23
Comparability of UEP Signatures Measured under Varying Environmental Conditions David Schäfer 1,* , Jens Doose 2 , Markus Pichlmaier 2 , Andreas Rennings 1 and Daniel Erni 1 1 General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, D-47048 Duisburg, Germany 2 GF 520, Technical Center for Ships and Naval Weapons, Naval Technology and Research (WTD 71), Bundeswehr, D-24340 Eckernförde, Germany * Lecturer: [email protected], http://www.ate.uni-due.de/ Presented at: MARELEC Conference 2013, Helmut-Schmidt-University, Hamburg, Germany 1 Introduction The Planet-Quest-Trial has shown that the underwater electric potential (UEP) signa- ture of a vessel can vary significantly, depending on the environmental conditions during measurement. At first view, it is not possible to find a simple conversion prescription like a scaling factor to translate UEP data between different measuring facilities. This leads to problems in comparability, in risk estimation for mine countermeasure (MCM) operations, and it also affects the practicability of the AMP-14 standard. The German Navy has a special interest in this topic, because they have to deal with distinct de- viances of their UEP signatures, most likely caused by the unusually low salinity of the Baltic Sea. In our contribution we explain and quantify how UEP signatures depend on several envi- ronmental conditions, and how this affects the comparability of UEP signatures ranged at different measuring facilities. Beside obvious influences, like water-conductivity and sensor depth, we also consider variations in the conductivity of the seabed, the influ- ence of the waterline, the UEP far-field characteristics and fouling related changes in the polarization behavior. Our conclusions are based on analytical calculations, numeri- cal simulations and can be cross-linked to measured data and practical experiences. By using the mirror/image method on multipole approximations of UEP signatures, impor- tant relations in the context of different field characteristics can be derived analytically. Other dependencies are determined using numerical FEM simulations, which include non-linear polarization curves as boundary conditions.

(UEP) Signature

Embed Size (px)

Citation preview

Page 1: (UEP) Signature

Comparability of UEP Signatures Measuredunder Varying Environmental Conditions

David Schäfer 1,∗, Jens Doose 2, Markus Pichlmaier 2,Andreas Rennings 1 and Daniel Erni 1

1General and Theoretical Electrical Engineering (ATE), Faculty of Engineering,University of Duisburg-Essen, D-47048 Duisburg, Germany

2GF 520, Technical Center for Ships and Naval Weapons, Naval Technology and Research(WTD 71), Bundeswehr, D-24340 Eckernförde, Germany

∗Lecturer: [email protected], http://www.ate.uni-due.de/

Presented at: MARELEC Conference 2013, Helmut-Schmidt-University, Hamburg, Germany

1 Introduction

The Planet-Quest-Trial has shown that the underwater electric potential (UEP) signa-ture of a vessel can vary significantly, depending on the environmental conditions duringmeasurement. At first view, it is not possible to find a simple conversion prescriptionlike a scaling factor to translate UEP data between different measuring facilities. Thisleads to problems in comparability, in risk estimation for mine countermeasure (MCM)operations, and it also affects the practicability of the AMP-14 standard. The GermanNavy has a special interest in this topic, because they have to deal with distinct de-viances of their UEP signatures, most likely caused by the unusually low salinity of theBaltic Sea.

In our contribution we explain and quantify how UEP signatures depend on several envi-ronmental conditions, and how this affects the comparability of UEP signatures rangedat different measuring facilities. Beside obvious influences, like water-conductivity andsensor depth, we also consider variations in the conductivity of the seabed, the influ-ence of the waterline, the UEP far-field characteristics and fouling related changes inthe polarization behavior. Our conclusions are based on analytical calculations, numeri-cal simulations and can be cross-linked to measured data and practical experiences. Byusing the mirror/image method on multipole approximations of UEP signatures, impor-tant relations in the context of different field characteristics can be derived analytically.Other dependencies are determined using numerical FEM simulations, which includenon-linear polarization curves as boundary conditions.

Page 2: (UEP) Signature

All results were acquired during a joint research project of the University of Duisburg-Essen (UDE) and the WTD 71.

1.1 RIMPASSE / Planet-Quest-Trial

Figure 1 shows the German research vessel “Planet” and the Canadian research vessel“CFAV Quest”. During the “Radar Infrared electro-Magnetic Pressure Acoustic ShipSignature Experiments” (RIMPASSE), which sometimes are also called “Planet-Quest-Trial”, those two vessels were investigated regarding their underwater and above watersignatures. The idea of the RIMPASSE was a sort of round robin test, namely to carryout the same experiments for the same naval vessels but at different NATO measuringfacilities, so that the measurements could be compared.

The RIMPASSE confirmed prior observations, that the UEP signature of a naval vesselcan vary significantly depending on the environmental conditions. An interesting andimportant publication regarding this topic is the conference paper “On the Environmen-tal Impact on the UEP Signature from Submarines” from Claésson and Krylstedt [1],presented at the MARELEC 2011.

Figure 1: The German research vessel “Planet” (left, from [2]) and the Canadian researchvessel “CFAV Quest” (right, from [3]).

1.2 Underwater Electric Potential (UEP) Signature

This section shall give a brief introduction to underwater electric potential (UEP) sig-natures. UEP signatures are measurable as electric fields, electric current densities orelectric potentials within the water in the vicinity of a naval vessel (cf. Figure 2). Theyare caused by electric currents in the water which stem from electrochemical reactions(corrosion) and corrosion protection (CP) systems like Sacrificial Anode Cathodic Pro-tection (SACP) or Impressed Current Cathodic Protection (ICCP).

Page 3: (UEP) Signature

κw

κb

E,J

Figure 2: Sketch of typical current paths in the vicinity of a submarine.

In Figure 3 two common representations of UEP signatures can be seen: “Signaturelines” (cf. Figure 3, left) are graphs containing the components of the electric field, andcorresponding to a drive-by-scenario where the vessel passes the sensors. The visualiza-tion of the electric field in a cutplane, usually below the vessel, is called “signature plane”(cf. Figure 3, right). Beside that, UEP signatures can be represented by max-values orpeak-to-peak-values, dependent on what they are supposed to explain. UEP signaturescan be time dependent and are then called Extremely Low Frequency Electric fields(ELFE).

Figure 3: Common representations for UEP signatures: Signature line (left) and signa-ture plane (right).

Page 4: (UEP) Signature

2 Environmental Factors of Influence

In this main section we will discuss important environmental factors influencing UEP,and whether or not UEP signatures could be converted between different values of thisfactors, and if so, how this conversion should be processed.

2.1 Polarization Behavior

The electrochemical behavior of metal-seawater interfaces can be described by non-linearpolarization diagrams (cf. Figure 4, right side) [4]. A polarization diagram consists ofpolarization curves, which represent the electric potential at the interface as a function ofthe current density. There is usually more than one polarization curve in a polarizationdiagram, describing different polarization behavior for altering measurement conditionssuch as various pre-exposure times or scan rates.

Figure 4: Potential distribution on the hull of a submarine (left). The color code is basedon [5] and represent different potentials / operating points of the polarizationdiagram (right) (Source: Hack, H. P.; Naval Polarization Atlas [6])

For a naval vessel in seawater the operating point on the polarization curve of every partof its surface will “move along” the polarization curve, until a steady state is reached.This state implicates a distinct current density distribution as well as a distinct potential,and therefore a distinct UEP signature. As a result, the UEP signature will be changedby everything that is affecting the polarization behavior, most notably:

• Painting conditions of the protective hull coatings.

• Macro- and micro fouling, e.g. biofilms, acorn barnacles or mussels.

• Pre-exposure time (especially important for submarines).

• The pH-value of the water, as it can affect passivation.

Page 5: (UEP) Signature

Figure 5: Macro- and micro fouling affects the polarization behavior.

Regarding the polarization behavior it does not seem possible to find neither a simple nora rigorous conversion prescription for the UEP signature. The only options for predictingthe change of the UEP signature due to different polarization behavior are thereforeconfined to numerical simulations or scaled models.

2.2 Measurement Depth

As expected, an UEP signature will change depending on the distance and alignment(depth and athwart distance) between vessel and sensors during its measurement (cf.Figure 6).

Figure 6: Changing the measurement depth from 20 m to 30 m has a clear impact on theamplitude of the UEP signature line.

Page 6: (UEP) Signature

Based on the UEP field characteristics it is possible to find an approximation for convert-ing UEP signatures to other depths/distances. In order to achieve this, a theoretical ap-proach called “multipole expansion” can be used, where the UEP excitation is describedby an arrangement of current point sources. They excite the following potential:

ϕ(~r) =1

4πκ·

N∑

i=1

Ii

|~r − ~ri|(1)

=1

4πκ·

∞∑

n=0

r−(n+1)N∑

i=1

Ii rn

iPn(cosγ) (2)

The multipole expansion makes it possible to separate the total field into different mul-tipole orders (order n). For example, the zeroth order multipole represents the monopolemoment, or in other words the total electric current IG delivered by all sources, whichis zero for any common UEP excitation:

ϕn=0(~r) =1

4πκr·

N∑

i=1

Ii (3)

=IG

4πκr(4)

= 0 (5)

Therefore the dipole moment (multipole order 1) determines the UEP far field, as it hasthe slowest spatial decay ratio of all (non-zero) multipole orders:

ϕn=1(~r) =1

4πκr2·

N∑

i=1

Ii ~ri · ~er (6)

=~p · ~er

4πκr2(7)

As the electric field is the gradient of the electric potential (dr−2/dr = −2r−3), thisleads to the following conversion prescription for the UEP far field:

|E|new = |E|old ·(rold)3

(rnew)3(8)

This is just a preliminary result, because first simulation results indicate, that the con-sideration of higher multipole orders significantly improves the conversion accuracy.

2.3 Seabed Conductivity

Depending on the consistence of a maritime seabed (sand, mud, rock, etc.) and thecontained seawater there can be a variation in the seabeds electrical conductivity. Ithas to be considered a very important factor of influence for UEP signatures, as navalinfluence mines are very close to or even buried in the seabed. Figure 7 clearly shows,

Page 7: (UEP) Signature

κw=3S/m

Electric

Field

κs=2S/m

κw=3S/m

Electric

Field

κs=0.1S/m

UEP Signature

Ele

ctr

ic F

ield

x (m)

UEP Signature

Ele

ctr

ic F

ield

x (m)

Low Cond. Seabed

High Cond. Seabed

Figure 7: Varying the seabed conductivity between 2 S/m and 0.1 S/m leads to a quan-titatively and qualitatively change of the UEP signature.

that a variation of the seabed conductivity has a huge qualitatively and quantitativelyimpact on the UEP signature measured at a distance of 1 m above the seabed.

The effect on the UEP signature can be understood by looking at the field distributionsof a simple x- and z-dipole in the absence (cf. Figure 8) and in the presence (cf. Figure 9)of the seabed [7].

In free water (no seabed present) the maximum E-field value of the x-dipole consistsof both, an Ex- and an Ez-component. Contrary to this, the maximum E-field valueof the z-dipole foremost consists of an Ez-component. As expected, the maximum E-field strength for the z-dipole is twice as large as for the x-dipole. Now the seabedwith a conductivity of ten percent of the water conductivity (κs = 10% · κw) is placeddirectly underneath the signature line. A component-wise comparison of the signaturesin Figure 8 and Figure 9 indicates, that the Ex-components get boosted by the low-conducting seabed, while the Ez-component gets weakened. Surprisingly the maximumE-field value for the z-dipole is now weaker than for the x-dipole.

The interaction of x- and z-dipoles with the seabed was investigated before in detailin [7], by using the method of images [8] for conductive media. Based on this previousresearch results it seems likely, that an efficient component-wise conversion prescrip-tion for UEP signatures can be derived, which translates data between different seabedconductivities.

Page 8: (UEP) Signature

UEP Field Distribution (z-Dipole)

Ele

ctr

ic F

ield

UEP Signature (-20m)

UEP Field Distribution (x-Dipole)

Ele

ctr

ic F

ield

UEP Signature (-20m)

Figure 8: In free water (no seabed present) the amplitude of the UEP signature line fora z-dipole is twice as high as for a x-dipole.

−40 −30 −20 −10 0 10 20 30 40

−20

−15

−10

−5

0

5

10

15

20

x (m)

z(m

)

−40 −20 0 20 40−2

−1.5

−1

−0.5

0

0.5

1

1.5

2x 10

−3

x (m)

−40 −30 −20 −10 0 10 20 30 40

−20

−15

−10

−5

0

5

10

15

20

x (m)

z(m

)

−40 −20 0 20 40−2

−1.5

−1

−0.5

0

0.5

1

1.5

2x 10

−3

x (m)

UEP Field Distribution (z-Dipole)

Ele

ctr

ic F

ield

UEP Signature (-20m)

UEP Field Distribution (x-Dipole)

Ele

ctr

ic F

ield

UEP Signature (-20m)

Figure 9: In the vicinity of a low conducting seabed the amplitude of the UEP signatureline for a z-dipole is lower than for a x-dipole. In comparison to Figure 8 itcan be seen, that the seabed enhances the Ex-component while weakening theEz-component at the same time.

Page 9: (UEP) Signature

2.4 Water Conductivity

For the German navy the water conductivity is a very important factor of influenceon UEP signatures, because the Baltic sea has a low salinity compared to e.g. the At-lantic or Pacific ocean (cf. Figure 10). This directly translates to a lower electrical waterconductivity.

Figure 10: Sea-surface salinity on 09.06.2010 in PSU = grams per liter (Source: BSH /http://www.demarine-umwelt.de)

In section 2.1 we already noticed, that a modification of the polarization behavior of themetal-water interface will alter its operating points, which results in a change of the UEPsignature. Unfortunately the operating points also change along with the water conduc-tivity, because the resistance along the current paths (e.g. resistance between anodesand defects) is changed. Therefore the same vessel will have a different, usually stronger,UEP signature (E-field) in the Baltic sea than it has e.g. in the Atlantic ocean.

Figure 11 displays the aforementioned effect by showing the maximum-signature-value(= max(|E(x)|)) as a function of the water conductivity. The polarization curves inthe simulation were set to be independent of the water conductivity, so the change ofthe UEP signature does only result from variated operating points (cf. Figure 11 leftside). For the same reasons as discussed in section 2.1, there seems to be no easy wayto convert UEP signature between different water conductivities. Again, the options arethe use of numerical simulations or scaled models.

Page 10: (UEP) Signature

Nonlinear due to

polarization curves

max(E

)

max(J

)

Maximum-Signature-Values for Different Water Conductivities

Figure 11: Numerically simulated maximum values of the UEP signature. The polariza-tion curves were set to be independent of the water conductivity. Thereforethe alteration of the UEP signature does only result from changed operatingpoints.

2.5 Waterline

Underwater electric currents can’t pass through the waterline into the non-conductingair, so they end up flowing parallel to the waterline instead (cf. Figure 12). This leadsto a higher current density in the water, as the waterline “confines” the UEP field intothe lower half-space (cf. Figure 13).

For submarines the influence of the waterline is especially important, because they areable to change their relative position to it (emerged, submerged, periscope depth). As aconsequence, there are two additional effects to consider:

1. When emerged, the hull of a submarine is only partially in contact with the water.Only the lower parts of the hull contribute to the UEP signature (cf. Figure 13).

2. When submerged, the upper hull segments of a submarine will have a relativelyshort pre-exposure time in the water. Their polarisation behavior can differ fromthe lower hull segments, and it’s possible that the polarization curves change dy-namically (unstable UEP signature).

For the emerged and submerged state of the submarine in Figure 13 the signatures ap-pear to be scaled versions of each other, so that it seems possible to find an approximateconversion prescription based on the method of images. This is not applicable, if the con-tribution and dynamics of the upper hull segments are too high, leaving only numericalsimulations and scaled models as options.

Page 11: (UEP) Signature

Figure 12: Numerically simulated field-lines of the E-field. The waterline “confines” theUEP field into the half-space of the water.

UEP Signature

Ele

ctr

ic F

ield

x (m)

UEP Signature

Ele

ctr

ic F

ield

x (m)

Emerged

Submerged

Electric

Field

Electric

Field

Water

Water

Water

Air

Figure 13: The vicinity of the waterline has a clear impact on the UEP signature line.

Page 12: (UEP) Signature

3 Conclusions

In this paper we demonstrated, that UEP signatures are never originated by the vesselalone, but always in interaction with its environment. Important factors of influence arethe polarization behavior of the vessels materials, the measurement depth, the seabedconductivity (if seabed is close by), the water conductivity and the relative position tothe waterline.

3.1 Comparability of UEP Signatures

If any (!) of these factors of influence differ, a direct comparison between UEP signaturesis barely reasonable. However, in many cases a comparisson seems possible by convertingUEP signatures between different environmental conditions. In this context we were ableto demonstrate, that some factors of influence are easier to convert than others. For asuccessfull conversion it is vital, that comprehensive information about all importantenvironmental conditions is collected during UEP measurements.

3.2 Risk Estimation for MCM Operations

Risk estimation is an important issue when operating in a naval mine field, e.g. duringmine countermeasure (MCM) operations. To improve the estimation accuracy, UEPsignatures measured in advance should be converted to actual/assumable environmentalconditions.

3.3 Practicability of the AMP-14 Standard

Firstly it should be noted, that the ATE has currently no insight into the classifiedAMP-14 documents, so that the following suggestions have to be understood as ratherqualitative statements.

The AMP-14 NATO standard concerns the protection of vessels from electromagneticmines, and (most likely) describes limit values for UEP signatures. As limit values arejust a special form of comparison, again all relevant environmental conditions should beconsidered, either in form of conversion prescriptions or as distinction of cases. If theenvironmental factors of influence are neglected, the practical relevance of fixed limitvalues is significantly reduced, because the UEP signature could then be substantiallyweaker or stronger under other environmental conditions.

Page 13: (UEP) Signature

4 Outlook

Subsequent to the current research project a follow-on project about UEP conversionhas recently been proposed by the UDE / ATE to the WTD 71 / GF 430 / GF 520. Itis planed for 9 to 24 months, starting in Oct. 2013. Beside a more detailed research ofall important factors of influence (cf. Figure 14) as discussed in this paper, it shall alsoconsider the combination of different conversions (which is not trivial) and optimizednear/far-field definitions for UEP fields.

x

z

y

zwl

zs

zu

dwlv

dvu dvs

UEP Sensorsdwls

κs

κw

Geometry,

Materials,

ConditionsSpeed

Figure 14: Overview of all important informations, that should be noted along with everyUEP signature measurement.

5 Nomenclature

Abbreviation Definition

AMP-14 Allied military publication: “Protection of Vessels from Electromag-netic Mines”

ATE General and Theoretical Electrical Engineering

CP Corrosion Protection

ELFE Extremely Low Frequency Electric field

ICCP Impressed Current Cathodic Protection

MCM Mine Countermeasure

MIW Mine Warfare

RIMPASSE Radar Infrared electro-Magnetic Pressure Acoustic Ship SignatureExperiments

Page 14: (UEP) Signature

Abbreviation Definition

SACP Sacrificial Anode Cathodic Protection

UEP Underwater Electric Potential

UDE University of Duisburg-Essen

WTD 71 Technical Center for Ships and Naval Weapons, Naval Technologyand Research

References

[1] H. Claésson and P. Krylstedt, “On the environmental impact on the uep signaturefrom submarines,” MARELEC Conference, June 2011.

[2] Wikimedia. (2013, June) Commons. [Online]. Available: http://commons.wikimedia.org/wiki/File:Neue_Planet_von_vorn.jpg

[3] M. Mackay. (2013, June) Tugfax. [Online]. Available: http://tugfaxblogspotcom.blogspot.de/2010_11_01_archive.html

[4] D. Schaefer, S. Zion, J. Doose, A. Rennings, and D. Erni, “Numerical simulationof UEP signatures with propeller-induced ULF modulations in maritime ICCP sys-tems,” MARELEC Conference, June 2011.

[5] BWB, VG 81 259 Teil 1-3. Kathodischer Korrosionsschutz von Schiffen. Außenschutzdurch Fremdstrom. (Norm), BWB Std., 2004.

[6] H. P. Hack, “Atlas of polarization diagrams for naval materials in seawater,” Carde-rock Division Naval Surface Warfare Center, Tech. Rep., 1995.

[7] D. Schäfer, A. Rennings, and D. Erni, “Einfluss der orientierung eines dipols auf seineuep signatur (WP#B),” Allgemeine und Theoretische Elektrotechnik, UniversitätDuisburg-Essen, Tech. Rep., 2011.

[8] J. Jackson, Classical Electrodynamics, 3rd ed. New Jersey: Wiley, 1999.

Page 15: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"$%$&"

������������� ������

'������������� �����������������������������������������������������������(

���)"*��)����������+ ��$�,

-������)����)���)�.���������/

!0--����)"����)����1������������/

��)"*��)� �������-�������$

��� )���)���)�����)�����������$

$������������������ ������ ��� �������������������� ��� �������������!�"��#�� ���$��#%���&�##��$&'(�')�$��#%��������*�

/���+������ �� ������������,��-#����.�"���/��-�#��.�"����� ����� ������#��� ���/�$�(����0���#1�����$&�'�'��� 2��3��������*�

,�����������"��4# �����5��&���4�����-6771114���4��&���4��7

� -�2���/3$4$5)3&)�"�$6)3&)/3$47���"������"�����������7��������8������

,��&#��� ��#����� ����84�94�������:,!�;����*#�-����������,��� �6�0,<�7����-6771114��*����&�*1���4���

������������� ������������������������������������������������������������������������� ���� !������"���#

"/%$&"

0����� =����� ����

� �=�:�,,��7�:����&>��#�&������ !���1�������� ��� �:���������!�:��,�������

� �"���*������� ���#���=��� �� :�����?�����0���"���� ���#���*���$�-��� ,��%������� ��"�� � /��������� ��"�� � /�������

� �� ��#��#� ��*-���%���� ���!�:�,�������#� ��#2��#��*������������@-������#�� :�� �� �%���� ���������:&�'�,������

� @�����2

� ����������

Page 16: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"4%$&"

*�����������*#-*�� ����%�����"9���"!���

� A������=��������� ���&������ �:��##����� ��#�� �,��-�,���������B-���*��#C

� *���:�,�*���B-���*��#��#�*��"�##��#��:������>��#�����������*��#������ ������#4

� 0���������:�!�:�#�������#�"�� D��#�����#�����E##�������4���������������F�G�

���������#��� ��"�##���A���H�>��#�C��:�������*6����-677����B%���#-�� �*4%���#-��4��7����I��I��I�� ��"�4��*��

���*����#��� ��"�##���A:����C����&�� �#�����-677 �**�#41�2�*����4���71�2�7����6.���I:����I"�I"��4J-��F�G�

������������� ������������������������������������������������������������������������� ���� !������"���#

";%$&"

*�����������**#�����<����������������������#���������

,2�� ����� -� ��� ������-���#�������"� ��� �����#�%*����4

� ���#�#������� ��� ��� �����#���1����6� ��� ��� ��*� ������ ���#�� ����#���4� �����#���-���� ������:��# #��*#4

� ��**����-��#������#����!�:�#�������#6� A,�����������C�����"�&% &# ������4� A,��������-���C�� ��-����4� A��B4&"����C��A:��2&��&-��2&"����C���� 4

� �B���*�� ���1����K4���� ��� �����#�������

!�:�#��������-���!�:�#�����������

Page 17: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"=%$&"

������������>������� �*� �������*#�����?�����@�������

� ������� ��� ��*� ���%���"������*����&#��1���������� �#��#���# ��%���% �-�����?����� ��"�#4�F(�8G

� *� �����������:�������7-�##�"����7-�����& ��4�L�-�����?�����%���"����L��-�������-���#�L�!�:4

� �����A�����:��"�� ����� ����������-�����?�����%���"������ �#�����!�:�#�������4

� 0�����:�� .�*��� ���#�*������#4� , �����*����#4

:������� �*� �-�����?�����������*����<M&)��,������,��� �6�<� 2��<4�:4N�.�"���:�����?���������#�F'G�

�� ��7*� ����������� �#�����-�����?�����%���"���4

:�������&��#���%��������������������#�%*����4����� ����#���-��#����������-�������#�7��-�������-���#�������-�����?����� ��"�#4

������������� ������������������������������������������������������������������������� ���� !������"���#

"5%$&"

������������>������� �*� �������**#���������������

� ����!�:�,�������#� �"����%������������*��#���*�����-��#O

� !#���A*����-�����B-�#��C�� �!�:��B ������� ��%����# ��%���% ���������*����� ������-����#��� �#6

������������-�������������;��6

� ,�-�����������������������������*����-���������#4

� ��� ?�������!�:������ ���� ����#�� #�������� ����� �"��#���-��# ��-���4

���������-�� �*���#�

Page 18: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"&%$&"

������������>������� �*� �������***#�����������������

������������� ������������������������������������������������������������������������� ���� !������"���#

"B%$&"

������������>������� �*� �������*�#�����������������

� >����<�������#��%���-��#���

� ����B&$�-���6��B�*�*��&����� �#�#�#����B&�����?& �*-���4

� ����?&$�-���6��B�*�*��&����� �#�#�#����*�#�����?& �*-���4

� �#��B-� ���������*�B�*�*��&������������?&$�-�����#��1� ���#�������#��������B&$�-���4

C

�,��� �6�F)G�

Page 19: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"6%$&"

������������>������� �*� ��������#�����������������

C

� ��������������P

,�;���Q�R�P

/�

� �B& �*-�������#�%��#����% ���1&� ��� ����#��%��4

� �?& �*-�������#�1��2���4

� ��B�*�*��&������������?&$�-�����#��1�1��2��������������B&$�-���4

� ��������"<�����������������!�:�#�������#�%��1����������#��%��� ��� ��"����#4

�,��� �6�F)G�

������������� ������������������������������������������������������������������������� ���� !������"���#

"$3%$&"

������������>������� �*� ��������*#D��������������

.�*��� ��� �#�*�������*�B&"����#�������!�:�#�������4�����-�����?����& ��"�#�1�������-�����������1����� ��� ��"�� 4������������������������������!�:�#�����������#��� ���#������*� �������-�������-���#4�

Page 20: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"$$%$&"

������������>������� �*� ��������**#D��������������

� =*-����������������*��.�" ��%� ��#������0���� �#�����#�����1�#����� 4

� /����� ��� ��"�� ��� �#�������#�#�� ��%��1�������#������� �#4�@-�������-���#�������-�����?������

��"�#� ����4�!�:�#�������� ����#�K��������"�� 4�

� !�������� ������� ��������������1����� ��� ��"�� � �����%��-���� ����1������#�*-����#��*����4

� 0�����6�� .�*��� ���#�*������#4� , �����*����#4

,��&#��� ��#����� ����84�94�������:,!�;����*#�-����������,��� �6�0,<�7����-6771114��*����&�*1���4���

������������� ������������������������������������������������������������������������� ���� !������"���#

"$/%$&"

������������>������� �*� ��������***#D������

Page 21: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"$4%$&"

������������>������� �*� �������*E#D������

� /��������A ���#C�!�:���������������&#-� �������1�����4

� =*-���������#�%*����#��%� ��#����������������������"��-�#����#��������1����������*������#�%*�������-���# �-����-���4

� �*��������������������#�%*������#�� �-������� ��� ��� ��1�������1����4

� ,�%*������������--�������#��*��#���"����������"�� �#����-���B-�#������*���� �*� �-�����?����� ��"�#�4

� 0�����:�� .�*��� ���#�*������#4� , �����*����#4� �--��B�*����#��*���������*���#�4

.�*��� ��� �#�*�����������&���#��������&����4�����1��������A �*-��##�#C�����!�:�����������������&#-� ��������1����4

������������� ������������������������������������������������������������������������� ���� !������"���#

"$;%$&"

��������������������������������������������������������<�����������������<����������������C

� �������������������<������������������������ ������ �� ���������� ������#4

� ������������ ��������������#��*#�-�##�%��4�,�*��� ���#������� ��������#������� �"�������������#4

� !�:�*��#���*��#�#��������������� ����������������������������������4

������������*#

-��1���������� �������0���������

������������� ���� ��"$;��������

� !�:�,�������#�*��#���������"� �� �����%�����������������%������������������������������������������-������#�����*-��"����#2��#��*����4

� ��������������!�:���*���"����#�����������������������������������������������% ��#��� �"��#���-��# ��-���#������#�� ������ �#�#4

������������� ��������������

Page 22: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"$=%$&"

� :��������8�����'�*���#��#���������@ �4�����4

� :���� �-��#6�!�&$���7��������/�$�(��7����'���7����+��4

� = ����#� �*%��������������� �"��#��#��������-��*�?������7��&������������#4

0���1��*#>��<"������F��������������������"����������

������������� ������������������������������������������������������������������������� ���� !������"���#

"$5%$&"

F�G ���E##���<4�N�S� �#������:46�A@������"���*�����=*-� ��������!�:�,����������*,�%*����#C��������������� �����2��������4

F�G /�2�*���������-6771�2�*����4���7��

F�G 0/0��H��)��+8�������&���TS������# ����S����#��## ���?�"��, ����U���V�# ���?��� �����*�#���*T��0��������88'�4

F'G <� 2��<4�:46�T����#���:�����?�����$�����*#����.�"�����������#���,��1����T��������� 2$�"�#���.�"���,��� ��/��������������88+�4

F+G �����$46�W��������� ������������ ��������������������������������������������������� � ������4�

F9G , �������$4�N�X����,4�N�$��#���Y4�N�����#���4�N������$46�W.�*��� ���,�*��������!�:�#�������#�1����-��-�����&��� ���!���*��������#���*�����*��=��:�# #��*#A����������,��$������!,���������4

F(G , �������$4�N�����#���4�N������$46�W���2���# ��#��������Z����#�S���2�-�������A�&�-��J� ����-����/:[���������4

F)G , �������$4�N�����#���4�N������$46�W����##�����@�������������#�$�-��#����#���!�:&,������A�&�-��J� ����-����/:[0��������4�

2�������

Page 23: (UEP) Signature

������������� ������������������������������������������������������������������������� ���� !������"���#

"$&%$&"

!���1���� ��������������C

9�������G7��������������)