22
Chapter 8 - Page 1 of 22 Year 12 Further Mathematics UNIT 4 MODULE 2: Geometry and Trigonometry CHAPTER 8 TRIGONOMETRY This module covers the application of geometric and trigonometric knowledge and techniques to various twodimensional and threedimensional practical spatial problems. Familiarity with the trigonometric ratios sine, cosine and tangent, similarity and congruence, pythagoras theorem, basic properties of triangles and applications to regular polygons, corresponding, alternate and cointerior angles and angle properties of regular polygons is assumed. Trigonometry, including: The solution of right-angled triangles using trigonometric ratios The solution of triangles using the sine and cosine rules Evaluation of areas of non-right-angled triangles using the formulas A = ½ absin(C) and = ( )( )( ) . Question to complete 8A 3, 4, 5, 6, 7, 8, 9 8B 1(a, c, e), 3, 5, 6, 7, 8, 9, 10 8C 1, 2, 3, 4, 5, 8, 9, 10, 11 8D 1, 2, 3, 4, 5, 6, 7, 10, 11 8E 1, 2, 3, 4, 5, 8, 10, 12, 13, 15, 17 8F 1, 2, 3, 4, 5 8G 1, 2, 3, 4, 6, 8, 10, 11, 13, 14, 16, 8H 1, 2, 3, 4, 5, 6, 7 8I 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

UNIT 4 MODULE 2: Geometry and Trigonometrydrweiser.weebly.com/uploads/5/2/6/4/52647653/chapter_8_pytharoras... · Chapter 8 - Page 6 of 22 8CThree*dimensional(Pythagoras’(theorem(Stepsto(solve(3*dimentional(Pythagoras’(theorem(To

Embed Size (px)

Citation preview

Chapter 8 - Page 1 of 22

Year 12 Further Mathematics

UNIT 4

MODULE 2: Geometry and Trigonometry CHAPTER  8  -­‐  TRIGONOMETRY  

This  module  covers  the  application  of  geometric  and  trigonometric  knowledge  and  techniques  to  various  two-­‐dimensional  and  three-­‐dimensional  practical  spatial  problems.  

Familiarity   with   the   trigonometric   ratios   sine,   cosine   and   tangent,   similarity   and   congruence,  pythagoras   theorem,   basic   properties   of   triangles   and   applications   to   regular   polygons,  corresponding,  alternate  and  co-­‐interior  angles  and  angle  properties  of  regular  polygons  is  assumed.  

Trigonometry, including:

• The solution of right-angled triangles using trigonometric ratios • The solution of triangles using the sine and cosine rules • Evaluation of areas of non-right-angled triangles using the formulas A = ½ absin(C) and

𝐴 =   𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐).

Question to complete

8A   3,  4,  5,  6,  7,  8,  9  8B   1(a,  c,  e),  3,  5,  6,  7,  8,  9,  10  8C   1,  2,  3,  4,  5,  8,  9,  10,  11  8D   1,  2,  3,  4,  5,  6,  7,  10,  11  8E   1,  2,  3,  4,  5,  8,  10,  12,  13,  15,  17  8F   1,  2,  3,  4,  5  8G   1,  2,  3,  4,  6,  8,  10,  11,  13,  14,  16,  8H   1,  2,  3,  4,  5,  6,  7  8I   1,  2,  3,  4,  5,  6,  7,  8,  9,  10,  11,  12,  13  

Chapter 8 - Page 2 of 22

Table  of  Contents  

CHAPTER  8  -­‐  TRIGONOMETRY  .........................................................................................................  1  

8A  Pythagoras’  theorem  ..........................................................................................................................  3  

Using  a  CAS  calculator  ..................................................................................................................................  3  

Using  the  CAS  calculator  ...............................................................................................................................  4  

8B  Pythagorean  triads  ..............................................................................................................................  5  

How  to  generate  a  Pythagorean  triad;  .........................................................................................................  5  

8C  Three-­‐dimensional  Pythagoras’  theorem  .............................................................................................  6  

Steps  to  solve  3-­‐dimentional  Pythagoras’  theorem  .....................................................................................  6  

Using  a  CAS  calculator  ..................................................................................................................................  7  

8D  Trigonometric  ratios  ...........................................................................................................................  8  

How  to  label  a  right  angled  triangle  .............................................................................................................  8  

Sine  ratio  (SOH)  ............................................................................................................................................  8  

Cosine  ratio  (CAH)  .........................................................................................................................................  8  

Tangent  ratio  (TOA)  ......................................................................................................................................  8  

8E  Introduction  -­‐  Sine  and  Cosine  rules  ...................................................................................................  11  

Sine  and  cosine  rules  are  designed  to  solve  problems  for  non-­‐right-­‐angled  triangles.  .............................  11  

How  to  label  a  triangle  for  the  Sine  and  Cosine  Rules  ................................................................................  11  

The  sine  rule  ...............................................................................................................................................  11  

Using  CAS  calculator  ...................................................................................................................................  12  

Using  CAS  calculator  ...................................................................................................................................  12  

8F  Ambiguous  case  of  the  sine  rule.  ........................................................................................................  14  

8G  The  cosine  rule  ...................................................................................................................................  16  

An  unknown  length  when  you  have  the  lengths  of  two  sides  and  the  angle  in  between  ..........................  16  

An  unknown  angle  when  you  have  the  lengths  of  all  three  sides.  ..............................................................  17  

8H  Special  Triangles  ................................................................................................................................  19  

Equilateral  triangle  .....................................................................................................................................  19  

Right-­‐angled  isosceles  triangle  ...................................................................................................................  19  

8I  Area  of  Triangles  .................................................................................................................................  21  

Method  1  -­‐  Areatriangle  =  ½    ×  Base  × Height  ................................................................................................  21  

Method 2 – When you have two  sides  and  the  angle  in  between,  .............................................................  21  

Method  3  –  When  you  have  all three sides we  would  use:  ........................................................................  21  

Chapter 8 - Page 3 of 22

8A  Pythagoras’  theorem   Pythagoras’ theorem is used: (a) Only on right-angled triangles (b) To find an unknown length or distance, given the other two lengths.

When using Pythagoras’ theorem: (a) Draw an appropriate diagram or sketch (b) Ensure the hypotenuse side, c, is opposite the right angle (90°) (c) c2 = a2 + b2 or 22 bac += , where c is the longest side or hypotenuse and a and b are the two

shorter sides.

To find one of the shorter sides (for example, side a), the formula transposes to:

a2 = c2 – b2 and so 22 bca −= Example 1: Find the length of the unknown side (to 1 decimal place) in the right-angled triangle shown.

Using  a  CAS  calculator  On a Calculator page, press:

MENU b 3: Algebra 3 1: Solve 1

Complete the entry line as: Solve (c2 = a2 + b2, c) | a = 4 and b = 7 Then press ENTER ·. • For an approximate answer, press Ctrl /

ENTER ·. (Note: Only the positive answer applies since c is a side length.)

• Or use nSolve, b36

Chapter 8 - Page 4 of 22

Example 2: Find the maximum horizontal distance (to the nearest metre) a ship could drift from its original anchored point, if the anchor line is 250 metres long and it is 24 metres to the bottom of the sea from the end of the anchor line on top of the ship’s deck. It is important to sketch the diagram for the problem.

Using  the  CAS  calculator  On a Calculator page, press:

MENU b 3: Algebra 3 5: Solve 1

Complete the entry line as: Solve (c2 = a2 + b2,a) | c = 250 and b = 24

Then press Ctrl / ENTER ·. Only the positive solution applies.  

Chapter 8 - Page 5 of 22

8B  Pythagorean  triads  A Pythagorean triad is a set of 3 numbers that satisfies Pythagoras’ theorem. (and hence, it is a right

angled triangle)

An example is the set of numbers 3, 4 and 5

c2 = a2 + b2

52 = 32 + 42

25 = 9 + 16

Another example is a multiple of 2 of the above set: 6, 8 and 10 Others are 5, 12, 13 and 0.5, 1.2, 1.3 Example 3: Determine whether the following set of numbers 4, 6, 7 is a Pythagorean triad.

How  to  generate  a  Pythagorean  triad;  1. square an odd number (52 = _____ )

2. find 2 consecutive numbers that add up to the squared value ( _____ +_____ = 25)

3. the triad is the odd number you started with together with the 2 consecutive numbers

(_____, _____, _____) Try it with 7, 72 = 49, 24 + 25 =49, Test it does 72 + 242 = 252 Try it wth 9, Example 4: A triangle has sides of length 8 cm, 15 cm and 17 cm. Is the triangle right-angled? If so, where is the right angle?

Chapter 8 - Page 6 of 22

8C  Three-­‐dimensional  Pythagoras’  theorem  Steps  to  solve  3-­‐dimentional  Pythagoras’  theorem  To solve problems involving 3-dimentional Pythagoras’ theorem follow these steps:

1. Draw and label an appropriate diagram. 2. Identify the right-angled triangles that can be used to find unknown value(s). 3. To avoid rounding-errors use the surd form (eg 37 ) instead of 6.23…). If the result is

needed for another calculation. Example 5: To the nearest centimetre, what is the longest possible thin rod that could fit in the boot of a car? The boot can be modelled as a simple rectangular prism with the dimensions of 1.5 metres wide, 1 metre deep and 0.5 metres high.

Chapter 8 - Page 7 of 22

Example 6: To find the height of a 100m square-based pyramid, with a slant height of 200m as shown, calculate the: (a) Length of AC (in surd form). (b) Length of AO (in surd form). (c) Height of the pyramid VO (to the nearest metre).

Using  a  CAS  calculator  On a Calculator page, press:

MENU b 3: Algebra 3 5: Solve 1

Complete the entry line as: solve(b2 = a2 + c2, b)| a = 100 and c = 100

Then press ENTER ·.

AO is Half of b = _________ Then complete the entry line as:

solve(a2 = v2 + o2, a)|o = 200 and v = 50 2 . Then press Ctrl / ENTER · to get the decimal answer, or use nSolve. Note: Pressing ENTER · will produce an approximate answer. Only the positive solution applies.  

Chapter 8 - Page 8 of 22

8D  Trigonometric  ratios   Trigonometric ratios are used in right-angled triangles to find; 1. The length of one side, given an angle and length of another side 2. An angle, given the length of 2 sides.

How  to  label  a  right  angled  triangle  For  the  trigonometric  ratios  the  following  labelling  convention  should  be  applied:  1. The hypotenuse is opposite the right angle (90°).

2. The opposite side is directly opposite the given angle, θ.

3. The adjacent side is next to the given angle, θ.

Sine  ratio  (SOH)   Cosine  ratio  (CAH)  

Tangent  ratio  (TOA)  

Using  CAS  calculator  

On  a  calculator  page  

press  the  trig  µkey,  and  select  the  function  

Chapter 8 - Page 9 of 22

Example 7: Find the length (to 1 decimal place) of the line AB. On  a  calculator  page  

MENU b 3: Algebra 3 5: Solve 1

Complete the entry line as: nSolve sin(50°) =

𝑜15 , 𝑜

• Hint:  press  the  trig  µkey,  and  select  sin • Hint:  press  ¹or  º to  get o  (degrees)

Example 8: Find the length of the guy wire (to the nearest centimetre) supporting a flagpole, if the angle of the guy wire to the ground is 70o and it is 2 metres from the base of the flagpole.

Chapter 8 - Page 10 of 22

Example 9: Find the length of the shadow (to 1 decimal place) cast by a 3-metre pole when the angle of the sun to the horizontal is 70o.

Example 10: Find the smallest angle (to the nearest degree) in a 3, 4, 5 Pythagorean triangle.

Chapter 8 - Page 11 of 22

8E  Introduction  -­‐  Sine  and  Cosine  rules  Sine  and  cosine  rules  are  designed  to  solve  problems  for  non-­‐right-­‐angled  triangles.  

How  to  label  a  triangle  for  the  Sine  and  Cosine  Rules  For the sine and cosine rules the following labelling convention should be used.

Angle A is opposite side a (at vertex A)

Angle B is opposite side b (at vertex B)

Angle C is opposite side c (at vertex C)

The  sine  rule  

The sine rule is used to find unknown lengths and angles of non-right-angled triangles if you are given 1. Two angles and one side 2. An angle and its opposite length and one other side The sine rule states that for a triangle ABC (shown below)

𝑎sin𝐴

=𝑏

sin𝐵=

𝑐sin𝐶

Use for working out the unknown length

sin𝐴𝑎

=sin𝐵𝑏

=sin𝐶𝑐

Use for working out the unknown angle

Chapter 8 - Page 12 of 22

Example 11: Find the unknown length x cm in the triangle below.

Using  CAS  calculator  MENU b 3: Algebra 3 5: Numerical Solve 6

Complete the entry line as: nSolve !

!"# !"#= !

!"# !", 𝑏

Then press ENTER ·.

Example 12: Find the unknown length, x cm (to 2 decimal places).

Using  CAS  calculator  MENU b 3: Algebra 3 5: Numerical Solve 6

Complete the entry line as: nSolve !

!"# !!!= !

!"# !", 𝑐

Then press ENTER ·.

Chapter 8 - Page 13 of 22

Example 13: For a triangle PQR, find the unknown angle, P (to the nearest degree). When calculating the size of an angle on a CAS calculator, it is a good idea to instruct the calculator to calculate all angles between 0° and 180°. To do this on a Calculator page,

MENU b 3: Algebra 3 5: nSolve 6

Complete the entry line as: Solve !

!"# != !

!"# !",𝑝 |0 ≤ 𝑝 ≤ 180

Then press ENTER ·. Example 14: A compass used for drawing circles has two equal legs joined at the top. The legs are 8 centimetres long. If it is opened to an included angle of 36 degrees between the two legs, find the radius of the circle that would be drawn (to 1 decimal place). On a Calculator page,

MENU b 3: Algebra 3 5: nSolve 6

Complete the entry line as:

nSolve !!"# !"

= !!"# !"

, 𝑏

Then press ENTER ·.  

Chapter 8 - Page 14 of 22

8F  Ambiguous  case  of  the  sine  rule.   On your calculator, investigate the values for each of these pairs of sine ratios: • sin 30° = _____ and sin 150° = _____ • sin 110° = _____ and sin 70° = _____. The calculator will give only the acute angle not the obtuse angle The situation is illustrated practically in the diagram below where the sine of the acute angle equals the sine of the obtuse angle. Therefore always check your diagram to see if the unknown angle is the acute or obtuse angle or perhaps either. Another situation is illustrated in the two diagrams below. The triangles have two corresponding sides equal, a and b, as well as angle B. The sine of 110° = sine of 70° but side c is very different.

This ambiguity occurs when the smaller known side is opposite the known angle.

obtuse angle = 180° – acute angle Example 15: To the nearest degree, find the angle, U, in a triangle, given t = 7, u = 12 and angle T is 25o.

A

B

C

a = 6 cm

b 34

o

c = 9 cm

A

B

C b

c = 9cm a = 6cm

34o

Chapter 8 - Page 15 of 22

Using the CAS calculator When calculating the size of an angle on a CAS calculator, it is a good idea to instruct the calculator to calculate all angles between 0° and 180°. To do this on a Calculator page, complete the entry line as:

solve !"!"#(!)

= !!"# !"°

,𝑢 |0 ≤ 𝑢 ≤ 180°

Then press Ctrl / ENTER ·.

Example 16: In the obtuse-angled triangle PQR, find the unknown angle (to the nearest degree), P.

Chapter 8 - Page 16 of 22

8G  The  cosine  rule  Cosine rule is used to find:

An  unknown  length  when  you  have  the  lengths  of  two  sides  and  the  angle  in  between  

Chapter 8 - Page 17 of 22

An  unknown  angle  when  you  have  the  lengths  of  all  three  sides.  

Chapter 8 - Page 18 of 22

Example 17: Find the unknown length (to 2 decimal places), x, in the triangle below.

Example 18: Find the size of angle x in the triangle below, to the nearest degree.

Chapter 8 - Page 19 of 22

8H  Special  Triangles  Equilateral  triangle  

Equilateral triangles have three equal sides and three equal angles. The three angles are always 60°.

Right-­‐angled  isosceles  triangle  

                             

   Right-angled isosceles triangles have one right angle (90°) opposite the longest side (hypotenuse) and two equal sides and angles. The two other angles are always 45°. The hypotenuse is always 2 times the length of the smaller sides.

45o

45o

a

a c = √2 × a

60o

Chapter 8 - Page 20 of 22

Example 19: Find the values of r and angle θ in the hexagon. Example 20: Find the value of the pronumeral (to 1 decimal place) in the figure.

Chapter 8 - Page 21 of 22

8I  Area  of  Triangles  Three possible methods can be used to find the area of a triangle:  

Method  1  -­‐  Areatriangle  =  ½    ×  Base  × Height  

A = 21 bh

Method 2 – When you have two  sides  and  the  angle  in  between,    

A = 21 ab sin C

Method  3  –  When  you  have  all three sides we  would  use:  

))()(( csbsassA −−−= where 2cbas ++

= (s = semi-perimeter)

Example 21: Find the area of the triangle Method 1:

Chapter 8 - Page 22 of 22

Example 22: Find the area of the triangle (to 2 decimal places). Example 23: Find the area of a triangle PQR (to 1 decimal place), given p = 6, q = 9 and r = 4, with measurements in centimetres. Open a Calculator page. An alternative variable name for Area is needed as A cannot be used if lowercase a is used for length. Complete the entry line as:

Solve ( ))()()( csbsassm −×−×−×= | 2cbas ++

=

Then press Ctrl / ENTER ·.