48
Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Embed Size (px)

Citation preview

Page 1: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Turn in the following…

Balancing Equations WS-

Word Equation WS- 1 page WS

Predicting Products Packet- tear off the last page…put your name on it!

Page 2: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

You have 55 minutes to do the test…

2

Page 3: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

3

Chapter 8- Stoichiometry

Big, Scary name….Just calculations

chemists do!

Page 4: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

4

Copper Series- Lab 1

Write and balance the equation for the reaction of copper (Cu) plus nitric acid (HNO3) to produce Copper (II) nitrate (Cu(NO3)2) plus water (H2O) and nitrogen dioxide (NO2).

Cu + 4HNO3 → Cu(NO3)2 + 2H2O + 2NO2

Page 5: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

5

Lab ConcernsUse the same scales for each lab… they mass slightly

different.

Be sure to record any lab mistakes… too much reactant, lost product, other booboos.

You will be calculating percent error and trying to explain the errors.

You may never say that you made a mistake in your calculations-- there are 3 of you working, there

should be no mistakes!

Page 6: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

6

You will be working in groups of 3- be sure to exchange contact info and be sure to communicate if you will be absent.

Jobs Rotate- Write you job at the top of each lab.1. Leader- Keeps all on task and makes sure directions are followed.2. Scientist- Follows directions and is in charge of making sure no mistakes occur.3. Mathematician- insures calculations are correct.

I will pick one lab per group to grade-- you get whatever score they get…make sure everyone in

your group is completing the lab!

Page 7: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Procedure- Using the sharpie.. Put your period and lab station on the beaker. Ex: 2-1

1.Determine the mass of your empty beaker.

2.Determine the mass of the copper.

3.Send your scientist to the stock room to put 20mL of HNO3 into the beaker

4.Put on the watch glass and place on the hot plate in the fume hood.

7

Page 8: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Warm Up

Check to be sure that you have the first 4 blanks of your Series 1 Lab complete.

8

Page 9: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

9

Quantitative Analysis

Composition stoichiometry- mass relationships of elements in compounds.

Reaction Stoichiometry- involves mass relationships between the reactants and products in reactions

Page 10: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

10

What do the coefficients mean?

Mole Ratios

Coefficients indicate the amount of each material (Moles or molecules) present in a reaction.

C6H12O6 + 6O2 6CO2 + 6H2O

So… when looking at a balanced equation we can derive a whole set of conversion factors!

Page 11: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

11

Ooh! Lets write a bunch!!

C6H12O6 + 6O2 6CO2 + 6H2O

Page 12: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

12

Mole Ratio- The Definition…

A conversion factor that relates the amounts in moles of any two substances involved in a chemical reaction.

Page 13: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

13

Mole Ratios allow us to do all sorts of cool calculations. Yipee!

Ex: How many moles of CO2 are produced when 0.38 mol C6H12O6 are burned according to the following reaction?

C6H12O6 + 6O2 6CO2 + 6H2O

Page 14: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

14

Mole to Mole Calculations….

Fe2O3 + 3CO 2Fe + 3CO2

1. How many mol CO are necessary to react with 2.2 mol Fe2O3?

2. How many mol Fe are produced if 1.8 mol CO is used?

Page 15: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

15

Fe2O3 + 3CO 2Fe + 3CO2

1. How many mol CO are necessary to react with 2.2 mol Fe2O3?

Page 16: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

16

Mole Ratios

Fe2O3 + 3CO 2Fe + 3CO2

b) How many mol Fe are produced if 1.8 mol CO is used?

Page 17: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

17

Stoichiometric Conversions

Congratulations! Now that you’ve mastered the only new conversion necessary for stoichiometry, We can convert our mole into other things using Stoichiometry!

Page 18: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

18

Moles of A Moles of BMass of A Mass of B

Number of particles of A Number of particles of B

Volume of gaseous A Volume of gaseous B

The following chart summarizes the conversions we can do:

Page 19: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

19

So, can we use stoichiometry to determine the amount of product made in types of reactions lab?

We used 0.2 g of CuCO3 in the decomposition reaction.

How much CuO was produced?

CuCO3 CuO + CO2

Page 20: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

21

Can we determine the amount of magnesium oxide produced in the

synthesis reaction?

We used about 0.5 g of Mg.

Mg + O2 MgO

a. Balance the equation.

b. Place the mass of Mg used in the upper left.

c. Use DA to determine the theoretical mass of MgO.

Page 21: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

22

Important Vocabulary Terms

Theoretical yield- the maximum amount of product that can be produced from a given amount of reactant.

Actual Yield- measured amount of a product obtained from a reaction (in lab).

Page 22: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

23

What is the theoretical yield (in grams) of both products in the following reaction if 2.5 g of HCl is used?

Zn + HCl ZnCl2 + H2

a. Balance the equation

b. Put 2.5g HCl in the upper left

c. Solve for g of zinc chloride.

d. Solve for g of hydrogen.

Page 23: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Warm Up

On your copper lab, #5 asks you to determine the theoretical yield for Cu(NO3)2. Do the calculation using your mass determined in #1.

24

Page 24: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Let’s make sure you are doing the other calculations correctly.

25

Page 25: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

How did you do on the Mass – Mass WS?

26

Page 26: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

27

There are a bunch of other calculations we can do using the flow chart…

Moles of A Moles of BMass of A Mass of B

Number of particles of A Number of particles of B

Volume of gaseous A Volume of gaseous B

Page 27: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

28

Stoichiometric Conversions

How many grams of oxygen are produced when 17.5g of H2O2 decompose according to the following equation?

H2O2 H2O + O2

(Don’t forget to balance the equation!)

Page 28: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

29

Stoichiometric Conversions

How many liters of oxygen are produced when 17.5g of H2O2 decompose according to the following equation?

H2O2 H2O + O2

(Don’t forget to balance the equation!)

Page 29: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

30

How many molecules of H2O2 are needed to make 3.5 x 1023 molecules of water?

2H2O2 2H2O + O2

Page 30: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

31

How many molecules of H2O2 are needed to make 5.00 g of water?

2H2O2 2H2O + O2

Page 31: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

32

Try these!

CaCO3 + Mg → MgCO3 + Ca

a) How many molecules of Ca are produced if 39.4g of MgCO3 are also produced?

b) How many grams of Mg are necessary to react with 0.97 mol CaCO3?

Page 32: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Copper Lab- Series 2

1. Obtain the mass of your Cu(NO3)2

2. Add about 20 ml of distilled water.

3. Add 30 ml of NaOH

4. Obtain the mass of your filter paper!!!

5. Filter the mixture- rinse it well with distilled water.

6. Wash out your original beaker (check to be sure it is still marked with your period and lab station.)

33

Page 33: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

34

Percent Yield In a perfect world, every student would get a perfect

score on every test.

Alas, we do not live in a perfect world

How do we determine the score you got on the test?

Page 34: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

35

Percent Yield (cont’d)

In a perfect world, every reaction would produce the amount of material it is supposed to.

Alas, we do not live in a perfect world.

Percent yield = the ratio comparing the amount of material actually generated in a reaction to the maximum amount possible.

Percent Yield = Actual Yield x 100

Theoretical Yield

l

Page 35: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

36

Percent Yield (cont’d) The theoretical yield is calculated using

stoichiometry.

The actual yield is found by experimentation.

Key Point: You can never predict the actual yield or the percent yield.

Page 36: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Percent Yield

2Mg + O2 → 2MgO

3.2 g of Magnesium reacted with excess oxygen. 4.9g of MgO was produced in the lab.

Calculate the percent yield.

1.Balance Equation

2.Calculate Theoretical Yield

3.Calculate % Yield

37

Page 37: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

38

Warm Up-

Sb2S3(s) + 3Fe(s) 2Sb(s) + 3FeS(s)

When 22.3g of Sb2S3 reacts with excess of Fe, 12.7g Sb is produced in the lab. What is the percent yield?

Page 38: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Questions on the Homework?

39

Page 39: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Copper Lab- Series 3

The third reaction has copper (II) oxide and water being produced from copper (II) hydroxide. Write and balance the equation. What type of reaction is it?

40

Page 40: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Copper- Series 3

1. Determine the mass of the Cu(OH)2. Don’t forget to subtract the mass of the beaker and filter paper!

2. Open up the filter paper containing your product and transfer as much of the copper hydroxide as you can into the large beaker. Put the filter paper in too.

3. Add 100 ml of distilled water.

4. Put the large beaker on the hot plate and heat to a gentle boil.

5. Use forceps to remove the filter paper

6. Use the squirt bottle to rinse the filter paper.

7. Decant as much water as possible.

8. Transfer back into your beaker.

9. Allow product to settle and decant more water.

41

Page 41: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Work on your calculations!

42

Page 42: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Warm Up

The theoretical yield of CuO, calculated using stoichiometry was 45.3 g. The actual yield was 46.2 g. Determine the percent yield.

Is the yield high or low?

What could explain the yield?

43

Page 43: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

44

Limiting / ExcessReagents

Let’s think about a peanut butter sandwich…

The recipe calls for 2 pieces of bread and 2 Tsp. of peanut butter.

Write the reaction:

Page 44: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Now, we only have so much of each reactant…

Huge tube o Skippy 12 pieces of bread

How many sandwiches can we make?

45

Page 45: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

46

Limiting Reagent (cont’d) Chemical reactions are much the same way. The balanced

chemical equation is the recipe, telling you how much of each thing you need.

Often, chemicals are not mixed in the correct amounts, implying that one chemical will run out before the others.

The chemical that runs out first is called the limiting reagent.

The chemical that has some left over… is in excess. (The excess reagent)

Page 46: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

47

Limiting Reagent (cont’d)

a. Calculate the amount of reactant necessary to use up the given quantities (2 calculations).

b. Compare what you have to what you need to determine limiting.

c. Use the original amount to determine the maximum amount of products.

d. Subtract what you use from what you have to determine amount of excess.

Page 47: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Limiting and Excess Calculations…

Ex: 5.00g of HCl is mixed with 4.00g of NaOH according to the following reaction:

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

48

Page 48: Turn in the following… Balancing Equations WS- Word Equation WS- 1 page WS Predicting Products Packet- tear off the last page…put your name on it!

Limiting/Excess

You react 54.8g of silver nitrate with 22.2g of calcium chloride according to the following rxn.

AgNO3 + CaCl2 → AgCl + Ca(NO3)2

1.Balance the equation.

2.Determine the limiting.

3.Calculate the maximum amount of AgCl

4.Calculate the excess.

49