22
ULXs and Evidence for Two IMBHs in M82 Hua Feng Tsinghua Universit y Collaborators: Phil Kaaret (Iowa), Fengy un Rao (Tsinghua), Jing Jin (T singhua) XMM-Newton 2010 Science Workshop, Madrid, Spain

ULXs and Evidence for Two IMBHs in M82

Embed Size (px)

DESCRIPTION

ULXs and Evidence for Two IMBHs in M82. Hua Feng Tsinghua University. Collaborators: Phil Kaaret (Iowa), Fengyun Rao (Tsinghua), Jing Jin (Tsinghua). XMM-Newton 2010 Science Workshop, Madrid, Spain. M82 – a nearby starburst galaxy. Three ULXs in M82. X42.3+59. X41.4+60; X-1. . X37.8+54. - PowerPoint PPT Presentation

Citation preview

ULXs and Evidence for Two IMBHs in M82

Hua FengTsinghua University

Collaborators: Phil Kaaret (Iowa), Fengyun Rao (Tsinghua), Jing Jin (Tsinghua)

XMM-Newton 2010 Science Workshop, Madrid, Spain

M82 – a nearby starburst galaxy

Three ULXs in M82

X41.4+60; X-1

X42.3+59

X37.8+54

Companion’s density for Roche-lobe overflow system

= 510-5 g cm-3 a giant or supergiant star

(Kaaret et al. 2006; Kaaret & Feng 2007)

X41.4+60: 62-day X-ray periodicity

X41.4+60: Low frequency QPOs

(Strohmayer & Mushotzky 2003; Dewangan et al. 2006; Mucciarelli et al. 2006; Feng & Kaaret 2007)

Frequency varies from 50-100 mHz

Joint Chandra/XMM Observations

Off-axis & subarray configuration to minimize the pileup effect

2008 Oct 4 2009 Apr 17 2009 Apr 29

X41.4+60 was observed at the highest flux on 2008 Oct 4.

XMM-Newton observations: No QPOs, no timing noise above the Poisson level at > 1mHz

Spectral change: from power-law to disk model

Chandra spectrum on 2008 Oct 4

Multicolor accretion disk model2/dof = 67.8/70

Power-law model with pileup2/dof = 201.8/71

Power-law model without pileup2/dof = 102.1/70

Ldisk T4

X41.4+60: thermal dominant state

• No QPOs and low timing noise

• Disk model with L T4

• Emission States– hard, thermal dominant, steep power-law (Remillard &

McClintock 2006)

DiskCorona

Thermal dominant state

• L T4: constant inner radius• The accretion disk extends all the way to ISCO

• RISCO depends on MBH and Spin

(Gierlinski & Done 2004)

Fitting with a fully relativistic disk model

M = 200-800 Msun

a* > 0.93

i > 60

IMBH with nearly maximal spinning !

Hard to Thermal transition

Relatively low fluxHard power-law spectrumQPOs + flat-top PSD

Three ULXs in M82

X41.4+60; X-1

X42.3+59

X37.8+54

X42.3+59: sometimes brighter than X41.4+60

15 radius

X41.4+60X42.3+59

XMM-Newton Chandra

X42.3+59: A transient ULX

Chandra Chandra

X42.3+59: A transient ULX

Stellar mass black hole with massive donor: stable accretion diskIMBH: unstable accretion disk (Kalogera et al. 2004)

> 1000

(Feng & Kaaret 2007)

X42.3+59: discovery of QPOs• Confirmed by simultaneous Chand

ra/XMM observations

• Narrow range: 3-4 mHz

• Broad & strong

• No red noise (down to QPO / 100)

• Only appear when LX > ~1040 erg/s

(Feng, Rao, & Kaaret 2010)

Three Types of LFQPOs

(Casella et al. 2004)

GX 339-4; Type B QPOs

(Belloni et al. 2005)

XTE J1859+226

X42.3 QPOs are of Type A or B

Type A/B QPOs: narrow frequency range

X42.3 QPOs: 103 times lower than in stellar mass BHsX42.3: 104 solar masses; companion star not needed

(Casella et al. 2005)

Three ULXs in M82

X41.4+60; X-1

X42.3+59

X37.8+54

X-ray dips during one outburst

Source spectrum: soft excess + hard componentSoft excess: blackbody emission from a massive outflow (King 2004; Poutanen et al. 2007)

Summary• X41.4+60: ~102 solar masses

– hard state• Orbital period of 62 days• Low frequency QPOs and strong variability• Power-law spectrum with = 1.7

– thermal dominant state• outbursts• No QPOs, low timing noise• Thermal spectrum, L T4

• X42.3+59: ~104 solar masses– Low frequency type A/B QPOs around 3-4 mHz– 103 lower than the frequency of the same type QPOs in stellar mass bla

ck holes

• X37.8+54: tens of solar masses– A thrid, new ULX in M82– Stellar BH with massive outflow

Feng & Kaaret 2010Feng, Rao, & Kaaret 2010Jin, Feng, & Kaaret 2010