91
I N S T I T U T E O F W A T E R A C O U S T I C S, S O N A R E N G I N E E R I N G A N D S I G N A L T H E O R Y Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 1 Underwater Acoustics and Sonar Signal Processing Contents 1 Fundamentals of Ocean Acoustics 2 Sound Propagation Modeling 3 Sonar Antenna Design 4 Sonar Signal Processing 5 Array Processing

Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 1

Underwater Acoustics and Sonar Signal Processing

Contents1 Fundamentals of Ocean Acoustics2 Sound Propagation Modeling3 Sonar Antenna Design4 Sonar Signal Processing5 Array Processing

Page 2: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 2

4 Sonar Signal Processing4.1 IntroductionThe following diagram summarizes the components usually employed in Sonar systems for sound transmission.

Waveform Generator§ CW (continuous waveforms), e.g. sinusoidal pulse with

rectangular or Gaussian envelope§ FM (frequency modulated) waveforms, e.g.

Waveform Generator

ArrayShading

Power Amplifier

1 K K

12

M

O

O

O

!Transmitter ArrayK ≤ M, typical K = M/2

Page 3: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 3

linear FM (LFM), hyperbolic FM (HFM) and Doppler sensitive FM (DFM)

Array Shading§ Amplitude shading for side-lobe suppression§ Complex shading (amplitude shading and phase shifting / time

delays) for main-lobe steering, shaping and broadening

Power Amplifier / Impedance Matching§ Switching amplifiers to achieve high source levels§ Linear amplifiers if moderate source levels are sufficient but

an enhanced coherence of consecutive pulses is required, e.g. as in synthetic aperture sonar SAS applications

§ Impedance matching networks that supplies an optimal coupling of the amplifiers to the transducers

Page 4: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 4

The receiver electronic measuring and information processing chain consists of the following components.

Signal Conditioning§ Preamplifier and Band-Pass Filter§ Automatic Gain Control (AGC) and/or (Adaptive) Time

variable Gain ((A)TVG)§ Quadrature Demodulation (analog or digitally) § Anti-aliasing Filter and Analog-to-Digital Conversion with

16 up to 24 bits.

12

N

O

O

O

ReceiverArray

N N L

!Signal

ProcessingSignal

ConditioningInformationProcessing

Page 5: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 5

Signal Processing§ Matched Filtering / Pulse Compression§ Conventional motion compensated near and far field beam-

forming in time or frequency domain§ Synthetic aperture beamforming including micro-navigation

and auto-focusing § High resolution source localization techniques (MVDR,

MUSIC, ESPRIT, etc.)

Information Processing§ Image Formation (range and azimuth decimation/interpolation)§ Image Fusion (multi-ping and/or multi-aspect mode)§ Computer aided Target detection/classification (semi-automatic

Operator support) and Autonomous Target Recognition (ATR)

Page 6: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 6

4.2 Matched Filtering4.2.1 Matched Filtering for Band-Pass Signals

A typical Transmission/Reception Scenario is depicted below,

!s(t)

!x(t)= !se(t)+ !na (t)+ !nr (t)!n(t )" #$ %$

Receiver Array

Waveform Generator

ArrayShading

Power Amplifier

O

O

O

ReceiverFiltering

Signal Conditioning

O

O

O

rTransmitter Array

!y(t)

!

!

Page 7: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 7

wheredenotes the transmitted band-pass signalwith for and

, i.e. finite signal energy,

denotes the received echo signalwith , where a ≠ 0 models thepropagation and reflection losses and represents the travel time

denotes a wide sense stationary noise processwith , where and describe the ambient noise and receiver noise respectively.

!s(t)],0[ TtÏ

!s

2= !s 2∫ (t)dt < ∞ !s(t)=0

!n(t) = !na (t)+ !nr (t)

!se(t)

!se(t) = a !s(t −τ )

τ = 2 r c

!n(t)

!na (t) !nr (t)

Page 8: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 8

Now, we want to determine the impulse response of a stable receiver filter, i.e.

such that the output signal

possesses a maximum signal-to-noise ratio at t = τ. Thus

has to be maximized, where

!y(t) = !h( ′t ) !x(t− ′t )d ′t∫ = !h( ′t )!se(t− ′t )d ′t∫ + !h( ′t ) !n(t− ′t )d ′t∫

!γ !h( ) =!h( ′t )!se(τ − ′t )d ′t∫( )2

E !h( ′t ) !n(τ − ′t )d ′t∫( )2=!se, !h2 (τ )

E !n !h2(τ )( ) =

!se, !h2 (τ )σ !n !h2

!h(t) dt∫ < ∞,

!h(t)

Page 9: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 9

and

The second order moment (correlation) function of the zero mean wide sense stationary process can be written as

!se, !h (τ ) = !h( ′t ) !se(τ − ′t )d ′t∫ = a !h( ′t ) !s(− ′t )d ′t∫

!n !h (τ ) = !h( ′t ) !n(τ − ′t )d ′t∫ .

r!n!h!n!h (τ ) = E !n!h (t +τ )!n!h (t)( )= E !h( ′t )!n(t +τ − ′t )d ′t∫ ⋅ !h( ′′t )!n(t − ′′t )d ′′t∫( )= !h( ′t )!h( ′′t )E !n(t +τ − ′t )!n(t − ′′t )( )d ′t d ′′t∫∫= !h( ′t )!h( ′′t )r!n!n(τ − ′t + ′′t )d ′t d ′′t∫∫ .

!n !h (τ )

Page 10: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 10

Applying the Wiener-Khintchine Theorem the power spectral density function of is given by

R!n!h!n!h (ω ) = r!n!h!n!h (τ )e− jωτ dτ∫= !h( ′t )!h( ′′t )r!n!n(τ − ′t + ′′t )e− jωτ d ′t d ′′t dτ∫∫∫= !h( ′t )!h( ′′t ) r!n!n(τ − ′t + ′′t )e− jωτ dτ∫( )d ′t d ′′t∫∫= !h( ′t )!h( ′′t ) R!n!n(ω )e− jω ( ′t − ′′t ) d ′t d ′′t∫∫= R!n!n(ω ) !h( ′t )e− jω ′t d ′t∫ ⋅ !h( ′′t )e jω ′′t d ′′t∫= R!n!n(ω ) !H (ω ) !H ∗(ω ) = !H (ω )

2R!n!n(ω ).

!n !h (τ )

Page 11: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 11

The variance (power) of can now be described in terms of the power spectral density function as follows.

Since is supposed to exhibit a constant power spectral density level

within the frequency band of interest, we finally obtain

σ !n !h2 = E !n !h

2(t)( ) = r!n !h !n !h (0) = 12π

R!n !h !n !h (ω )dω∫= 1

2π!H (ω )

2R!n !n(ω )dω∫

R!n !n(ω ) = N0 2

σ !n !h

2 = E !n !h2(t)( ) = N0 2 ⋅ 1

2π!H (ω )

2dω∫ .

!n(t)

!n !h (τ )

R!n !n(ω )

Page 12: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 12

Exploiting Parseval’s Formula, i.e.

we have to maximize !h

2= !h(t)

2dt∫ = 1

2π!H (ω )

2dω∫ = 1

2π!H (ω )

2,

!γ !h( ) = a !h(t)!s(−t)dt∫( )2N0 2 ⋅ !h(t)

2dt∫

= a2!s2

N0 2

!h(t)!s(−t)dt∫( )2!h2!s2

= a2!s2

N0 2

!h(t)s(t)dt∫( )2!h2s

2

with s(t) = !s(−t) and !s2= s

2.

Page 13: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 13

Application of the Cauchy-Schwarz inequality

tells us, that the maximum is achieved for

Thus, the impulse response of the optimum receiver filter is matched to the transmitter signal. The optimum receiver filter is therefore called matched filter.

Finally, the maximum signal-to-noise ratio is given by

f1(t) f2

∗(t)dt∫2≤ f1(t)

2dt∫ ⋅ f2(t)

2dt∫

!hopt (t) = c s(t) = c !s(−t).

!γ !hopt( ) = a2 !s2

N0 2.

Page 14: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 14

For c = 1 the matched filter output can be expressed by

where denotes the cross second order moment (cross correlation) function.

Hence, the matched filtering process can be interpreted as the correlation of the input signal with the expected (trans-mitted) signal .

The point target response of the receiver is defined by !s(t)

!y(t) = !hopt ( ′t ) !x(t − ′t )d ′t∫ = !s(− ′t ) !x(t − ′t )d ′t∫= !x(t + ′′t )!s( ′′t )d ′′t∫ = r!x!s (t),

!x(t)

r!x!s (t)

p(t) = !h(t)∗ !s(t) = !h( ′t )!s(t − ′t )d ′t∫ .

Page 15: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 15

Applying the matched filter, we obtain

Consequently, the point target response is determined by the autocorrelation function of the transmitter signal if matched filtering is employed.

Example: (CW-Pulse)Signal waveform:

popt (t) = !hopt (t)∗ !s(t) = !s(−t)∗ !s(t)

= !s(− ′t )!s(t − ′t )d ′t∫ = !s(t + ′′t )!s( ′′t )d ′′t∫ = r!s!s (t).

!s(t) = rectT 2(t)cos(ω ct) with rectT 2(t) =

1 t < T 2

1 2 t = T 2

0 t > T 2

⎨⎪⎪

⎩⎪⎪

Page 16: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Signal energy:

Matched Filter:

Hence, the point target response can be expressed by

where the substitution with has been used.Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 16

!s

2= !s 2(t)dt∫ =

1+ cos(2ω ct)2

dt−T 2

T 2

∫ ≅ T 2

!hopt (t) = !s(−t) = !s(t)

popt (t) = !hopt (t)∗ !s(t) = !s(−t)∗ !s(t) = r!s!s (t)

= rectT 2( ′t )rectT 2( ′t + t)cos(ω c ′t )cos ω c( ′t + t)( )d ′t∫= rectT 2( ′′t − t 2)rectT 2( ′′t + t 2)∫ ⋅

cos ω c( ′′t − t 2)( )cos ω c( ′′t + t 2)( )d ′′t ,

2t t t¢ ¢¢= - dt dt¢ ¢¢=

Page 17: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 17

After exploiting the identity

the point target response becomes

where d(t ) denotes the triangular function

( )( ) 2.d t T t= -

( )2cos cos cos( ) cos( )x y x y x y= + + -

( )

( )

( )

( )

( ) ( )

( ) ( )

: ( ) cos(2 ) cos( ) 2

sin(2 ) (4 ) cos( ) 2

sin 2 ( ) (2 ) ( )cos( )

d t

opt c cd t

d t d tc c cd t d t

c c c

t T p t t t dt

t t t

d t d t t

w w

w w w

w w w

-

- -

¢¢ ¢¢£ = +

¢¢ ¢¢= +

= +

ò

: ( ) 0,optt T p t> =

Page 18: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 18

The first term can be neglected for such that the second term with its triangular envelope remains.

ω c≫1 T

2T2T-

!s(t)

t TT-

popt (t) = r!s!s (t)

t

Page 19: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 19

The Fourier transform of and are given by

and !S(ω ) = T

2si T

2(ω −ω c )

⎛⎝⎜

⎞⎠⎟+si T

2(ω +ω c )

⎛⎝⎜

⎞⎠⎟

⎧⎨⎩

⎫⎬⎭

Popt (ω ) = R !S !S (ω ) = !S(ω )

2with si(x) = sin(x) x .

!s(t) popt (t)

cw- cw

!S(ω )

wcw- cw

Popt (ω )

w

Page 20: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 20

The power spectral density function of the matched filtered white noise can be expressed by

where

have been exploited.

Hence, the power spectral densityfunction of the output noise is pro-portional to the Fourier transformedpoint target response, i.e. it posses-ses the same shape.

R!n!h!n!h (ω ) = !Hopt (ω )

2R!n!n(ω ) = N0 2 !S(ω )

2∝ Popt (ω ),

!Hopt (ω ) = !S∗(ω ) and R!n !n(ω ) = N0 2

cw- cw

R!n !h !n !h (ω )

w

Page 21: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 21

4.2.2 Quadrature Demodulation

Complex EnvelopeThe real band-pass signal can be expressed by

where ωc and s(t ) denote the carrier frequency and the com-plex envelope respectively.

The complex envelope is given by

with A(t ) and φ (t ) representing an over time varying§ amplitude (amplitude modulation)§ phase (phase modulation).

!s(t) = Re s(t)e jωct{ },

( )( ) ( ) j ts t A t e j=

!s(t)

Page 22: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 22

Analytical SignalAlternatively, the real signal can be described by

where is called the analytic signal of .

The analytic signal is defined by

where denotes the Hilbert transform.

The Hilbert transform can be interpreted as filtering operation employing the non causal impulse response

s+ (t) = !s(t)+ j!

⌣s (t) with !

⌣s (t) = H !s(t){ } = 1

π!s(τ )t −τ

dτ∫ ,

!s(t)

!s(t) = Re s+ (t){ },

!s(t)( )s t+

{ }×H

!h(t) = 1

π twith !H (ω ) = F

1π t

⎧⎨⎩

⎫⎬⎭= − jsgn(ω ),

Page 23: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 23

where

The Fourier transform of is given by

Furthermore, on can show that the real and imaginary part of the analytic signal are related by

{ } { }Re ( )1Im ( ) .s

s t dt

tt

p t+

+ =-ò

S+ (ω ) = !S(ω )+ j !H (ω )!S(ω )

= !S(ω )+ sgn(ω )!S(ω ) =2!S(ω ) for ω > 0!S(0) for ω = 00 for ω < 0

⎧⎨⎪

⎩⎪.

sgn(ω ) =1 for ω > 00 for ω = 0−1 for ω < 0

⎧⎨⎪

⎩⎪.

( )s t+

Page 24: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 24

For narrow band signals and sufficiently large ωc the complex envelope and the analytic signal are approximately related by

For band limited signals with B/2 < ωc we can conclude

which implies

in the frequency domain.

s(t)e jωct ≅ s+ (t).

s(t)e jωct = s+ (t)

S+ (ω ) = F s+ (t){ } = F s(t)e jωct{ }= S(ω −ω c ) =

2!S(ω ) = 2F !s(t){ } for ω > 0

0 for ω ≤ 0

⎧⎨⎪

⎩⎪

Page 25: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 25

Inphase and Quadrature ComponentsThe real and imaginary part of the complex envelope

are called quadrature components, where and de-note the inphase and quadrature component respectively.

The corresponding real band-pass signal can be expressed by the inphase and quadrature components as follows.

)()()( tjststs QI +=)(tsI )(tsQ

!s(t) = Re s(t)e jωct{ }= Re sI (t)+ jsQ (t)( ) cos(ω ct)+ jsin(ω ct)( ){ }= sI (t)cos(ω ct)− sQ (t)sin(ω ct)

Page 26: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 26

If is a real band-pass signal its inphase and quadrature components can be obtained by quadrature demodulation, i.e.

and

where LP denotes the system operator of a low pass filter.

sI (t) = LP 2!s(t)cos(ω ct){ }= LP sI (t)2cos(ω ct)cos(ω ct)− sQ (t)2sin(ω ct)cos(ω ct){ }= LP sI (t) 1+ cos(2ω ct)( )− sQ (t)sin(2ω ct){ }

!s(t)

sQ (t) = LP −2!s(t)sin(ω ct){ }= LP −sI (t)2cos(ω ct)sin(ω ct)+ sQ (t)2sin(ω ct)sin(ω ct){ }= LP −sI (t)sin(2ω ct)+ sQ (t) 1− cos(2ω ct)( ){ },

Page 27: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 27

Quadrature demodulator

LP

LP

!s(t) 2cos( )ctw

)(tsI

2sin( )ctw-

)(tsQÄ

Ä ( )u t

( )v t

u(t) = 2!s(t)cos(ω ct)= !s(t)(e jωct + e− jωct ) "−• U (ω ) = !S(ω −ω c )+ !S(ω +ω c )

jv(t) = − j2!s(t)sin(ω ct)= !s(t)(e− jωct − e jωct ) "−• jV (ω ) = !S(ω +ω c )− !S(ω −ω c )

Page 28: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 28

!S(ω )

cw- cw w

( )U w

2 cw- 2 cw w

( )jV w

2 cw-

2 cww

Page 29: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 29

sI (t) = !hLP(τ )u(t −τ )dτ∫ "−• SI (ω ) = !HLP(ω )U (ω )

jsQ (t) = !hLP(τ ) jv(t−τ )dτ∫ "−• jSQ (ω ) = !HLP(ω ) jV (ω )

w

( )QjS w

w

( )IS w

w

( ) ( ) ( )I QS S jSw w w= +

Page 30: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 30

Complex Envelope of the noise processThe noise is supposed to be a wide sense stationary stochastic band-pass process.

A band-pass process can be expressed by

where n(t ) denotes the complex envelope.

The second order moment (correlation) function of can be written in terms of the complex envelope as

!n(t) = Re n(t)e jωct{ } = 1

2n(t)e jωct + n∗(t)e− jωct( ),

!n(t)

!n(t)

r!n!n(τ )=E !n(t+τ )!n(t)( )= 14

E n(t+τ )e jωc (t+τ )+ n∗(t+τ )e− jωc (t+τ )( ){⋅ n(t)e jωct+ n∗(t)e− jωct( )} =

Page 31: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 31

Since is assumed to be wide sense stationary, we can conclude that the equations

must hold, that the second order moment (correlation) func-tion of the complex envelope possesses the property

( ) ( )E ( ) ( ) 0 and E ( ) ( ) 0n t n t n t n tt t* *+ = + =

( )( ){ } ( ){ }

( ) E ( ) ( )

E ( ) ( ) E ( ) ( ) ( )nn

nn

r n t n t

n t n t n t n t r

t t

t t t

*

* ** * *

= +

= + = + = -

( ) ( ){( ) ( ) }

(2 )

(2 )

1 E ( ) ( ) E ( ) ( )4

E ( ) ( ) E ( ) ( ) .

c c

c c

j t j

j j t

n t n t e n t n t e

n t n t e n t n t e

w t w t

w t w t

t t

t t

+ *

- - +* * *

= + + +

+ + + +

!n(t)

Page 32: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 32

and that consequently, the second order moment (correlation) function of can be simplified to

The power spectral density function of , defined by the Fourier transform of , can be written as

where has been exploited.

r!n!n(τ ) = 14

E n(t+τ )n∗(t)( )e jωcτ + E n∗(t+τ )n(t)( )e− jωcτ ){ }= 1

4rnn(τ )e jωcτ + rnn

∗ (τ )e− jωcτ( ).

!n(t)

R!n!n(ω ) = F r!n!n(τ ){ } = 14

Rnn(ω −ω c )+ Rnn∗ (−ω −ω c )( )

= 14

Rnn(ω −ω c )+ Rnn(−ω −ω c )( ),

rnn(τ )= rnn∗ (−τ ) !−• Rnn(ω )= Rnn

∗ (ω )

r!n!n(τ ) !n(t)

Page 33: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 33

Finally, substituting the complex envelope of the noise, i.e. , in the following results

can be obtained.

R!n!n(ω )

cw- cw ww

Rnn(ω )

2B2B-

E n(t +τ )n(t)( ) = 0 n(t)= nI (t)+ jnQ (t)

E n(t +τ )n(t)( ) = E nI (t +τ )nI (t)( )− E nQ (t +τ )nQ (t)( )+ j E nI (t +τ )nQ (t)( ) + E nQ (t +τ )nI (t)( ){ } = 0

⇒ rnI nI(τ ) = rnQnQ

(τ ) andrnI nQ

(τ ) = −rnQnI(τ ) = −rnI nQ

(−τ ) ⇒ rnI nQ(0) = 0

Page 34: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 34

Signal Energy and Noise Power before and after Quadrature DemodulationNow, we would like to investigate whether the signal energy to noise power ratio is altered by quadrature demodulation. Before quadrature demodulation the signal energy and noise power are given by

and

respectively.

!s

2= !s 2(t)dt = 1

2π!S(ω )

2dω

−∞

∫−∞

∫ = 1π!S(ω )

2dω

0

σ !n

2 = r!n!n(0) = 12π

R!n!n(ω )dω−∞

∫ = 1π

R!n!n(ω )dω0

∫ ,

Page 35: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 35

After quadrature demodulation we can derive

for the signal energy and

for the noise power.

Consequently, the quadrature demodulation does not change the signal energy to noise power ratio.

σ n

2 = rnn(0) = 12π

Rnn(ω )dω = 2π

R!n!n(ω )dω0

∫ = 2σ !n2

−∞

s2= s(t)

2dt

−∞

∫ = 12π

S(ω )2

−∞

∫ dω

= 12π

2!S(ω )2dω

0

∫ = 2π!S(ω )

2dω

0

∫ = 2 !s2

Page 36: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 36

Implementation Variants of Quadrature Demodulation1) Analog Quadrature Demodulation

2) Digital Quadrature Demodulation

LP

!x(t) 2cos(ω ct) xI(t)

−2sin(ω ct)

xQ(t)Ä

Ä ADC

LP ADC

xI(nTS )

xQ(nTS )

fS = 1 TS > b

LP

!x(t) 2cos(ω cn ′TS )

−2sin(ω cn ′TS )

Ä

Ä

LP

′fS = 1 ′TS > 2 fmax

ADC xI(n ′TS )

!x(n ′TS )

( )I Sx nT

( )Q Sx nT

fS = 1 TS > b

xQ(n ′TS )

Page 37: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 37

3) Digital Quadrature Demodulation with Band-Pass Sampling, Hilbert transform, complex mixing and down sampling

a)

b)

!x(t)

HT

ADC

fc = ( 34 + k) ′fS

′fS = 1 ′TS > 2b

xA,R(n ′TS )

!x(n ′TS )

xA,I(n ′TS )

Ät

xI(nTS )+jxQ(nTS )

fS = 1 TS

= ′fS 2 > b

exp( jπn/2)

!x(t)

HT

ADC

fc = ( 14 + k) ′fS

′fS = 1 ′TS > 2b

xA,R(n ′TS )

!x(n ′TS )

xA,I(n ′TS )

Ät

xI(nTS )+jxQ(nTS )

fS = 1 TS

= ′fS 2 > b

exp(− jπn/2)

Page 38: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 38

4) Digital Quadrature Demodulation with Band-Pass Sampling, Real mixing, interpolation and down sampling

a) Interpola-tion Filter

!x(t) ADC

fc = ( 14 + k) ′fS

′fS = 1 ′TS > 2b

xI(nTS )

xQ(nTS )

fS = 1 TS = ′fS 2 > b

Interpola-tion Filter

xI n ′TS( )

xQ n ′TS( )

cos(πn 2)

−sin(π n 2)

Ä

Ä !x(n ′TS )

!x(n ′TS ) = xI (n ′TS )cos(ω cn ′TS )− xQ (n ′TS )sin(ω cn ′TS )

= xI (n ′TS )cos 2π k + π2

⎛⎝⎜

⎞⎠⎟

n⎛⎝⎜

⎞⎠⎟− xQ (n ′TS )sin 2π k + π

2⎛⎝⎜

⎞⎠⎟

n⎛⎝⎜

⎞⎠⎟

= xI (n ′TS )cosπ2

n⎛⎝⎜

⎞⎠⎟− xQ (n ′TS )sin

π2

n⎛⎝⎜

⎞⎠⎟

Page 39: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 39

Digital Quadrature Demodulation with Band-Pass Sampling, Real mixing, interpolation and down sampling (Cont.)

b)

!x(n ′TS ) = xI (n ′TS )cos(ω cn ′TS )− xQ (n ′TS )sin(ω cn ′TS )

= xI (n ′TS )cos 2π k + 3π2

⎛⎝⎜

⎞⎠⎟

n⎛⎝⎜

⎞⎠⎟− xQ (n ′TS )sin 2π k + 3π

2⎛⎝⎜

⎞⎠⎟

n⎛⎝⎜

⎞⎠⎟

= −xI (n ′TS )cosπ2

n⎛⎝⎜

⎞⎠⎟+ xQ (n ′TS )sin

π2

n⎛⎝⎜

⎞⎠⎟

Interpola-tion Filter

!x(t) ADC

34( )

1 2

c S

S S

f k f

f T b

¢= +

¢ ¢= >

( )I Sx nT

( )Q Sx nT

1 2S S Sf T f b¢= = >

Interpola-tion Filter

( )I Sx nT ¢

( )Q Sx nT ¢

cos( 2)np-

sin( 2)np

Ä

Ä !x(n ′TS )

Page 40: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 40

4.2.3 Matched Filtering after Quadrature Demodulation

The transmitted and received echo signal are described by

and

with τ = 2r/c denoting the travel time for a point target located in a distance r.

The complex envelop of the echo signal obtained by quadra-ture demodulation is given by

with

!s(t) = Re s(t)e jωct{ }

!se(t) = Re as(t −τ )e jωc (t−τ ){ }

se(t) = as(t −τ ) ⋅e− jωcτ = as(t −τ ) ⋅e− j2kr

k =ω c c = 2π λ .

Page 41: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 41

Thus, the complex envelope of the echo signal differs from the transmitted signal in a

§ time delay τ = 2r/c§ phase shift φ = −2kr§ complex constant factor a (modeling the propagation and

reflection conditions for a target at location r)

The received band-pass noise is supposed to possess a constant spectral density over the band of interest, i.e.

Hence, the spectral density of the quadrature demodulated noise, i.e. the complex envelop n(t), is determined by

R !n!n(ω ) = N0 2 for ω ±ω c ≤ B 2.

!n(t)

R nn(ω ) = 2N0 for ω ≤ B 2.

Page 42: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 42

Now, we want to determine the impulse response h(t) of a complex valued stable receiver filter, i.e.

such that for the input signal

the output signal

possesses a maximum signal-to-noise ratio at t = τ. Thus, y(t) = h( ′t )x(t − ′t )d ′t∫ = h( ′t )se(t − ′t )d ′t∫ + h( ′t )n(t − ′t )d ′t∫

γ (h) =h( ′t )se(τ − ′t )d ′t∫

2

E h( ′t )n(τ − ′t )d ′t∫2 =

se,h(τ )2

E nh(τ )2 =

se,h(τ )2

σ nh

2

h(t) dt∫ < ∞,

x(t) = se(t)+ n(t)

Page 43: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 43

has to be maximized, where

and

Using Parseval’s Formula the variance (power) of nh(t) can be expressed by

nh(τ ) = h( ′t )n(τ − ′t )d ′t .∫

se,h(τ ) = h( ′t )se(τ − ′t )d ′t∫ = ae− j2kr h( ′t )s(− ′t )d ′t∫

σ nh

2 = E nh(t)2= rnhnh

(0)

= 12π

Rnhnh(ω )dω∫ = 1

2πH (ω )

2Rnn(ω )dω∫

= 2N0

12π

H (ω )2dω∫ = 2N0 h(t)

2dt∫ =2N0 h

2.

Page 44: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 44

Hence, γ(h) can be write as

By means of the Cauchy Schwarz inequality

γ (h) =ae− j2kr h(t)s(−t)dt∫

2

2N0 h2 = a

2 s2

2N0

h(t)s(−t)dt∫2

h2

s2

= a2 s

2

2N0

h(t)s∗(t)dt∫2

h2

s2

with s∗(t) = s(−t) and s2= s

2.

f1(t) f2

∗(t)dt∫2≤ f1(t)

2dt∫ ⋅ f2(t)

2dt∫

Page 45: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 45

one can now prove, that γ(h) takes its maximum for

where, c denotes an arbitrary complex constant ≠ 0. The maximum signal-to-noise ratio is given by

If denotes the complex envelope of the two alternative approaches

§ real filtering with followed by quadrature demodulation§ quadrature demodulation followed by complex filtering with

are equivalent.

ˆ( ) ( ) ( ),opth t c s t c s t*= = -

γ hopt( ) = a

2 s2

2N0

.

!hopt(t)

!hopt (t)

hopt(t)

!hopt (t)

Page 46: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 46

The complex filtering of quadrature demodulated signals can be implemented by real devices as depicted below.

LP

!s(t)

2cos( )ctw

2sin( )ctw-

Ä

ÄBPÅ

( )Iy t

( )Qy t

hI

−hQ

hQ

hI

LP

!n(t)

complex matched

filter

!x(t)

( )Ix t

( )Qx t Å

Å

Page 47: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 47

4.3 Range Resolution of a Sonar SystemA point target generates in the absence of noise the determinis-tic signal

at the output of the receiver, where p(t) denotes the point target response, r the distance of the point target and q(r) incorporates the range dependent echo amplitude and phase shift φ = −2kr.

For distributed or extended targets, we introduce the common reflectivity distribution .

Thus, due to the linearity, the output signal of the receiver filter is given by

( ) ( ) ( ) with 2y t q r p t r ct t= - =

!a(r)

Page 48: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 48

i.e. the superimposition of the echoes originated along the target extend by backscattering.

Substitution of in the convolution above provides

where

Thus, can be understood as a reconstruction of a(t) which is one of the main objectives of a sonar/radar imaging system.

a(t) = !a(r)q(r) p(t − 2r c)dr,∫

2tcr =

ˆ( ) ( ) ( ) ,a t a p t dt t t= -ò

a(τ ) = c

2!a cτ

2⎛⎝⎜

⎞⎠⎟

q cτ2

⎛⎝⎜

⎞⎠⎟

.

)(ˆ ta

Page 49: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 49

A perfect reconstruction can only be achieved for

The notion range resolution shall describe a measure how far targets that provide equally strong echoes have to be separated in range to be distinguishable in the received signal.

There does not exist a unique definition for the range resolu-tion measure.

1) Range resolution measures based on the duration of the point target response.a) 3 dB width: Δt = t+ − t− with

p(t) = δ (t).

p(t− )

2= p(t+ )

2= 1

2p(0)

2⇒ Δr = cΔt

2

Page 50: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 50

Example:rectangular pulse of duration T triangular point target response of support 2T (matched filter output)

b) Distance to the first zero

⇒ 1− Δt 2

T⎛⎝⎜

⎞⎠⎟

2

= 12

⇒ Δr ≅ 0.59 c2

T

( )p t

tDt-Dt

Page 51: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 51

Example:rectangular pulse of duration T

c) Range resolution obtained with an energy equivalent rectangular pulse

Example:rectangular pulse of duration T

triangular point target response of support 2T

( ) 0 for 2p t t T t T r cTÞ = ³ Þ D = Þ D =

2

2 2 2 2

= energy of the point target response ( )

(0) (0)

p p t

p p t t p pÞ = × D Þ D =

Page 52: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 52

2) Resolution measure based on the separability of signals.Two point targets generate the echo signal

where a1 and a2 as well as τ1 and τ2 denote the complex amplitudes and time delays of the echoes of target 1 and 2, respectively.

2 2

- 0

3

0

1 2 1

2 2 213 3 3 2 3

T T

T

T

t tt dt dtT T

t cT cTT T rT

æ ö æ öÞ D = - = -ç ÷ ç ÷è øè ø

æ ö= - - = Þ D = =ç ÷è ø

ò ò

1 1 2 2ˆ( ) ( ) ( ),a t a p t a p tt t= - + -

Page 53: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 53

Without any loss of generality, we suppose a1 = 1.

Furthermore, assuming equally strong echoes, we have

Since φ is unknown, the worst case approach

has to be considered. After substituting

we obtain

where τ = τ2− τ1 denotes the echo separation in time.

2 2, 1.ja e aj= =

2

1 2( ) max ( ) ( )jf t p t e p tj

jt t¢ ¢ ¢= - + -

1,t t t¢ = +

1( ) ( ) max ( ) ( ) ,jg t f t p t e p tj

jt t= + = + -

Page 54: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 54

Now by increasing τ from 0 towards infinity, we can observe that g(t) builds up two maxima for τ > Δt.

Hence, Δt can be used as a resolution measure.

Example:rectangular pulse of duration T

( )( ) 1 for

( ) ( ) ( )

p t t T t T

g t p t p t t

Þ = - £

= + - t

t

t( )g t

( )p t

( )p t t-

tt < D

tt = D

tt > D

Page 55: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 55

4.4 Doppler EffectMoving sonar platforms as well as moving targets change the frequency of the received echo signal due to the Doppler effect.The geometry of the sonar and target motion is described in the figure below.

fS ,T = transmitted sonar frequency fS ,R = received sonar frequency

fT = frequency at target !vS = vS cosα S , !vT = vT cosαT

SvTv

Tr

TaSa

Page 56: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 56

The frequency of the signal one would measure with a hydro-phone placed on the target is given by

A sound wave of this frequency is emitted by the moving target and is received by the moving sonar platform.

Hence, the frequency of the received signal is determined by

fS ,R = fT

1+ !vS c1+ !vT c

= fT

c + !vS

c + !vT

= fS ,T

(c − !vT )(c + !vS )(c − !vS )(c + !vT )

= fS ,T

1− !vT c( ) 1+ !vS c( )1− !vS c( ) 1+ !vT c( ) = fS ,T

1− (!vT − !vS ) c − !vT!vS c2

1+ (!vT − !vS ) c − !vT!vS c2 .

fT = fS ,T

1− !vT c1− !vS c

= fS ,T

c − !vT

c − !vS

.

Page 57: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 57

After supposing , we obtain

where

denotes the relative radial speed between the sonar platform and the target.

Remark: For Radar (electromagnetic waves) holds

fS ,R ≈ fS ,T

1− (!vT − !vS ) c1+ (!vT − !vS ) c

= fS ,T

1− vr c1+ vr c

= fS ,T

c − vr

c + vr

, !vT!vS≪c2

vr = !vT − !vS

, , ,r r

T R T R R R Tr r

c v c vf f f fc v c v- -

= Þ =+ +

, ,transmitted radar frequency received radar frequencyfrequency at target speed of light

R T R R

T

f ff c

= == =

Page 58: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 58

Example:Supposing

we obtain

For the subsequent considerations we suppose that only the target is moving, i.e.

!vT = −10 m s, !vS = 5 m s ⇒ !vr = −15 m sc = 1500 m s,

fS ,R = 1.02020157 fS ,T (exact calculation)

≈1.02020202 fS ,T (approximative calculation)7relative error 5 10 .-Þ < ×

fS ,R = fS ,T

1− !vT c1+ !vT c

= fS ,T

c − !vT

c + !vT

.

Page 59: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 59

Thus, the distance between the sonar platform and the movingtarget can be expressed as a function of time by

The signal received at time t was reflected by the target at time

where τ(t ) denotes the two-way travel time of the signal. Con-sequently, τ(t ) is only implicitly expressed by

The signal received (real band-pass signal) is therefore

where is the complex envelope of the transmitted signal.

r(t) = r0 + !vT (t)t.

( ) 2,t t tt¢ = -

τ (t) = 2r( ′t ) c = 2r t −τ (t) 2( ) c.

!se(t) = Re as t −τ (t)( )e jωc t−τ (t )( ){ } with !s(t) = Re s(t)e jωct{ },

s(t)

Page 60: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 60

Assuming now

we obtain

which after some reformulations, i.e.

and

leads us to the expression

!vT (t) = !vT = const.

τ (t) = 2

cr0 + !vT t −τ (t) 2( )( ) = 2

c(r0 + !vTt)−

!vT

cτ (t)

τ (t) 1+ !vT c( ) = 2

c(r0 + !vTt)

τ (t) = 2

cr0 + !vTt

1+ !vT c= 2

r0 + !vTtc + !vT

,

Page 61: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 61

with

The received signal can be expressed by

t −τ (t) =(c + !vT )t − 2(r0 + !vTt)

c + !vT

=(c − !vT )t − 2r0

c + !vT

=c − !vT

c + !vT

t −2r0

c − !vT

⎝⎜⎞

⎠⎟=α (t − !τ 0 )

α =

c− !vT

c+ !vT

, τ 0 =2r0

cand !τ 0 =

2r0

c− !vT

=τ 0

cc− !vT

=τ 0

11− !vT c

.

!se(t) = Re as α (t − !τ 0 )( )e jωcα (t−!τ0 ){ }= Re as α (t − !τ 0 )( )e− jωcα!τ0e jωc(α−1)te jωct{ } = Re se(t)e

jωct{ }.

Page 62: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 62

Thus, the complex envelope is given by

The impacts1) caused by the Doppler effect are1) Alteration of frequency

2) Time dilatation of the complex envelope by the factor α3) Alteration of time delay by the factor

1) ordered with respect to importance

se(t) = as α (t − !τ 0 )( )e− jωcα!τ0e jωc(α−1)t .

ω =ω cα =ω c +ω c(α −1) =ω c +ω dop

with ω dop = (α −1)ω c

1 1− !vT c( )

Page 63: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 63

The impacts can be approximately considered as follows.

1)

Example:

ω dop = (α −1)ω c =c − !vT

c + !vT

−1⎛

⎝⎜⎞

⎠⎟ω c

=−2!vT

c + !vT

ω c = −2!vT

cω c

cc + !vT

= −2!vT

cω c

11+ !vT c

⇒ ω dop ≈ −

2!vT

cω c

!vT = 15 m s c = 1500 m s

⎫⎬⎭⎪⇒ 1

1+ !vT c= 1

1+1 100= 0.9900 ≈1

Page 64: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 64

2) The difference betweena) can be neglected with regard to the time shift of the

complex envelope.b) can not be neglected with regard to the phase shift

provided byHowever, since the initial phase is usually unknown in practice the impact of the phase shift does not require additional attention.

3) Time dilatation of the complex envelope reduces the performance of matched filtering (correlation). Its impact can be neglected if the phase shift for fmaxsatisfies

exp − jω cα!τ 0( ).

τ 0 and !τ 0

Page 65: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 65

with

Example:

After applying the three approximations, we finally can write

2π fmax αT −T ≪π ⇒ bT≪ 1

α −1≈ c

2vr

max maximum frequency 2 pulse lengthbandwidth 2 time bandwidth product.

f b Tb B bTp

= = == = =

!vT =2.5 m s, c=1500 m s ⇒ bT≪ c

2!vT

=300

se(t) ≈ as(t −τ 0 )e jωdop (t−τ0 )e− jωcτ0 .

Page 66: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 66

4.5 Pulse CompressionThe range resolution and signal energy are determined by

where c, T and P denote the sound speed, pulse length and transmitting power, respectively.The power P is technically/physically limited by the capabili-ties of the power amplifiers and the power dependent occur-rence of cavitation at the transducers radiation surface. The retention of signal energy ( ) and the enhancement of range resolution seem to be contradicting goals. Therefore, how can the range resolution be enhanced without losing signal energy for a given maximum transmitting power?

22 and ,r cT s PTD @ =

∝ SNR

Page 67: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 67

Heuristic Solution

Pulse expansion and compression, e.g. via a dispersive delay line, where K denotes the so-called compression factor.

T KT ¢=T T K¢ =

Expander

Tx-Array

TT ¢

Compressor

Rx-Array

1b T K T¢= = b K T=

Page 68: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 68

Transmitting energy:

Range resolution:

Time-Bandwidth-Product:

Hence, the compression factor coincides with the time band-width product.

The range resolution is determined by the bandwidth

PTs =2

2 2c T cr TK

¢D @ =

1 for rect pulsefor expanded pulse

bTKì

= íî

.2 2c cr T

b¢D @ =

Page 69: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 69

4.5.1 Interconnection of power spectrum, point target response and range resolution

The range resolution is given by

where Δt indicates the time extent of the point target response

which is equivalent to the second-order moment function.

For the second-order moment function holds

Δr = cΔt 2,

p(t) = rss(t) = s(t +τ )s∗(τ )dτ∫ = s(τ )s∗(−t +τ )hopt (t−τ )! "### $### dτ∫

rss(t) = F −1 S(ω )

2{ } = 12π

S(ω )2e jω t dω

−∞

∫ .

Page 70: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 70

Example:A signal with power spectrum

possesses the point target response

Furthermore, approximately holds

and for large b more precisely

2( , )( ) 1 ( )b bS p pw w-=

distance to first zero

sin( ) 1 1( ) si( ) 0 .ss ssbtr t b b bt r tbt b bp pp

æ ö= = Þ = Þ D =ç ÷è ø

31 1 (0) 12 2 2

ssss ss dB

rr r tb b b

æ ö æ ö- = + @ Þ D @ç ÷ ç ÷è ø è ø

3 0.88 .dBt bD @

Page 71: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 71

Remarks:§ The point target response / second order moment function is

completely determined by the power spectrum of the signal.§ The bandwidth of the signal determines the range resolution.

4.5.2 Ambiguity function

The ambiguity function is defined by

It can be interpreted as the output of a matched filter designed for a Doppler frequency shift f0 if a signal with Doppler fre-quency shift f0 + ν is received.

* 2( , ) : ( ) ( ) .j ts t s t e dtpnc t n t¥

= -ò

Page 72: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 72

Thus, can be understood as the point target response in the Range/Doppler domain.

* 2

* ( ) 2

* ( 2 )2

*2

( , ) ( ) ( )

( ) ( )2 2

1 ( ) ( )4

1 ( ) ( )4

j t

j t j t j t

j j t

s t s t e dt

d dS e S e e dt

S S e e d d dt

S S e

pn

w w t pn

w t w w pn

c t n t

w ww wp p

w w w wp

w wp

¥

¥ ¥ ¥¢- -

-¥ -¥ -¥

¥ ¥ ¥¢ ¢- +

-¥ -¥ -¥

= -

æ öæ ö¢¢= ç ÷ç ÷

è øè ø

¢ ¢=

¢=

ò

ò ò ò

ò ò ò

*2

( 2 )

1 ( 2 ) ( )4

j

j

d d

S S e d

w t

w t

d w w pn w w

w pn w wp

¥ ¥¢

-¥ -¥

¥¢

¢ ¢- +

¢ ¢ ¢= -

ò ò

ò

χ(τ ,ν )

Page 73: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 73

Ambiguity-Function of particular waveforms

a) Rectangular pulse

with . Hence, the ambiguity function is given by

( 2, 2)1( ) 1 ( )T Ts t tT -=

2 1s =

( )( )( )

* 2( , ) ( ) ( )

sin1 for .

0 elsewhere

j t

j

s t s t e dt

Te T

T T

pn

pnt

c t n t

pn ttt

pn t

¥

= -

ì -æ öï - £ç ÷= -í è øïî

ò

Page 74: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 74

Ambiguity function of a rectangular pulse

Page 75: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 75

b) LFM pulse with rectangular envelope

with .

In this case the ambiguity function can be expressed by

( )2( 2, 2)1( ) 1 ( )expT Ts t t j ktT

p-=

( )( )( )

* 2( , ) ( ) ( )

sin ( )1 for

( )

0 elsewhere

j t

j

s t s t e dt

k Te T

T k T

pn

pnt

c t n t

p t n ttt

p t n t

¥

= -

ì + -æ öï - £ç ÷= + -í è øïî

ò

Tbk =

Page 76: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 76

Ambiguity function of a LFM pulse with rectangular envelope

Page 77: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 77

c) LFM pulse with Gaussian envelope

where σ (standard deviation) and the effective pulse dura-tion T are related by

and where k determines the slope of the LFM with .After some manipulations, we obtain

22

224

1( ) exp ,2ts t j ktpsps

æ ö= - +ç ÷

è ø

k b T=

χ(τ ,ν ) = s(t)s*(t −τ )e j2πνt dt−∞

∫= e jπντ exp −τ 2 4σ 2( )−πσ 2(kτ +ν )2( ).

2T p s=

Page 78: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 78

Ambiguity function of a LFM pulse with Gaussian envelope

Page 79: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 79

Assignment 8:

1) Show, that the ambiguity function of an LFM pulse with rectangular envelope can be expressed as given on p. 75.

2) Develop a Matlab program for determining the§ spectra of the waveforms a) – c), using the FFT§ ambiguity functions given in a) – c) in analytical form

Page 80: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 80

Invariance of the Volume under the ambiguity surfaceThe following calculations show that the volume under the ambiguity surface does not depend on the waveform. The volume depends only on the signal energy.

2

2 2

( , )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j t j t

d d

s t s t e s t s t e dtdt d d

s t s t s t s t t t dtdt d

s t s t s t s t dtd

pn pn

c t n t n

t t t n

t t d t

t t t

¥ ¥

-¥ -¥¥ ¥ ¥ ¥

¢* * -

-¥ -¥ -¥ -¥¥ ¥ ¥

* *

-¥ -¥ -¥¥ ¥

* *

-¥ -¥

=

¢ ¢ ¢= - -

¢ ¢ ¢ ¢= - - -

= - -

ò ò

ò ò ò ò

ò ò ò

ò ò

Page 81: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

After substituting

we obtain

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 81

χ(τ ,ν )2dτ dν

−∞

∫−∞

∫ = s(t)2

s( ′t )2d ′t dt

−∞

∫−∞

= s(t)2dt s( ′t )

2d ′t

−∞

∫−∞

∫= s

4= χ(0,0)

2.

with ,t t dt dt t¢ ¢= - = -

= s(t)

2s(t −τ )

2dτ

−∞

∫⎛

⎝⎜⎞

⎠⎟dt

−∞

∫ .

Page 82: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 82

4.6 Signal DetectionIn the signal detection theory for sonar applications the fol-lowing cases are distinguished:1) The signal is completely known.2) The amplitude of the signal is known and the phase is

modeled as an uniformly distributed random variable.3) The amplitude and phase of the signal are modeled as a

Rayleigh and an uniformly distributed random variable, respectively.

Furthermore, assuming white and normally distributed noise all cases lead to optimum detectors that mainly base on a matched filter approach.

Page 83: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 83

Since the detectors exploit test statistics with different statis-tical distributional properties they clearly do not possess the same detection capabilities.

For instance, a detector assuming 2) requires in comparison with a detector utilizing 1) an increased signal-to-noise ratio (SNR) of approximately 1dB.

Nevertheless, common to these detectors is that the performance can be parameterized by the SNR of the matched filter output.

The received signal can be described in discrete-time by

with x(lTS ) = se(lTS )+ n(lTS )

Page 84: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 84

where s, se and n denote the transmitted signal, the echo signal and the noise, and where η and τ describe the propagation/tar-get scattering loss and the two-way travel time, respectively.

Supposing the noise variance to be known, we exemplarily solve case 2) of the aforementioned sonar target detection pro-blems by the following hypothesis test using the notation

x l = x lTS( ),…,x (l+ K −1)TS( )( )T

nl = n lTS( ),…,n (l+ K −1)TS( )( )T

s= s 0( ),…,s (K −1)TS( )( )Twith l = 0,1,… and K = T TS⎢⎣ ⎥⎦.

2ns

se(lTS ) =η s(lTS −τ ),

Page 85: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 85

Hypothesis Testing1) Setting up of a hypothesis H0

xl does not contain the signal waveform s, i.e.

2) Setting up of an alternative H1

xl contains the signal waveform s, i.e.

where and φ the on [−π, π) uniformly distributed phase of the echo signal.

H0 : x l = nl , x l ∼CNK (0,σ n2I)

H1 : x l =ηs+ nl , x l ∼CNK (ηs,σ n2I)

withη = !η e jϕ , !η,ϕ ∈!,

!η > 0

Page 86: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 86

3) The statistic t (xl) of the observation xl for testing the hy-pothesis H0 is given by the normalized magnitude of the matched filter output, i.e.

where ET = sHs denotes the transmitted signal energy.

4) Determination of the probability density function of the statistic T = t (xl) under H0 provides the Rayleigh density

( )1

0

2 2

( ) ( ) )( ) ,

K HS Sk l

l

T n T n

s kT x l k Tt

E Es s

- *=

+= =å s x

x

( )20( | ) 2 exp .Tf t H t t= -

Page 87: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 87

5) Calculation of the threshold for discarding hypothesis H0. For a given probability of false alarm PFA the threshold κcan be determined as follows.

6) If t(xl) > κ one decides for H1, i.e. xl contains the wave-form s, with PFA = α. If t (xl) ≤ κ one decides for H0, i.e. xl does not contain the waveform s.

7) Determination of the probability density function of the statistic T = t (xl) under H1 provides the Rice density

PFA = P T >κ | H0( )= 2 t exp −t2( )dt

κ

∫ = exp −κ 2( )⇒κ = − ln(PFA)

Page 88: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 88

where EE = (ηs)H(ηs) denotes the energy of the echo signal and where

is the Bessel-function of the first kind and order zero.

8) Calculation of the probability of detection PD. For a given threshold κ the probability of detection can be determined by

21 02 2( | ) 2 exp 2 ,E E

Tn n

E Ef t H t t I ts s

æ öæ ö= - - ç ÷ç ÷

è ø è ø

01( ) exp( cos )2

I x x dp

p

J Jp -

= ò

Page 89: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 89

where Q is the so-called Marcum’s Q-function

PD = P T >κ | H1( )= 2t exp −t2 −

EE

σ n2

⎝⎜⎞

⎠⎟I0 2

EE

σ n2 t

⎝⎜

⎠⎟ dt

κ

= zexp − 12

z2 +2EE

σ n2

⎝⎜⎞

⎠⎟⎛

⎝⎜

⎠⎟ I0

2EE

σ n2 z

⎝⎜

⎠⎟ dz

∫ = Q(d , !κ )

with d 2 = 2

EE

σ n2 = 2 S

N⎛⎝⎜

⎞⎠⎟ out

and !κ = 2 κ = −2ln(PFA),

( ) ( )2 20

1( , ) exp .2

Q z z I z dzb

a b a a¥

æ ö= - +ç ÷è øò

Page 90: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 90

9) The evaluation of the PD as a function of SNR and para-meterized by various PFA provides the ROC-Curves de-picted in the following figure.

Page 91: Underwater Acoustics and Sonar Signal Processinghomepages.hs-bremen.de/~krausd/iwss/USP4.pdfIN S T I T U T E O F WA T E R A C O U S T I C S, SO N A R E N G I N E E R I N G A N D SI

I N S T I T U T E O F W A T E R A C O U S T I C S,

S O N A R E N G I N E E R I N G A N DS I G N A L T H E O R Y

Chapter 4 / Sonar Signal Processing / Prof. Dr.-Ing. Dieter Kraus 91

Literature[1] Burdic, W.S: Underwater Acoustic System Analysis, Prentice-Hall,

2002[2] Knight, W.C. et al: Digital signal processing for sonar, Proceedings

of the IEEE, Nov. 1981, pp. 1451-1506[3] Lurton, X.: An Introduction to Underwater Acoustics, Springer, 2004[4] Nielson, R.O.: Sonar Signal Processing, Artech House, 1990 [5] Oppenheim, A.V.: Applications of Digital Signal Processing,

Prentice-Hall, 1988[6] Urick, R.I: Principles of Underwater sound, McGraw Hill, 1983[7] Van Trees, H.L.: Detection, Estimation and Modulation Theory,

Part 1: Detection, Estimation and Linear Modulation Theory, Part 3: Radar-Sonar Signal Processing and Gaussian Signals in Noise, Wiley, 1967 & 1969