Flow(Final)

    1/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h

      a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    TURBULENT FLOW

    Presented by:

    Prof. D.Rashtchian

  • 8/16/2019 Turbulent Flow(Final)

    2/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h

      a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Turbulent transport of momentum

    Turbulence of random velocity fluctuations- Use statistical methods

    Turbulent velocity iu~

     

    ˆ ~ iii   uU u   +=  

    Component Velocity

    gFluctuatin Mean

    *************************

    Fig.1

    Interpret Ui as a time averaged velocity defined by:

    ( )∫∫   ≡+== ∞→∞→T 

    iiiT 

    iT 

    i   udt uU T 

    dt uT 

    00

    ~ˆ1

    lim~1

    lim  

    ( )

    ∫∫  =−=−==

    ∞→∞→

    iii

    i

    i

    i   U U dt U 

    U dt u

    u00

    01

    limˆ1

    limˆ  

  • 8/16/2019 Turbulent Flow(Final)

    3/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    i.e. the mean value (or time average) of the fluctuating quantity is zero. Assume that

    Ui the mean flow is steady (∂Ui/∂t = 0)

     Note: Time averaging commutes w.r.t. differentiation.

    ( )i

     j j

    iT 

    i j

     j

    i

     j

    i

    u x x

    dt uT  xdt  x

    u

    T  x

    u ~~1~1~

    00 ∂

    =∂

    =

    =∂

    =∂

    ∫∫  

    The time average of the fluctuationiû  is zero, but the average of the square of the

    fluctuation is not zero and the quantityi

    i

    u 2ˆ is used as a convenient measure of the

    turbulent fluctuation-known as the "intensity of turbulence" and ranges from 0.01 to

    0.1 for most turbulent flows.

    ( )2ˆiu  r.m.s. velocity.

    Mean K.E./unit volume =( )   ( )

    nsfluctuatioflowmean

    ˆ2

    2

    1 22

    +

    +=+=   iiii   uU uU  KE    ρ  ρ   

  • 8/16/2019 Turbulent Flow(Final)

    4/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Equations for the mean flow

    Consider the momentum and continuity equations. These apply to the instantaneous velocity

    in a turbulent field.

     j j

    i

    i j

    i j

     x x

    u

     x

     p

     x

    uu

    ∂∂

    ∂+

    ∂−=

    ∂ ~~1~~2

    ν  ρ 

     

    0~

    =∂∂

    i

    i

     x

    u  )1(  

    The equations must apply on average

    ˆ~iii   uU u   +=  

    Continuity

    ( )0ˆ

    ~~1lim

    0

    =∂

    ∂=+

    ∂=

    ∂=

    ∫∞→ i

    i

    iiii

    iT 

    i

    i

    T   x

    U uU 

     x x

    udt 

     x

    u

    T    (2)

     

    The mean value satisfies continuity. It is the mean value of velocity that we measure and

    require in applications.

  • 8/16/2019 Turbulent Flow(Final)

    5/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Momentum:

    The equations of motion for the mean flow Ui are obtained by taking the time average of all

    terms in the resulting equation.

    Consider each term: 

    ( )( ){ }

    { }

    { } (2.1) )ˆˆ(ˆˆ 

    ˆˆˆˆ 

    ˆˆ

    ~

    ~)~~(

    ~

    ~ (i)

    i j

     j j

    i j ji ji

     j

    i j jii ji j

     j

    ii j j

     j j

     j

    ii j

     j j

    i j

    uu x x

    U U uuU U 

     x

    uU uU uuU U  x

    uU uU  x x

    u

    uuu x x

    uu

    ∂+∂

    ∂=+∂

    ∂=

    +++∂

    ∂=

    ++∂

    ∂= 

     

     

     

    −∂

    ∂=∂

     

    (2.2) 1

    )ˆ(1~1

     (ii)i

    i

    ii   x

     P  p P 

     x x

     p

    ∂−=+

    ∂−=

    ∂−

     ρ  ρ  ρ  

    ( ) (2.3) ˆ~

     (iii)222

     j j

    iii

     j j j j

    i

     x x

    U uU 

     x x x x

    u

    ∂∂

    ∂=+

    ∂∂

    ∂=

    ∂∂

    ∂ν ν ν   

  • 8/16/2019 Turbulent Flow(Final)

    6/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Hence

    (3) )ˆˆ(1

    2

    i j

     j j j

    i

    i j

    i j   uu

     x x xU 

     x P 

     xU U 

    ∂∂−∂∂∂+∂∂−=∂∂ν 

     ρ  

    Equation for mean flow has an additional term.(Drop the ^ i ji j   uuuu   =⇒ ˆˆ )

    Term j

    i j

     x

    uu

    ∂ is analogous to the convective term

     j

    i j x

    U U  ∂

    ∂;

    It represents the mean transport of fluctuating momentum by turbulent velocity

    fluctuations.

    If iû  and  jû uncorrelated i.e. 0=i juu  - no turbulent momentum transfer but

    experience shows that 0≠i juu  - momentum transfer is a key feature of turbulentmotion.

    Term )ˆˆ( i j j

    uu x∂

    ∂thus exchanges momentum between the turbulence and the mean

    flow (equation 2.1)even though the mean momentumof the turbulent velocity

    fluctuations is zero ( 0~ =iu ρ  ).

  • 8/16/2019 Turbulent Flow(Final)

    7/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Because of the decomposition iii   uU u ˆ~ += , turbulent motion can be perceived as something which

     produces stresses in the mean flow. For this reason, equation (3) may be rearrange so that all stresscan be put together.

    )(ˆˆ  ji j

    i j

    i

     j

     j

    i ji

     j j

    i j   T 

     xuu

     x

     x

    U  P 

     x x

    U U 

    ∂=

     

     

     

     −

    ∂+

    ∂+−

    ∂=

    ∂ ρ µ δ  ρ   - mean stress tensor.(   τ τ  ˆ~ += T  )

    ∂+

    ∂=−+−=

    i

     j

     j

    i jii j ji ji ji

     x

     x

    U uu P T    µ σ  ρ σ δ   ; ˆˆ 

    (shear) (normal) 

    The contribution of the turbulent motion to the mean stress tensor is i jT 

     ji   uu ρ σ    −=  called the

    Reynolds stress tensor. Define,   T  ji ji   σ σ    +=Ω ji  

  • 8/16/2019 Turbulent Flow(Final)

    8/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Turbulent shearing stresses

    Time averaging of the equations of motion leads to the Reynolds stress tensor, i juu ˆˆ ρ  .

    iû  and  jû are the velocity fluctuations in the  ji ≠  directions at one point and  jiuu is a

    measure of the "correlation" between the fluctuations.

    Correlated variables

    ( )( )   ji ji j jii ji   uuU U uU uU uu   +=++= ˆˆ~~  

    If 0≠ jiuu , iû  and  jû are said to be correlated i.e. dependent.If 0= jiuu , uncorrelated i.e. iû  and  jû are independent.

  • 8/16/2019 Turbulent Flow(Final)

    9/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Fig2(a)

    1

    0

    12

    21

    =

    >

     R

    uu 

    Fig2(b)

    1

    0

    12

    21

    −=

    <

     R

    uu 

    Fig2(c)

    1

    0

    12

    21

     R

    uu 

  • 8/16/2019 Turbulent Flow(Final)

    10/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    A measure of the degree of correlation between 1û  and 2û  is obtained from:

    { }2

    1

    22

    21

    21

    ˆ.ˆ

    ˆˆ

    uu

    uu 

    ( )2

    1

    0

    22

    021

    2112

    ˆ1

    limˆ : ˆˆ1

    lim

    ==′

    ′′= ∫∫   ∞→∞→

    iT 

    i

    iT 

    dt uT 

    uudt uu

    uu

    T  R  

    21

    2112uu

    uu R ′′=  

     N.B. abbaba   ≥+⇒≥− )(2

    10)( 222  

    Hence ∫   ≤

    +≤ ∞→T 

    T dt 

    uu

    uu

    T  R

    0 2

    2

    2

    2

    2

    1

    2

    112 1

    ˆˆ

    ˆˆ1lim  

  • 8/16/2019 Turbulent Flow(Final)

    11/41

       A   d  v

      a  n  c  e   d   F   l

      u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Pure shear flow

    Consider a turbulent shear flow with U1(x2) the only non-zero velocity component.

    Ω12 is the only component of the mean stress tensor, 122

    112

    ˆˆ   uu xU   ρ µ    −

    ∂∂=Ω  

    Ω12 – stress in 1 direction on face, normal in 2 direction and must result from

    molecular transport of momentum in the x2 direction, and turbulent transport.

    Assume 02

    1 >∂

     x

    U .

    A fluid particle with positive 2û  is being carried by turbulence in positive x2 

    direction. It is coming from a region where the mean velocity is smaller i.e. is likely

    to be moving downstream more slowly than its new environment. Thus 1û  is negative.

    Similarly negative 2û  associated with positive 1û .

    ************************

    Fig3

  • 8/16/2019 Turbulent Flow(Final)

    12/41

       A   d  v

      a  n  c  e   d   F   l

      u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    {Momentum/unit volume of flow at A in 1-direction} = )ˆ(~ 111   uU u   += ρ  ρ   

    The x1-momentum is transported in the x2-direction if u1 and u2 are correlated.

    {Flux of x1-momentum in x2-direction} = 211 ˆ)ˆ(   uuU   + ρ   

    {Average flux of x1-momentun in x2-direction} = 21 ˆˆ uu ρ   

    1û  and 2û  are negatively correlated: 122112 uuT T   ρ σ σ    −==  

  • 8/16/2019 Turbulent Flow(Final)

    13/41

       A   d  v

      a  n  c  e   d   F   l

      u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Turbulent Channel Flow

    The Navier-Stokes equations in rectangularcoordinates are

    )(12

     ji

     j j j

    i

    i j

    i j   uu

     x x x

    U v x

     P 

     x

    U U ∂

    ∂−∂∂

    ∂+∂∂−=

    ∂∂

     ρ  

    For parallel, fully developed, 2 D flow

    0...0;0

    0

    31

    32

    =∴

    =∂

    ∂=

    ==

    S  H  L

     x

     x

    U U 

    ii 

    0)(1

    =∂∂

     jiuu x

    ; 0)( 33

    =∂

    ∂ uu x

      i  

  • 8/16/2019 Turbulent Flow(Final)

    14/41

       A   d  v

      a  n  c  e   d   F   l

      u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Hence the equations can be written in the simplified form,

    )(1

    02

    2

    uv y y

    U v

     x

     P 

    ∂−

    ∂+

    ∂−= ρ 

      (1)

    )(1

    0 2v y y

     P 

    ∂−

    ∂−= ρ 

      (2)

    At the walls 2v = 0, P = P0(x) . Hence form (2)

    20 v P  P 

    += ρ  ρ 

      (3)

    dx

    dP 

     x

     P 

     x

     P  00 =∂

    ∂=

    ∂  (4)

  • 8/16/2019 Turbulent Flow(Final)

    15/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Hence (1) can be integrated from y=0 to y with 00

    == y

    uv  

    uv y

    U v

     y

    U v

    dx

    dP  y

     y

    −∂

    ∂−

    ∂+−=

    =0

    0 )(0 ρ   

    At y=h, uv=0, 0/   =∂∂   yU   (zero velocity gradient, no correlation)

    0

    0 )(=

    ∂=−=

     y

    w

     y

    dx

    dP h

     ρ 

    µ 

     ρ  ρ 

    τ  

    Defining a friction velocity u*

    2

    ∗=   uw   ρ τ   

    Substituting in (5)

    )1(2*h

     yu

     y

    U vuv   −=

    ∂+−  

  • 8/16/2019 Turbulent Flow(Final)

    16/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Equation (8) may be written in dimensionless form in 2 ways.

    (I))1(

    )/(

    )/( *

    *

    2

    *   h

     y

    h yd 

    uU d 

    hu

    v

    u

    uv−=+

    − 

    R* =u* h/v. As R* becomes large, (R* is of course a Reynolds number), the

    viscous stress is suppressed. Such a limit will not applied because viscous

    forces must always dominate near solid boundaries.

    (II)*

    *

    *

    *

    2

    *

    .1)/(

    )/(

    hu

    v

    v

     yu

    v yud 

    uU d 

    u

    uv−=+−

     

    In this case as R* becomes large the change in total stress becomes small.Defining appropriate dimensionless variables

  • 8/16/2019 Turbulent Flow(Final)

    17/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

     ;*

    v

     yu y   =+

      ∗

    =+u

    U u

    ; h

     y=η 

     

    Then

    η η 

    −=++− 11*2*   d 

    du Ru

    uv   (11)

    *2* 1  R

     y

    dy

    du

    u

    uv   +

    −=+

    +

    +−   (12)

    Law of wall

    For large R* (from 12)

    12

    *

    =+

    ++−

    dy

    du

    u

    uv  (13)

  • 8/16/2019 Turbulent Flow(Final)

    18/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    The solution of this equation must be of the form,

    )(2

    *

    +=−   y g u

    vu; )(   +=+   y f  u   (law of the wall) (14)

    For sufficiently small y+, turbulent stress negligible.

    1=+

    +

    dy

    du  ; with u+(0)=0 (15)

    u+ = y+

    Core region

    For large R* (from 11)

    ( )η −=−∗

    12u

    uv 

  • 8/16/2019 Turbulent Flow(Final)

    19/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    This equation gives no information, about U itself. However h and u* are the only feasible

    length and velocity scales, we can write

    η d 

    dF 

    h

    u

    dy

    dU  *=   Where F(η ) is some function of η . (17)

    Integration from the center where U=U0 

    )(*

    0 η  F u

    U U =

    −  (18)

    From equation (14),

    )(*

    +=   y f  u

    U ;

    +

    +=

    dy

     ydf  

    v

    u

    dy

    dU  )(2

    *  (19)

    Matching (17) & (19),

    +

    =   ∗∗

    dy

    df  u

    dF 

    h

    u

    ν η 

    2

    .   ;

     K dy

    df   y

    dF  1==

    ++

    η 

    η    (20)

  • 8/16/2019 Turbulent Flow(Final)

    20/41

      .ln1

    )(   const  K 

     F    +=   η η    .ln1

    )(   const  y K 

     y f     +=+   +  

    Hence

    .ln1

    *

    0 const 

     K u

    U U +=

    −η    .ln

    1

    *

    const  y

     K u

    U +=   +  

    Discussion

    To simplify (12) to (14) requires 1* 〈〈=

    +η  R

     y

      (a)

    To simplify (11) to (16) requires η η 

    −〈〈+

    1*

    1

    du

     R  (b)

    Matching only possible if ∞→+ y  

    0→η   

    In practice it is found that

    <

    >+

    1.0

    100

    η 

     y  are sufficient

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

     

  • 8/16/2019 Turbulent Flow(Final)

    21/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

     Now 1.0+ y   100* >∴   Rη   

    /100* >∴ R  1.0∴ R  Experimentally

    η η 5.2=+d 

    du  

    η η  *

    5.2

    *

    1

     Rd 

    du

     R=

    +∴  

    Hence )1(*

    5.2

    *

    1η 

    η η −

  • 8/16/2019 Turbulent Flow(Final)

    22/41

    Also from (20) K dy

    df   y

    1=

    ++

     

    .)ln(

    1

    )(   const  y K  y f     +=∴

      ++

      (21)

    Experimentally

    0.1ln5.2*

    0 −=−

    η u

    U U  

    0.5ln5.2

    *

    +=   + y

    u

    U  

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

  • 8/16/2019 Turbulent Flow(Final)

    23/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Application

    1. For Engineering Purposes these

    equations have been used for 1.0>η  ,i.e. to describe the core region, and

    also for 0→η  . Note as

    0→η  , −∞→=+ */ uU u  

    2. Sometimes the Universal Velocity

     profile is used.

    Equn. (15) u

    +

    =y

    +

      for y

    +

    ≤  5

    Equn. (21) u+=2.5lny

    ++5.0for y

    + ≥ 30. 

    Limits determined experimentally.

    A curve fit for 5

  • 8/16/2019 Turbulent Flow(Final)

    24/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Example of use of turbulent velocity profiles.

    momentum transfer

    Friction factor 2

    2

    *

    2

    2

    2

    1  U 

    u

     f     ==

     ρ 

    τ ω  

    Using the velocity defect law for flow in a tube

    *

    0

    0 *

    0

    22.

    1

    u

    U U rdy

    u

    U U 

    h

    h y

     y

    −=

      −∫=

    =

    π π 

     

    =

    = −=

    1

    02 }1ln5.2{

    2µ 

    η  η η π 

    π 

    d hh

     

    ow y-hr  =   ; η η    hd dyh y   =→= /   ; )1(   η −= hr   

    =1)(

    ηUU

  • 8/16/2019 Turbulent Flow(Final)

    25/41

    Hence ∫=

    −−=− 1

    0*

    0 }1ln5.2){1(2)(

      η 

    η 

    η η η    d u

    U U  

    Also from experimental results

    0.1ln5.2**

    0 +−=   η u

    u

    U  

    0.50.1ln5.2ln5.2   ++−=   + η  y  0.6*ln5.2   +=   R  

    22

    Re

    2

    **

    2  f  u f  

    v

    h

    v

    hu R   ===  

    6]22

    Reln[5.2

    *

    0 +=  f  

    u

    U  

    10

    222

    *

    ]24

    5ln2

    525ln5[6]22

    Reln[5.2   η η η η η η η η    ++−−−++=   f  uU   

    53.022

    Relog07.4

    110   +

    =  f  

     f   

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

  • 8/16/2019 Turbulent Flow(Final)

    26/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

     Mass transfer : Turbulent Taylor Analysis. Proc. Royal. Soc. (1954), A223, P446, for Axial Dispersion in turbulent pipe flow.

    Consider diffusion equation in rectangular coordinates for simplicity.

  • 8/16/2019 Turbulent Flow(Final)

    27/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Turbulence in pipe flows

    Scope of Turbulence

    Most flows in nature: rivers, the atmosphere

    Engineer: pipe flow, packed and plate column

    Pipe Flow

    Laminar sublayer - viscous forces dominate, very thin

    Transition region - region of damped turbulence because of nearby wall,

    eddy size y.

    Turbulent core - region of fully developed turbulence, eddies of size d,

    velocity nearly constant.

    T b l V l i i

  • 8/16/2019 Turbulent Flow(Final)

    28/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c   h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Turbulent Velocities

    local downstream velocity fluctuates due to turbulent eddies .decompose

      

     +

     

     

     

     =

     

     

     

     

    +=

    velocity

    eddy

    velocity

    localmean

    velocity

    us Instantane

    uuu t  ˆ

     

    definition of u (mean velocity)

    ∫=  T 

    t dt uT 

    u0

    clearly the average of the eddy velocity is zero

    0ˆ1

    ˆ11

    )ˆ(1

    0

    0 00

    =

    +=+=

    ∫ ∫∫

    dt uT 

    dt uT 

    udt T 

    dt uuT 

    u

    T T T 

     

  • 8/16/2019 Turbulent Flow(Final)

    29/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    -  the magnitude of turbulent velocities is characterized by the RMS

    21

    0

    2ˆ1

    =′ ∫

    dt uT 

    u  

    (RMS fluctuating or eddy velocity.)

    the turbulence intensity is defined by,

    turbulent intensity =

    u

    u′(typically up to 0.1) i.e. the average eddy velocity

    may be 1/10 of the mean velocity.

  • 8/16/2019 Turbulent Flow(Final)

    30/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Properties of turbulent flows

    (with particular reference to pipe flows)

    1) Irregularity local velocities fluctuate in random manner. But all

    turbulent flows are irregular. E.g. smoke plume.

    2) 3D Nature pipe flows are normally considered as 1 dimension in

    that downstream velocity depends only on radius. However in

    turbulent flows normal velocity components, though zero on average,have fluctuating components, (V ̂  and W ˆ ). These give rise to

    turbulent stresses (remember the mail bag example) and are important

    in turbulent energy processes. This 3D nature adds the mathematical

    difficulty.

  • 8/16/2019 Turbulent Flow(Final)

    31/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    3) Turbulence is a property of the flow not of the fluid writing Newton’slaw for a flow involving turbulent stresses.

    dy

    duT )(   ν ν 

     ρ 

    τ +−=   ; [divided by  ρ ]

    Where ρ 

    µ ν  =  is the kinematics viscosity . [ ]

    [ ]T  L 2

     

    =T ν   eddy viscosity

    In laminar sub layer ν ν    T   

    Thus T υ   varies with environment and is a flow property.

  • 8/16/2019 Turbulent Flow(Final)

    32/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    4) Mixing in turbulent flows-diffusivity

    Rewrite Newton’s law in the form, explicit in shear stress.

    ( )dy

    ud T 

     ρ ν ν τ  )(   +−=  

    Dimensions :[ ][ ][ ] [ ]

    [ ][ ][ ]

    [ ][ ] L

     L

    U  M 

     L

    T  L

    U  M 32

    2.=  

    i.e. (momentum flux) = (diffusivity) * (gradient of momentum / volume)

    - this fundamental relation shows how transport (here of momentum) is related

    to the driving force (momentum gradient).the coefficient, υ  , is the momentumdiffusivity. It shows how large a flux is produced by a given gradient. Exactly

    analogous laws apply for heat transfer (Fourier's Law) and mass transfer 

    (Flick's law).

  • 8/16/2019 Turbulent Flow(Final)

    33/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    - Now ν ν    ffT   in turbulent flows.

    Turbulent is a very effective mixer of momentum which accounts for 

    the almost constant velocity of the core region will usually be of almost

    constant temperature and composition.

    But T ν ν   ff  in laminar sublayer .

  • 8/16/2019 Turbulent Flow(Final)

    34/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    In laminar flow it is the molecular motion which transports momentum.(Remember mail bag example). Hence lower rates of transport for a given

    driving force. Alternatively if we consider heat transfer from the wall to

     bulk, heat conduction across the laminar sub layer dominates the process

    (Heat transfer comes later).

    - Pictorially 

    Eddy gives rise to normal velocity V ̂ .This transports x directional momentum

    in the y direction gives rise to a

    momentum flux, or shear, .τ   

  • 8/16/2019 Turbulent Flow(Final)

    35/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    5) Dissipative Nature of Turbulence.

    - Turbulence comprises eddies of all sizes.

    - The largest eddies are as big as the flow field. They extract energy from the

    flow but are not efficient at dissipating energy. In the absence of an energy

    source, however, turbulence dies away .

    - There is an energy cascade from the large eddies, through eddies o

     progressively smaller size until a lower limit is reached. This lower limit is

    controlled by viscous dissipation of energy and Kinematics viscousity and the

    rate of energy supply are the important quantities. Based on dimensional analysis

    this lower limit of eddy size is given by:

    434

    3

    Re−=

    =d ud 

    ν η  

    Where = size of small eddies; =ν  kinematics viscosityd = size of largest eddies; u' = RMS turbulent velocity

  • 8/16/2019 Turbulent Flow(Final)

    36/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    ( )    

      

     =

    d v

     si

    6

    ( )

     

     

     

     =×=

    d d 

    v

     sii

    12

    4

    68 3

    2

    ( )  

     

     

     =×=

    d d 

    v

     s

    iii

    24

    16

    6

    64

    32

        ∝ v s

    volume surfaceratendissipatio

  • 8/16/2019 Turbulent Flow(Final)

    37/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    High Reynolds number phenomenon

    -  Express Newton's Law of viscosity in dimensionless form.

    +

    +

    + −=

      

      −=−== dy

    du

    d  y

    d u

    ud 

    dydu

    d ud 

    u Re1

    Re122  ρ 

    µ  ρ τ τ   

    Reynolds's number arises in dimensionless form of Newton's Law.- Similarity: compare two flows in similar geometries(same shape but

    different size)i.e. flows exhibiting geometrical similarity. Suppose

    Reynolds numbers of each flow are the same though d,u, ρ   and µ  of

    each flow may be individually different. Then as a consequence of theabove equation each flow will have the same dimensionless distribution

    of stress and velocity gradient as a function of position,

  • 8/16/2019 Turbulent Flow(Final)

    38/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Stress and velocity gradient as a function of position, provided each has the same

    Reynolds number;i.e. u+ = f(y+) kinetic similarity

    τ+ = g(y+) dynamic similarity.

    The consequence is that friction factor (dimensionless wall shear stress) can be

    considered a unique function of Re.Consider a cylindrical element of diameter d and length of δx

    Viscous forces ∝    xd dr 

    duδ π µ  .  

    Interia forces ∝   dt du xd e   δ π 4

    2

     

    Re≡∝dt 

    dr d 

    cesViscousFor 

    ces InteriaFor 

    µ 

     ρ  

    High Re-interia forces dominate → Turbulent flowLow Re-viscous forces dominate → Laminar flow

    Summery Notes on Turbulence

  • 8/16/2019 Turbulent Flow(Final)

    39/41

       A   d  v

      a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    Summery Notes on Turbulence

    •  Most flows are turbulent both in nature and engineering.

    • 

    A turbulent pipe flow can be divided into three regions:

    a)  Laminar sublayer - no eddies.

     b)  Transition region – damped eddies (size y)

    c)  Turbulent core – undamped eddies (size d)

    • 

    Turbulent velocities:

    uuut  ˆ+=   {Instantaneous = local mean + fluctuant}

    ∫=T 

    t dt uT 

    u0

    1  {T is a time long enough to include many eddies}

    2

    1

    0

    2 ]ˆ1

    [ ∫=′T 

    dt uT 

    u   {RMS velocity characterizes turbulence}

    wvu   ′≅′≅′   {Turbulence is homogenous}1.0/   ≅′   uu   {Turbulence intensity}

    •   Newton's Law in turbulent flows. It is tempting to write

    dy

    dut )(/   ν ν  ρ τ    +−=  

    Turbulence for ityVis Eddy

    olecula for ityVis Kinematic

    t  cos

    cos

    ν 

    ν  

  • 8/16/2019 Turbulent Flow(Final)

    40/41

       A   d  v  a  n  c  e   d   F   l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

       ν is a fluid property and constant.

     νt is a flow property and depends on environment (eddy size)

    • 

    Rewrite above equation as• 

    dy

    ud vv t 

    )()(  ρ 

    τ    +−=   dimensions22

    ][

    ][

    ][

    ][

     L

     L

     M  

    (momentum flux)=(momentum diffusivity)(gradient of mom/vol)

    Large  ν implies rapid mixing. Diffusivity has dim. [L]2/[T]

     νT >>  ν : Turbulent flows are rapidly mixed due to eddies.

    •  Energy in turbulent flows: turbulent dissipates considerable energy.Large eddies take energy from mean floe, but are not efficient indispersing energy. Small eddies do dissipate energy efficiently. There

    is a transfer of energy to the small eddies, which appears as heat due tofrictional effects.

    Smallest eddy size, η, si given by ( dimensional analysis)

    4

    3

    )(

    −′=

    v

    d u

    η   {η is also a good estimate of laminar sub-layer thickness}

     

  • 8/16/2019 Turbulent Flow(Final)

    41/41

       A   d  v  a  n  c  e   d   F

       l  u   i   d   M  e  c

       h  a  n   i  c  s

    Chemical & Petroleum Engineering Department

    Sharif University of Technology

    •  Rynolds Number arises in Newton's Law in dimensionless form

    +

    ++ −=−=−==

    dy

    du

    d  yd 

    uud 

    d udy

    du

    uu Re

    1

    )/(

    )/(222  ρ 

    µ 

     ρ 

    µ 

     ρ 

    τ τ   

    It may be interpreted as the ratio (interia forces / viscous forces).

    •  Large Re implies dominance of interia forces which promote turbulence.Small Re will dominance of friction (viscous) forces gives laminar flows.

    Similarity (Consider different flows of same Reynolds Number) If we have

    geometric similarity (e.g. two different pipe flows) then we will havekinematic similarity (same du

    +/dy

    +) and dynamic similarity (same τ

    +).

    Result

    f = τw

    += f(Re)