21
Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Embed Size (px)

Citation preview

Page 1: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Underwater Vehicle Navigation Techniques

Chris BarngroverCSE 237D

Page 2: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Most funding goes to UAVs followed by UGVs

Lots of UUV applications (e.g. Moorea)

GPS is easiest way to know location, but this fails underwater

Need to use other techniques

Page 3: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Dead Reckoning Inertial Navigation System (INS) Doppler Velocity Log (DVL) Acoustic Techniques

◦ Long Baseline (LBL)◦ Ultra-short Baseline (USBL)

Geophysical (a priori maps) Computer Vision

Page 4: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Microstrain 3DM-GX1 INS

SSI Technologies Pressure Sensor

2 Remote Ocean System CE-X-18 Underwater Cameras

OpenCV Library

Page 5: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Convert pressure sensor data to depth

Develop module that subscribes to INS, depth, and vision data

Develop a Kalman filter to create position estimation

Use vision techniques to rectify position estimation

Page 6: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Incorporated Planner Module

Developed LPS Module

Researched pressure to depth conversion

Researched Kalman filter techniques

Page 7: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Depth Conversion Function

Basic Kalman Filter◦ Ground up development – Stalled◦ OpenCV Libraray - Success

Page 8: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

SSI Technologies Pressure Sensor

Take depth measurements atDepth PSI (avg) PSI (mode) STDEV

< 0 0.487980531 0.4878 0.002353867

0 0.504468293 0.5082 0.00547204

6 0.5609 0.5592 0.008404093

12 0.626790909 0.6305 0.005927089

18 0.680715385 0.6815 0.009534933

24 0.734753846 0.7324 0.007245701

36 0.844180769 0.8446 0.008845203

30 0.786181818 0.7834 0.006437068

36 0.831566667 0.8344 0.005860034

46 0.945572727 0.9465 0.004676756

52 0.978253659 0.977 0.00565677

< 0 0.488291566 0.4878 0.003332674

Page 9: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D
Page 10: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D
Page 11: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D
Page 12: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D
Page 13: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Variables:

Average Function:

Mode Function:

Amalgamation:

Page 14: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Created a kalman library◦ init_kalman()◦ close_kalman()◦ kalman_update( time, status )◦ kalman_get_location( &loc )

Manages the CvKalman class from OpenCV

Page 15: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D
Page 16: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

State Equation:

Page 17: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D
Page 18: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Measurement Equation:

Page 19: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D
Page 20: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D

Continue Kalman Filter library◦ Add control elements –◦ Use angle and rotation angle to fix accelerations◦ Add velocity sensor for better results◦ Consider measured covariance matrices◦ Use vision to rectify location◦ Incorporate acoustic pinger triangulation

Other related work◦ Build standard course with dimensions◦ Develop visual tool

Page 21: Underwater Vehicle Navigation Techniques Chris Barngrover CSE 237D