4
Types of PCBs A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, tracks or traces etched from copper sheets laminated onto a non-conductive substrate. It is also referred to as printed wiring board (PWB) or etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA). PCBs are inexpensive, and can be highly reliable. They require much more layout effort and higher initial cost than either wire-wrapped or point-to-point constructed circuits, but are much cheaper and faster for high-volume production. Much of the electronics industry's PCB design, assembly, and quality control needs are set by standards that are published by the IPC organization. The board is typically coated with a solder mask that is green in color. Other colors that are normally available are blue and red. There are quite a few different dielectrics that can be chosen to provide different insulating values depending on the requirements of the circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM- 1 or CEM-3. Well known prepreg materials used in the PCB industry are FR-2 (Phenolic cotton paper), FR-3 (Cotton paper and epoxy), FR-4 (Woven glass and epoxy), FR-5 (Woven glass and epoxy), FR-6 (Matte glass and polyester), G-10 (Woven glass and epoxy), CEM-1 (Cotton paper and epoxy), CEM-2 (Cotton paper and epoxy), CEM-3 (Woven glass and epoxy), CEM-4 (Woven glass and epoxy), CEM-5 (Woven glass and polyester). Thermal expansion is an important consideration especially with BGA and naked die technologies, and glass fiber offers the best dimensional stability. The thickness of the PCB can be 1.0mm, 1.2mm or 1.6mm. They can be single sided or double sided with cooper clad of 1 oz or 2 oz. There are three common "subtractive" methods (methods that remove copper) used for the production of printed circuit boards: 1. Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits. 2. Photoengraving uses a photomask and chemical etching to remove the copper foil from the substrate. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser- printed transparencies are typically employed for phototools; however, direct laser imaging techniques are being employed to replace phototools for high-resolution requirements. 3. PCB milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a 'PCB Prototyper') operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis. Data to drive [email protected]

Types of PCB and Wave solder soldering

  • Upload
    crina

  • View
    229

  • Download
    2

Embed Size (px)

DESCRIPTION

types annd wave solder

Citation preview

  • Types of PCBs

    A printed circuit board, or PCB, is used to mechanically support and electrically connect electronic components using conductive pathways, tracks or traces etched from copper sheets laminated onto a non-conductive substrate. It is also referred to as printed wiring board (PWB) or etched wiring board. A PCB populated with electronic components is a printed circuit assembly (PCA), also known as a printed circuit board assembly (PCBA).

    PCBs are inexpensive, and can be highly reliable. They require much more layout effort and higher initial cost than either wire-wrapped or point-to-point constructed circuits, but are much cheaper and faster for high-volume production. Much of the electronics industry's PCB design, assembly, and quality control needs are set by standards that are published by the IPC organization.

    The board is typically coated with a solder mask that is green in color. Other colors that are normally available are blue and red. There are quite a few different dielectrics that can be chosen to provide different insulating values depending on the requirements of the circuit. Some of these dielectrics are polytetrafluoroethylene (Teflon), FR-4, FR-1, CEM-1 or CEM-3. Well known prepreg materials used in the PCB industry are FR-2 (Phenolic cotton paper), FR-3 (Cotton paper and epoxy), FR-4 (Woven glass and epoxy), FR-5 (Woven glass and epoxy), FR-6 (Matte glass and polyester), G-10 (Woven glass and epoxy), CEM-1 (Cotton paper and epoxy), CEM-2 (Cotton paper and epoxy), CEM-3 (Woven glass and epoxy), CEM-4 (Woven glass and epoxy), CEM-5 (Woven glass and polyester). Thermal expansion is an important consideration especially with BGA and naked die technologies, and glass fiber offers the best dimensional stability.

    The thickness of the PCB can be 1.0mm, 1.2mm or 1.6mm. They can be single sided or double sided with cooper clad of 1 oz or 2 oz.

    There are three common "subtractive" methods (methods that remove copper) used for the production of printed circuit boards:

    1. Silk screen printing uses etch-resistant inks to protect the copper foil. Subsequent etching removes the unwanted copper. Alternatively, the ink may be conductive, printed on a blank (non-conductive) board. The latter technique is also used in the manufacture of hybrid circuits. 2. Photoengraving uses a photomask and chemical etching to remove the copper foil from the substrate. The photomask is usually prepared with a photoplotter from data produced by a technician using CAM, or computer-aided manufacturing software. Laser-printed transparencies are typically employed for phototools; however, direct laser imaging techniques are being employed to replace phototools for high-resolution requirements. 3. PCB milling uses a two or three-axis mechanical milling system to mill away the copper foil from the substrate. A PCB milling machine (referred to as a 'PCB Prototyper') operates in a similar way to a plotter, receiving commands from the host software that control the position of the milling head in the x, y, and (if relevant) z axis. Data to drive

    [email protected]

  • the Prototyper is extracted from files generated in PCB design software and stored in HPGL or Gerber file format.

    What is Wave soldering??

    Wave soldering is a large-scale soldering process by which electronic components are soldered to a printed circuit board (PCB) to form an electronic assembly. The name is derived from the use of waves of molten solder to attach metal components to the PCB. The process uses a tank to hold a quantity of molten solder; the components are inserted into or placed on the PCB and the loaded PCB is passed across a pumped wave or waterfall of solder. The solder wets the exposed metallic areas of the board (those not protected with solder mask, a protective coating that prevents the solder from bridging between connections), creating a reliable mechanical and electrical connection. The process is much faster and can create a higher quality product than manual soldering of components.

    Wave soldering is used for both through-hole printed circuit assemblies, and surface mount Terminal (SMT). In the latter case, the components are glued by the placement equipment onto the printed circuit board surface before being run through the molten solder wave.

    As through-hole components have been largely replaced by surface mount components, wave soldering has been supplanted by reflow soldering methods in many large-scale electronics applications. However, there is still significant wave soldering where SMT is not suitable (e.g. large power devices and high pin count connectors), or where simple through-hole technology prevails (certain major appliances).

    Wave soldering Process...

    There are many types of wave solder machines, however the basic components and principles of these machines are the same. A standard wave solder machine consists of three zones: the preheating zone, the fluxing zone, and the soldering zone. An additional fourth zone, cleaning, is used depending on the type of flux applied. The basic equipment used during the process is a conveyor that moves the PCB through the different zones, a

    [email protected]

  • pan of solder used in the soldering process, a pump that produces the actual wave, the sprayer for the flux and the preheating pad. The solder is usually a mixture of metals. A typical solder has the chemical makeup of 50% tin, 49.5% lead, and 0.5% antimony.

    It is important that the PCBs be allowed to cool at a reasonable rate. If they are cooled too fast, then the PCB can become warped and the solder can be compromised. On the other hand if the PCB is allowed to cool too slowly, then the PCB can become brittle and some components may be damaged by heat. The PCB should be cooled by either a fine water spray or air cooled to decrease the amount of damage to the board.

    Some types of flux, called "no-clean" fluxes, do not require cleaning; their residues are benign after the soldering process. Others, however, require a cleaning stage, in which the PCB is washed with solvents and/or deionized water to remove flux residue.

    The following are characteristics of the wave soldering process:

    * The solder connection is very reliable and also a clean connection * The process is automated * The process reuses the flux and solder that is left over * It does require inspection, some touch ups, and also testing * The productivity and efficiency is increased

    What is Solder??

    Solder is a fusible metal alloy with a melting point or melting range of 90 to 450 C (200 to 840 F), used in a process called soldering where it is melted to join metallic surfaces. It is especially useful in electronics and plumbing. Alloys that melt between 180 and 190 C are the most commonly used.

    What is Lead solder??

    Tin/lead solders, also called soft solders, are commercially available with tin concentrations between 5% and 70% by weight. The greater the tin concentration, the greater the solders tensile and shear strengths. At the retail level, the two most common alloys are 60/40 Sn/Pb which melts at 370 F or 188 C and 63/37 Sn/Pb used principally in electrical work. The 63/37 ratio is notable in that it is a eutectic mixture, which means:

    1. It has the lowest melting point (183 C or 361.4 F) of all the tin/lead alloys; and 2. The melting point is truly a point not a range.

    At a eutectic composition, the liquid solder solidifies at a single temperature. Tin/lead solder solidifies to fine grains of nearly pure lead and nearly pure tin phases, there are no tin/lead intermetallics and no solubility of tin in lead or lead in tin, as can be seen from a tin/lead equilibrium diagram.

    [email protected]

  • In plumbing, a higher proportion of lead was used, commonly 50/50. This had the advantage of making the alloy solidify more slowly, so that it could be wiped over the joint to ensure watertightness, the pipes being physically fitted together before soldering. Although lead water pipes were displaced by copper when the significance of lead poisoning began to be fully appreciated, lead solder was still used until the 1980s because it was thought that the amount of lead that could leach into water from the solder was negligible from a properly soldered joint. The electrochemical couple of copper and lead promotes corrosion of the lead and tin, however tin is protected by insoluble oxide. Since even small amounts of lead have been found detrimental to health, Lead in plumbing solder was replaced by silver (food grade applications) or antimony, with copper often added, and the proportion of tin was increased.

    Most lead-free replacements for conventional Sn60/Pb40 and Sn63/Pb37 solder have melting points from 520 C higher, though solders with much lower melting points are available.

    In electronics, the traditional use of solder was to fortify mechanically made electrical contacts, e.g. two solid copper wires twisted together. This was in part due to the higher electrical resistance of solder versus copper. Printed circuit boards use solder joints to mount components and create a circuit, also replacing the use of solid solder with solder paste.

    What is Flux??

    Flux is a reducing agent designed to help reduce (return oxidized metals to their metallic state) at the points of contact to improve the electrical connection and mechanical strength. The two principal types of flux are acid flux, used for metal mending and plumbing, and rosin flux, used in electronics, where the corrosiveness of acid flux and vapours released when solder is heated would risk damaging delicate circuitry.

    Due to concerns over atmospheric pollution and hazardous waste disposal, the electronics industry has been gradually shifting from rosin flux to water-soluble flux, which can be removed with deionised water and detergent, instead of hydrocarbon solvents.

    In contrast to using traditional bars or coiled wires of all-metal solder and manually applying flux to the parts being joined, some light hand soldering since the mid-20th century has used flux-core solder. This is manufactured as a coiled wire of solder, with one or more continuous bodies of non-acid flux embedded lengthwise inside it. As the solder melts onto the joint, it frees the flux and releases that on it as well.

    [email protected]