84
1 Universidad acional de La Plata Facultad de Ciencias aturales y Museo Cátedra de Matemática y Elementos de Matemática Asignaturas: Matemática: Unidad Temática nº 4 Elementos de Matemática: Unidad Temática nº 3 Contenidos de la Unidad Temática Matrices: Suma y producto por un escalar. Propiedades. Producto entre matrices. Matriz Pseudoinversa y Matriz inversa. Determinantes: definición y propiedades. Desarrollo de un determinante por los elementos de una línea. Resolución de sistemas de ecuaciones lineales. Resolución aproximada de sistemas incompatibles: utilización de la matriz pseudoinversa.. Introducción a la Teoría de Grafos. Representación. Elementos. Definiciones. Notaciones. Método de ordenación de grafos. Aplicaciones a las Ciencias de la Conducta: Matrices Sociométricas. Problema del transporte. Ing. Carlos Alfredo López Profesor Titular

Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

1

Universidad �acional de La Plata Facultad de Ciencias �aturales y Museo

Cátedra de Matemática y Elementos de Matemática

Asignaturas: Matemática: Unidad Temática nº 4 Elementos de Matemática: Unidad Temática nº 3

Contenidos de la Unidad Temática

Matrices: Suma y producto por un escalar. Propiedades. Producto entre matrices. Matriz Pseudoinversa y Matriz inversa.

Determinantes: definición y propiedades. Desarrollo de un determinante por los elementos de una línea. Resolución de sistemas de ecuaciones lineales. Resolución aproximada de sistemas incompatibles: utilización de la matriz pseudoinversa.. Introducción a la Teoría de Grafos. Representación. Elementos. Definiciones. Notaciones. Método de ordenación de grafos. Aplicaciones a las Ciencias de la Conducta: Matrices Sociométricas. Problema del transporte.

Ing. Carlos Alfredo López Profesor Titular

Page 2: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

2

Cátedra de Matemática y Elementos de Matemática

Ing. Carlos Alfredo López

MATRICES Y GRAFOS Además de las matrices que se definen teniendo en cuenta que sus

elementos provienen de una relación funcional, los datos que corresponden a la información recogida sobre diversos temas suelen ser organizados frecuentemente en tablas de una o más entradas mediante conjuntos numéricos cuyos elementos están ordenados por uno o más subíndices. Formalmente una tabla unidimensional se denomina vector mientras que una bidimensional se designa con el nombre de matriz.

Ejemplo :

En un viaje de campaña realizado por alumnos de la Facultad, se han organizado cuatro grupos A, B, C, D conectados mediante equipos de radio de modo tal que A solo puede comunicarse directamente con B y D ; B sólo puede comunicarse con A; C sólo puede comunicarse con D y D puede comunicarse con A y C. Presentar esta información mediante una matriz de orden 4, usando un 1 o un 0 para indicar si dos campamentos pueden comunicarse directamente o no.

0101

1000

0001

1010

Solución

Ejemplo :

La tabla de posiciones del campeonato de fútbol es una tabla a doble entrada o bidimensional. Se trata de una matriz.

Considerando un espacio vectorial de n dimensiones, un vector puede representarse mediante una matriz; los elementos de ésta son las componentes del vector y pueden escribirse en fila o en columna. Si la disposición es en una fila, la matriz resulta de dimensión 1xn y se llama matriz fila o también vector fila, mientras que si la disposición es en columna, el orden es mx1 y hablamos de matriz o vector columna.

Por ejemplo

=

3

2

1

A es una matriz columna de dimensión 3x1

Un caso particular lo constituye como ejemplo la matriz A = (3) de dimensión 1.

Page 3: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

3

Teniendo en cuenta lo hasta aquí expresado, una matriz puede prácticamente ser considerada como la yuxtaposición ordenada de matrices fila o como una yuxtaposición ordenada de matrices columna.

Simbolizando con Fi la fila i y con Cj la columna j, podemos escribir:

( )4321

3

2

1

34333231

24232221

14131211

CCCC

F

F

F

aaaa

aaaa

aaaa

A =

=

=

Álgebra Matricial:

Igualdad.

Dos matrices son iguales si tienen el mismo orden y los elementos ubicados en la misma posición son iguales.

Ejemplo :

Hallar los valores de x, y, z, w si se satisface la igualdad:

=

41

53

w-zy-x

w+2zy+x

igualando elemento a elemento correspondiente, resulta :

x + y = 3

2z + w = 5 x - y = 1 z - w = 4

sistema de ecuaciones lineales cuya solución es : { x = 2 ; y = 1 ; z = 3 ; w = -1}

Suma de matrices:

Si tenemos en cuenta que las filas o las columnas de una matriz pueden

considerarse como vectores fila o como vectores columna, la operatoria entre matrices deberá seguir las reglas de la operatoria entre vectores y dado que, los vectores se suman elemento a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten sumables deben ser del mismo orden. La suma entre matrices de distinta dimensión no está definida.

Dadas entonces las matrices A = (aij) y B = (bij) ambas de orden mxn, la

suma resultará ser una matriz C = (cij) de la misma dimensión de los sumandos, cuyos

Page 4: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

4

elementos se obtendrán haciendo la suma de los elementos correspondientes de las matrices dadas.

Amxn + Bmxn = Cmxn ; con (cij) = (aij) + (bij)

Ejemplo :

Si

−=

123

132

123

312=B y A

C = A + B =

046

424

Producto de una matriz por un escalar:

La operación tiene las mismas características que el producto de un

vector por un escalar: todos los elementos de la matriz quedan multiplicados por el escalar y se conserva la dimensión de la matriz.

Demostración:

Sea la matriz A =

2221

1211

aa

aa y el escalar λ = 2 ; la operación

2

2221

1211

aa

aa =

2221

1211

aa

aa +

2221

1211

aa

aa =

2221

1211

22

22

aa

aa

verifica que cada elemento de la matriz original queda multiplicado por el escalar 2

Habiéndose definido para el conjunto de las Matrices las operaciones de

suma y de producto por un escalar, con las propiedades correspondientes que hemos detallado, decimos que este conjunto tiene estructura de Espacio Vectorial.

Ejemplo : (Válido para las operaciones descritas de suma y producto por un escalar )

Hallar los valores de x, y, z y w que satisfacen:

+

++

−=

4

2

1

52

wz

yx

w

x

wz

yx

+++−

+++=

41

52

22

22

wwz

yxx

wz

yx

igualdad de matrices que da origen por igualación de sus elementos correspondientes al siguiente sistema de ecuaciones lineales:

Page 5: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

5

2x = x+2 → x =2 → x = 2

2y = 5+x+y → y = x +5 → y = 2+5 = 7 2z = -1+z+w → z = w - 1 → z = 4 -1 = 3 2w = w+4 → w = 4 → w = 4

la solución es entonces el conjunto {x = 2 ; y = 7 ; z = 3 ; w = 4} Producto entre Matrices:

Es una operación cuyo resultado, si existe, depende del orden en que se

coloquen los factores y sólo es posible cuando el número de columnas de la primera matriz es igual al número de filas de la segunda.

Comencemos por tratar de multiplicar una matriz fila

A1xn = (a11 a12........a1n) por una matriz columna Bmx1 =

1

21

11

...

...

mb

b

b

; con m=n llamamos entonces

producto A1xm x Bmx1 = C1x1

a la matriz cuyo único elemento es c = a11 b11 + a12 b21 + ............. + a1n bm1

se trata del producto escalar entre la matriz o vector fila A1xm

y la matriz o vector columna Bmx1.

Observamos que para que el producto resulte posible el número de elementos de los vectores fila de la primera matriz del producto debe ser igual al número de elementos de los vectores columna de la segunda matriz. Lo dicho significa que la dimensión de los vectores fila de la primera matriz del producto debe ser igual a la dimensión de los vectores columna de la segunda matriz.

Esta última razón es la que ha posibilitado decir que para que el

producto entre dos matrices resulte posible el número de columnas de la primera matriz debe ser igual al número de filas de la segunda.

Page 6: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

6

Ejemplo :

Sean A1x3 = (3 2 -1) y B3x1 =

− 3

1

2

; obtener A1x3 x B3x1 = C1x1

(3 2 -1)

− 3

1

2

= ( ) )11()326()3)(1(1223 =++=−−+⋅+⋅ = C1x1

Sean ahora las matrices Amxn = (aij) ; i = {1,2,.....,,m} ; j = {1,2,.......,n}

Bnxp = (bij) ; i = {1,2,......,,n} ; j = {1,2,........,p}

llamamos producto Amxn x Bnxp en ese orden a la matriz Cmxp que tiene igual número de filas que la matriz A e igual número de columnas que la matriz B. (Verificamos nuevamente que el número de columnas de la primer matriz (A) debe coincidir con el número de filas de la segunda matriz (B). Veamos algunos ejemplos:

A2x3 x B3x2 = C2x2

B3x2 x A2x3= C3x3; de la definición de estos dos productos observamos que el producto entre dos matrices no es en general conmutativo. A2x3 x B3x1 = C2x1

B3x1 x A2x3 no es posible (por ser el nº de columnas de B ≠ al nº de filas de A)

Disposición conceptual para el producto: Si quieremos multiplicar A2x3 x B3x2, debemos obtener C2x2; sean entonces:

=

2221

1211

3231

2221

1211

cc

cc= C ;

bb

bb

bb

= B ; 232221

131211

aaa

aaaA

2221

1211

232221

131211

3231

2221

1211

cc

cc

bb

bb

bb

aaa

aaa

Page 7: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

7

en la intersección de la fila 1 de la matriz A con la columna 1 de la matriz B se encuentra el elemento c11 cuya expresión se obtiene haciendo el producto escalar :

c11 = a11 b11 + a12 b21 + a13 b31; con análogo razonamiento : c12 = a11 b12 + a12 b22 + a13 b32

c21 = a21 b11 + a22 b21 + a23 b31

c22 = a21 b12 + a22 b22 + a23 b32 DETERMI�A�TES:

DEFINICIÓN: Un determinante es una función cuyo dominio es el conjunto de las matrices cuadradas y cuya imagen es el conjunto de los números reales. Para cada matriz particular el número que representa su determinante asociado se obtiene sumando todos los productos posibles en los cuales haya un elemento de cada fila y uno de cada columna, dependiendo el signo de cada producto de la clase de la clase de la permutación (ver capítulo sobre Análisis combinatorio) de sus subíndices.

Como cada elemento de un determinante tiene dos subíndices, si

tenemos la precaución de colocar en cada producto uno de los subíndices, por ejemplo el primero, en orden natural, la clase de la permutación de los segundos subíndices será responsable del signo del producto. Ejemplificamos para un producto cualquiera de un determinante de orden cuatro: tomemos para analizar el producto 41322314 aaaa ; en él los primeros subíndices están colocados en orden natural; en consecuencia los segundos subíndices determinarán el signo del producto.

Para encontrar la clase de la permutación estudiamos el orden 4321,

comparando cada elemento con los siguientes: así el 4 presenta una inversión con el 3, otra con el 2 y una tercera con el 1; el 3 una inversión con el 2 y otra con el 1; el dos una inversión con el 1; en total hay seis inversiones, la clase de la permutación es par y el signo es positivo.

Para el producto cuyos subíndices son 4312, utilizando el mismo

procedimiento puede demostrarse que hay cinco inversiones; la clase de la permutación es impar y el signo correspondiente del producto es negativo.

Un mecanismo distinto consiste en colocar la permutación a estudiar sobre el orden natural correspondiente; se unen mediante trazos los números iguales y se cuentan las intersecciones. El número de ellas indica la clase de la permutación; para el ejemplo que sigue hay cinco intersecciones; clase de la permutación impar, signo negativo. 4 3 1 2 1 2 3 4

Page 8: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

8

DETERMINANTES DE ORDEN DOS.

Dados cuatro números a11, a12, a21 y a22, llamamos determinante de orden dos (dos filas y dos columnas) a: en el cual fila 1 : a11 a12 fila 2 : a21 a22 columna 1 : a11 a21 columna 2 : a12 a22

Diagonal principal: a11; a22 Contra diagonal: a12; a21

Analizando el determinante puede observarse que cada elemento del mismo tiene dos subíndices; el primero corresponde a la fila y el segundo a la columna; así, el elemento a21 pertenece a la segunda fila (primer subíndice) y a la primera columna (segundo subíndice); en general podemos decir que el elemento genérico de un determinante, tiene la forma ai j , donde i indica la fila a la cual pertenece y j designa a la columna.

En estas condiciones decimos que un determinante de orden dos es un

número que se obtiene efectuando el producto de los elementos de la diagonal principal y restándole el producto de los elementos de la contradiagonal, o sea:

Los signos de los productos pueden verificarse estudiando la clase de la

permutación de los segundos subíndices: para el producto 2211 aa ⋅ como los segundos subíndices están en orden natural, el signo correspondiente es positivo, mientas que para el producto 2112 aa ⋅ los segundos subíndices presentan una inversión: clase de la permutación impar y en consecuencia, signo negativo.

Ejemplo:

a a

a a11 12

21 22

a a

a aa .a a .a11 12

21 22 11 22 12 21= −

3 - 1

2 - 1 3 . ( 1) ( 1) . 2 3 2 1= − − − = − + =

Page 9: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

9

DETERMINANTES DE ORDEN TRES:

Sea en el que: fila 1 : a11 a12 a13 columna 1: a11 a21 a31 diagonal principal: a11 a22 a33 contra diagonal: a13 a22 a31

Los productos correspondientes al determinante de orden 3 son: los elementos de la diagonal principal, los conformados por los vértices de los triángulos con base paralela a la diagonal principal (ver esquemas siguientes):

los elementos de la contra diagonal y los vértices de los triángulos con base paralela a la contra diagonal:

resultando del estudio de los signos correspondientes a la clase de la permutación de los segundos subíndices:

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

32 21 13 31 23 12 33 2211

33 3231

23 2221

13 1211

a .a .aa .a .aa .a . a =

a a a

a a a

a a a

;;

32 23 11 33 21 12 312213

33 3231

23 2221

13 1211

a .a .aa .a .aa . a . a =

a a a

a a a

a a a

;;

)a .a .aa .a .aa .a .(a

a .a .aa .a .aa .a .a =

a a a

a a a

a a a

32 23 11 33 21 12 31 22 13

32 21 13 31 23 12 33 22 11

33 3231

23 2221

13 1211

++−

++

Page 10: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

10

o bien:

que resulta ser el desarrollo de un determinante de orden tres por los elementos de la fila 1. Este desarrollo se obtiene dando signo positivo o negativo a los términos del segundo miembro según que la suma de los subíndices del factor del correspondiente determinante de orden 2 sea respectivamente par o impar y multiplicando cada uno de estos factores por el subdeterminante que se obtiene al eliminar en el determinante de orden tres la fila y la columna que corresponden al elemento considerado. Estos subdeterminantes reciben el nombre de Menor Complementario del factor correspondiente. Ejemplos de menor complementario:

Menor complementario del elemento a11

3332

232211

aa

aa=→ α

Menor complementario del elemento a23

3231

121123

aa

aa=→ α

ADJUNTO O COFACTOR del elemento de un determinante:

Es el menor complementario, precedido de signo más o de signo menos, según que la suma de los subíndices del elemento considerado resulte par o impar. Ejemplos de adjunto o cofactor:

Adjunto o cofactor del elemento a11

3332

23221111

aa

aaA ==→ α

Adjunto o cofactor del elemento a23

3231

12112323

aa

aaA −=−=→ α

Generalizando: ( )ij

jiijA α+−= 1 Si la suma i+j es par el resultado de –1(i+j) es positivo (menor

complementario y adjunto coinciden), mientras que si i+j es impar, el menor complementario y el adjunto son de distinto signo.

= − − − + −a (a . a a . a ) a (a . a a . a ) a (a . a a . a )11 22 33 23 32 12 2 1 33 23 31 13 21 32 22 31

a a a

a a a

a a a

= a a a

a a a

a a

a a a

a a

a a

11 12 13

21 22 23

31 32 33

1122 23

32 3312

21 23

31 3313

21 22

31 32

− +

Page 11: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

11

De acuerdo con las definiciones de menor complementario y de adjunto

o cofactor, el desarrollo de un determinante por los elementos de una linea:

puede expresarse:

131312121111 ααα ⋅+⋅−⋅= aaaA (desarrollo por menores complementarios)

o bien: 131312121111 AaAaAaA ⋅+⋅+⋅= (desarrollo por adjuntos) que puede expresarse: el

desarrollo de un determinante por los elementos de una línea es igual a la suma de los productos de los elementos de dicha línea por sus respectivos adjuntos. Ejemplo de resolución de un determinante de orden tres:

Otro método para resolver un determinante de 3 por 3 (el método solo

vale para determinantes de ese orden) consiste en utilizar la denominada Regla de SARRUS. Para ello repetimos debajo del determinante sus dos primeras filas y el resultado lo obtenemos como la suma de los productos de los elementos de la diagonal principal y los productos de los elementos de las diagonales paralelas a la diagonal principal, menos la suma de los productos de los elementos de la contra diagonal y los productos de los elementos de las diagonales paralelas a dicha contra diagonal, es decir:

3231

2221 13

3331

2321 12

3332

232211

33 3231

23 2221

13 1211

a a

a a a

a a

a a a

a a

a a a =

a a a

a a a

a a a

A +−=

2 1 1

1 1 - 2

3 2 -1

2 1 2

2 1 ( 1)

1 2

3 1 1

1 1

3 2

2 ( 1 4) 1 ( 1 6) 1 (2 3)

6 5 1 10

=−

−− −

−+ =

= − + + − + + − =

= + − =

a a a

a a a

a a a

a . a . a a . a . a a . a . a

a . a . a a . a . a a . a . a

a a a

a a a

11 12 13

21 22 23

31 32 33

11 22 33 21 32 13 31 12 23

13 22 31 23 32 11 33 12 21

11 12 13

21 22 23

=+ +

− − −

Page 12: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

12

Ejemplo: Actividad: Calcular el valor de los siguientes determinantes:

}{ 5d ; 8c , 0b ; 1a para d c

b a c) ;

1/41/3

3- 6 b) ;

15

23 ) =======a

d) Para los siguientes determinantes, resolver en todos los casos desarrollando por los elementos de una línea y verificando el resultado por la Regla de Sarrus.

{ }2c 1,b 2;a para

2 4 1

2 3 5

c b a

;

0 5 1

2 1 4

0 2 3

=====

{ }3z , 2y ; 1x para

z 4 3

y 2 1

x3 0

====

0

x1 2

2 1 0

3 1 2

:en x de valor elHallar =

PROPIEDADES DE LOS DETERMI�A�TES.

1) Si se intercambian filas por columnas, ordenadamente, el valor del determinante no se modifica. Ejemplo:

1032

14

31

24==

2 1 1

1 2

3 2 1

2 1 1 1 2 1 3 1 2

1 1 3 2 2 2 1 1 1

2 2 6 3 8 1 10

. . ( ) . . . ( ) . ( )

. . ( ) . . ( ) . ( ) .

=− + + − − −

− − − − − − =

= − + + − + − =

1

Page 13: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

13

2) Si se intercambia la posición de dos líneas (filas o columnas) paralelas, cambia el

signo del resultado del determinante

1024

31;10

31

24−==

3) Si un determinante tiene dos líneas paralelas iguales, su valor es nulo.

08824

24=−=

4) Si se multiplican todos los elementos de una línea por una constante, el determinante queda multiplicado por esa constante.

3010331

243

31

2343;10

31

24=⋅=⋅=

⋅⋅=

5) Si un determinante tiene dos líneas paralelas proporcionales, su valor es nulo.

0161624

48=−=

6) La suma de los productos de los elementos de una línea por los adjuntos de una línea paralela da resultado nulo.

Si: 0; 132312221121

333231

232221

131211

=⋅+⋅+⋅ AaAaAa

aaa

aaa

aaa

(la suma de los productos de

los elementos de la fila 2 por los adjuntos de la fila 1 vele cero; en efecto; como puede comprobarse el desarrollo de esta expresión se corresponde con:

333231

232221

232221

aaa

aaa

aaa

que resulta ser un determinante con dos líneas paralelas iguales y, por tal razón, nulo. 7) Un determinante cualquiera puede desdoblarse en la suma de dos determinantes que

tienen todas sus líneas menos una iguales y las restantes tales que sumados sus elementos correspondientes se obtiene la otra fila del determinante desdoblado.

333231

232221

131312121111

333231

232221

131211

333231

232221

131211

aaa

aaa

bababa

aaa

aaa

bbb

aaa

aaa

aaa +++

=+

8) Si a los elementos de una línea de un determinante se le suman los elementos

correspondientes de una línea paralela multiplicados por una constante, el valor del determinante no se modifica.

Page 14: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

14

333231

232221

131211

aaa

aaa

aaa

=

333231

232221

231322122111

aaa

aaa

aaaaaa ⋅+⋅+⋅+ λλλ

=

333231

232221

232221

333231

232221

131211

aaa

aaa

aaa

aaa

aaa

aaa ⋅⋅⋅

+

λλλ

=

333231

232221

131211

aaa

aaa

aaa

ya que el

segundo término del primer miembro de la igualdad anterior es nulo por tener el determinante dos líneas paralelas proporcionales. Cálculo de un determiante mediante la reducción de su orden:

Las transformaciones que hemos detallado adquieren particular importancia cuando se trata de resolver determinantes de orden superior a tres. Si esto sucede se realizan transformaciones en las filas o columnas del determinante teniendo en cuenta que, cuando a los elementos de una línea se le suman los elementos correspondientes de una línea paralela multiplicados por una constante, el valor del determinante no se modifica y que, si multiplicamos todos los elementos de una línea por una misma constante, el determinante queda multiplicado por esa constante.

Vamos a ejemplificar mediante la reducción del orden de un

determinante de orden cuatro, sin que el método a utilizar pierda rigor para órdenes mayores.

Sea

2344

1233

3252

4321

; escribiremos a la izquierda de cada determinante las

transformaciones a realizar (por ej. F2 - 2F1 indica que a los elementos de la fila 2 se le restarán los elementos correspondientes de la Fila 1 multiplicados por 2.

43425

2619

34250

26190

541

4

3

1494

1173

541

14940

11730

5410

4321

4

3

2

2344

1233

3252

4321

13

12

1

14

13

12

1

−==

−−

=

−=

−−

=

−−−

−−−

−−=

−=

FF

FF

F

FF

FF

FF

F

Page 15: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

15

METODO PIVOTAL O DE CHIO Fundamentación del método:

Tiene el mismo fundamento que el cálculo desarrollado en el ejercicio anterior; si bien brinda la posibilidad de agilitar el cálculo, como contrapartida termina siendo una regla memorística que hace perder la noción de lo que el que calcula está realizando

Se basa en elegir un elemento como pivote, alrededor del cual en cada

etapa gira todo el cálculo; puede elegirse un elemento cualquiera, pero por comodidad suele tomarse como tal el elemento ubicado en el ángulo superior izquierdo, es decir, el que está en la posición a11.

Resulta conveniente que este elemento sea igual a la unidad, en caso de

que no lo sea, se lo transforma dividiendo toda la fila del pivote por el valor del mismo y multiplicando todo el determinante por dicho valor..

1er Paso: formación del pivote:

333231

232221

11

13

11

12

11

11

11

333231

232221

131211

aaa

aaa

a

a

a

a

a

a

a

aaa

aaa

aaa

⋅=

2do Paso: transformamos en ceros los elementos de la columna del pivote; para ello tomamos los elementos de la fila 2 y les restamos los elementos correspondientes de la fila 1 multiplicados por a21; similar razonamiento seguimos para transformar los elementos de la fila 3.

2232

232211

11

133133

11

123132

11

132123

11

122122

11

13

11

12

11

11

133133

11

123132

11

113131

11

132123

11

122122

11

112121

11

13

11

12

11

11

11

0

0

1

aa

aaa

a

aaa

a

aaa

a

aaa

a

aaa

a

a

a

a

a

a

aaa

a

aaa

a

aaa

a

aaa

a

aaa

a

aaa

a

a

a

a

a

a

a′′

′′=

⋅−⋅−

⋅−⋅−⋅=

⋅−⋅−⋅−

⋅−⋅−⋅−⋅

3er Paso: Se resuelve el determinante de orden dos. Regla práctica: 1er Paso: elegimos un elemento como pivote; si el ubicado en la posición a11 es igual a 1 se lo elige, en caso contrario: 1a) en el caso len que todos los elementos de la primera fila sean múltiplos de a11 se divide

toda la primera fila por el valor de a11.

Page 16: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

16

1b) si no se verifica 1a) y existe un elemento cualquiera igual a 1 se lo lleva mediante permutaciones de fila y/o de columna a la posición a11 (tener en cuenta el cambio de signo que debe realizarse en cada permutación)

1c) si no podemos utilizar los criterios anteriores, dividimos toda la fila 1 por a11 (en este caso tendremos que soportar operaciones con números fraccionarios).

2de Paso: hacemos ceros todos los elementos de la columna del pivote. 3er Paso: como hemos visto en el desarrollo precedente, el transformado del elemento a22

es ;11

12212222

a

aaaa ⋅−=′ siendo 111 =a podemos escribir ;1221112222 aaaaa ⋅−⋅=′

(se forma un cuadrado cuyos vértices son: el pivote y el elemento a transformar que se multiplican y a este producto se le resta el producto de los elementos que pertenecen a las filas y a las columnas del pivote y del elemento a transformar. Ejemplo:

43425

2619

34250

26190

541

1494

1173

541

14940

11730

5410

4321

2344

1233

3252

4321

−==

−−

=

−−

=

−−−

−−−

−−=

MATRIZ DE LOS ADJU�TOS.

Recibe este nombre aquella matriz que se obtiene a partir de una matriz cuadrada dada, reemplazando cada elemento por su adjunto.

Ejemplo: Si

=

=

333231

232221

131211

333231

232221

131211

;

AAA

AAA

AAA

Adj

aaa

aaa

aaa

A

Page 17: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

17

MATRIZ INVERSA: La inversa de una matriz respecto del producto tiene una gran importancia en el álgebra matricial. La resolución de sistemas de ecuaciones lineales, incluso los sistemas incompatibles que requieren solución aproximada, está estrechamente ligada a la inversión de matrices, como veremos mas adelante.

Definiciones: a) para las matrices rectangulares:

Dada una matriz ( )mxnA con m>n, si existe una matriz ( )nxmL (L del inglés

left = izquierda) tal que:

( )nxmL ٠ ( )mxnA = ( )nxnI

se dice que ( )nxmL es una inversa por la izquierda de ( )mxnA .

Con similar razonamiento, si ( )mxnA es una matriz con m<n y existe una

matriz nxmR (R: del inglés right = derecha) tal que:

( )mxnA ٠ nxmR = ( )mxmI

se dice que nxmR es una inversa por la derecha de A.

NOTA 1: Suele designarse la inversa de las matrices rectangulares, con el nombre de Matriz Pseudoinversa y, en general se simboliza con +A . b) para las matrices cuadradas:

En el caso particular de las matrices cuadradas, es decir, con igual número de filas y de columnas resulta posible en algunos casos, que exista una misma matriz inversa por la izquierda y por la derecha: la simbolizamos A-1 verificándose:

IAAAA =⋅=⋅ −− 11

Si la doble igualdad anterior se cumple, la matriz A será regular (su determinante asociado será distinto de cero) en caso contrario A será una matriz singular y no existirá la matriz inversa. NOTA 2: Como la técnica para obtener la matriz pseudoinversa se basa en el conocimiento de la inversa de las matrices cuadradas, comenzaremos ejemplificando el:

Page 18: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

18

Cálculo de la inversa de una matriz cuadrada y regular.

Ejemplo:

=

41

23ASi con su determinante asociado 0101243

41

23≠=⋅−⋅==A

llamamos matriz inversa

=−

42

311

xx

xxA si se verifica: IAAAA =⋅=⋅ −− 11 .

Reemplazando valores:

=

10

01

41

23

42

31

xx

xxy desarrollando el producto entre las

matrices del primer miembro e igualando componentes, se obtiene:

( )( )( )( )4141

3041

2023

1123

43

21

43

21

=+

=+

=+

=+

xx

xx

xx

xx

con las cuatro ecuaciones escritas podemos formar dos sistemas de dos ecuaciones lineales; (1) con (3) y (2) con (4) según se detalla:

( )( )3041

1123

21

21

=+

=+

xx

xx y

( )( )4141

2023

43

43

=+

=+

xx

xx

sistemas que resueltos, permiten encontrar los elementos de la matriz inversa. Una vez obtenidos los mismos, resta verificar que la matriz encontrada es la inversa de la dada, para lo cual basta con aplicar la definición, realizando el producto entre la matriz dada y la hallada, que deberá arrojar como resultado la matriz identidad. Actividad: Completar de acuerdo con lo indicado, el cálculo de la matriz inversa. NOTA 3: la obtención de la matriz inversa por aplicación del producto de matrices puede realizarse con relativa facilidad hasta matrices de orden tres, para las cuales es necesario escribir nueve ecuaciones que conforman tres sistemas de tres ecuaciones lineales con tres incógnitas. Para órdenes mayores, utilizaremos otros métodos que desarrollaremos en esta unidad.

Page 19: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

19

Propiedades de la inversión de matrices:

En las matrices regulares se verifican las siguientes propiedades de la

inversión:

I1) 1−A es única por izquierda o por derecha.

I2) ( ) AA =−− 11

I3) 111)( −−− ⋅=⋅ AA λλ

I4) ( ) 111 −−− ⋅=⋅ ABBA

Demostración: ( ) ( ) IBABA =⋅⋅⋅ −1

( ) ( ) 111 −−− =⋅⋅⋅⋅ BBBABA

( ) 11 −− =⋅⋅ BABA

( ) 1111 −−−− ⋅=⋅⋅⋅ ABAABA Obtención de la matriz pseudoinversa.

a) Matriz pseudoinversa por la izquierda:(para matrices de mayor número de filas

que de columnas)

Recordamos: ( )nxmL ٠ ( )mxnA = ( )nxnI

La matriz ( )nxmL puede calcularse construyendo la matriz (nxn)

MAAt =⋅ Si el determinante de . (M ) 0≠ , existe 1−M y puede escribirse:

MMAAM t ⋅=⋅⋅ −− 11 o lo que es igual:

ALIAAM t ⋅==⋅⋅−1

de donde: tAML ⋅= −1

b) Matriz pseudoinversa por la derecha:

Recordando que: ( )mxnA ٠ nxmR = ( )mxmI para m<n , la matriz nxmR se calcula

construyendo MAA t =⋅ ; si det. (M ) ≠ 0, existe 1−M y puede escribirse: A٠At

٠T-1 = I = A٠R de donde: RAIMAA t ⋅==⋅⋅ −1

1−⋅= MAR t

Page 20: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

20

Ejemplo 1: Calcular la matriz pseudoinversa de

−=

11

11

11

A

=

−⋅

−=

31

13

11

11

11

111

111M

como det. (M ) = 8, existe la matriz inversa 1−M =

31

13

8

1 (verificar aplicando la

definición de matriz inversa), y entonces: tAML ⋅= −1 =

−=

−⋅

242

242

8

1

111

111

31

13

8

1

Comprobación:

=

=

−⋅

−==⋅

10

01

80

08

8

1

11

11

11

242

242

8

1IAL

Si pretendemos ahora calcular para la misma matriz

−=

11

11

11

A

la matriz inversa por la derecha, hacemos

=

−⋅

−=

202

020

202

111

111

11

11

1'1

M ;

como ( ) 0

202

020

202

==MDet , resulta que la matriz inversa por la derecha no existe

cuando m>n.

Ejemplo 2: Calcular la matriz pseudoinversa por la derecha de:

=

101

010A ;

calculamos

=

=

20

01

10

01

10

101

010M ; siendo 2)( =MDet

=→ −

10

02

2

11M

y

=

=⋅= −

10

02

10

2

1

110

02

10

01

10

2

11MAR t

Page 21: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

21

Comprobación:

IRA =

=

=

=⋅

10

01

20

02

2

1

10

02

10

101

010

20

1

queremos verificar ahora que

=

101

010A no tiene matriz pseudoinversa por la

izquierda; para ello hacemos

=

=⋅=

202

020

202

101

010

10

01

10

AAM t ; siendo ( ) 0=MDet , no existe la matriz

pseudoinversa por la izquierda. CÁLCULO DE LA LMATRIZ I�VERSA UTILIZA�DO LA MATRIZ DE LOS ADJU�TOS.

Sean

=

=

333231

232221

131211

333231

232221

131211

AAA

AAA

AAA

Adjy

aaa

aaa

aaa

A ; multiplicando tAdjA ⋅

Page 22: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

22

⋅+⋅+⋅⋅+⋅+⋅⋅+⋅+⋅

⋅+⋅+⋅⋅+⋅+⋅⋅+⋅+⋅

⋅+⋅+⋅⋅+⋅+⋅⋅+⋅+⋅

=

=

333332323131233322322131133312321131

332332223121232322222121132312221121

3313332123111231322122111131312121111

332313

232212

312111

333231

232221

131211

AaAaAaAaAaAaAaAaAa

AaAaAaAaAaAaAaAaAa

AaAaAaAaAaAaAaAaAa

AAA

AAA

AAA

aaa

aaa

aaa

En la matriz resultante del producto puede observarse: a) los elementos de la diagonal principal son respectivamente la suma de los elementos de

las filas 1, 2 y 3 de la matriz A multiplicados por sus respectivos adjuntos que, como sabemos corresponde al desarrollo del determinante asociado a la matriz A.

b) los elementos ubicados fuera de la diagonal principal corresponden a la suma de los productos de los elementos de una línea multiplicados por los adjuntos de una línea paralela que, de acuerdo a la propiedad 6 de los determinantes, da resultado nulo.

De las observaciones realizadas en a) y b) se deduce:

IAA

A

A

A

AdjA t ⋅=

⋅=

=⋅

100

010

001

00

00

00

IA

AdjA

t

=⋅

Page 23: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

23

resultando de acuerdo con la definición de matriz inversa, que la misma puede ser obtenida

mediante la expresión: A

AdjA

t

=−1 . Para obtener la matriz inversa, debe calcularse la matriz

de los adjuntos traspuesta y dividir sus elementos por el valor del determinante asociado a la matriz cuya inversa se calcula.

Debe tenerse especial cuidado en calcular primero el determinante

asociado a la matriz ya que, de ser éste nulo, no existirá la matriz inversa.

Importante: la expresión A

AdjA

t

=−1 puede utilizarse para calcular, si existe, la matriz inversa

de una matriz cuadrada. No resulta válida como definición de matriz inversa.

Ejemplo: Calcular la matriz inversa de

=

234

232

241

A

Cálculo del determinante asociado:

0412160)4332(2)4222(4)3223(1

234

232

241

≠=−+=⋅−⋅+⋅−⋅−⋅−⋅==A ;

lo que significa que la matriz admite matriz inversa. Cálculo de la matriz de los adjuntos:

−−

=

−−

=

522

1362

640

32

41

22

21

23

24

34

41

24

21

23

24

34

32

24

22

23

23

Aaj

−−

=

−−

==

−−

= −

4

5

4

13

2

32

1

2

31

2

1

2

10

4

5

4

13

4

64

2

4

6

4

44

2

4

20

;

5136

264

2201A

A

AdjAdj

tt

Verificación:

Page 24: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

24

234

232

241

−−

4

5

4

13

2

32

1

2

31

2

1

2

10

=

100

010

001

Page 25: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

25

SISTEMAS DE ECUACIONES LINEALES

Ecuaciones. Resulta frecuente que, al finalizar el ciclo secundario, no se hayan

diferenciado suficientemente los conceptos de función y de ecuación. Mediante algunos ejemplos, en lo que sigue, trataremos de

conceptualizar esa diferencia. Como sabemos, una función del tipo:

f : R→→→→R / f(x) = an.xn + an-1.xn-1 +...+ a1.x + a0.

es una función polinómica en una variable. la igualdad f(x) = 0 o lo que es igual an.xn + an-1.x

n-1 +...+ a1.x + a0= 0 se denomina ecuación entera en una variable o incógnita asociada a f(x).

Ejemplo 1:

Sea la función polinómica: f : R → R / f(x) = 2 x – 1; el cero o la raíz de esta función es el número real cuya imagen es nula; o sea el número real que satisface la igualdad: 2 x - 1 = 0

La igualdad precedente es la ecuación asociada a la función f(x).

Ejemplo 2:

Sea la función polinómica: f : R →→→→ R / f(x) = x2 + x – 2; la ecuación

asociada a f(x) será en este caso x2 + x - 2 = 0

Ejemplo 3:

Sea la función polinómica: f : R→→→→R / f(x) = x2 + 1 la ecuación asociada a f(x) será ahora: x2+ 1 = 0

Raices de una ecuación entera en una variable.

De acuerdo con lo visto, la ecuación del ejemplo 1: 2 x - 1= 0

se satisface para x =1/2; en efecto:

21

21 1 1 0. − = − =

Page 26: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

26

Decimos en estas condiciones, que ½ es raíz o solución de la ecuación, siendo raíz o cero de la función polinómica que le dio origen.

Con similar razonamiento, la ecuación: x2 + x - 2 = 0 del ejemplo 2

se satisface para x = 1 y x = -2 ya que: 12 + 1 - 2 = 0

(-2)2 + (-2) - 2 = 0 por lo cual 1 y -2 son raíces o solución de la ecuación y ademá s raíces o ceros de la función polinómica que le dio origen.

Por último la ecuación del ejemplo 3: x2 + 1 = 0 no se satisface para número real alguno; esto significa que así como la ecuación no tiene raíces o solución real la función que le dio origen no posee raíces o ceros reales.Generalizando los ejemplos podemos afirmar que el número real a será raíz o solución de f(x) = 0 si y solo si f(a) = 0

Dicho de otra forma a ∈ R es una raíz de la ecuación si en la función la

imagen de a resulta ser el número cero. Grado de una ecuación.

El grado de una ecuación coincide con el grado de la función polinómica

a la que se encuentra asociada. Respectivamente, las ecuaciones de los ejemplos son de grado 1, 2 y 2. Efectuando la representación cartesiana de las funciones polinómicas de los ejemplos 1, 2 y 3,

II III

---

--

f(x)=2x -1

1 2 3-1-1

-2

1

2

3

x

y

III II

---

--

f(x)= x2+ x - 2

1 2 3-1-1

-2

1

2

3

x

y

-4

-2

III II

---

-

-

f(x)= x2+ 1

1 2 3-1-1

1

2

3

x

y

-4

-2I II

5

Page 27: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

27

observamos que las raíces reales o ceros de las ecuaciones coinciden con aquellos puntos en que las curvas (representaciones cartesianas de las funciones asociadas) cortan al eje de abscisas.

Conjunto solución.

Una ecuación puede tener ninguna, una o más raíces. El conjunto

cuyos elementos son las raíces de la ecuación se denomina conjunto solución. Para el ejemplo 1 S = { ½ } Para el ejemplo 2 S = { -2 , 1 } Para el ejemplo 3 S = { } = φ

Resolver una ecuación es, por lo tanto, encontrar su conjunto solución. Ecuaciones con una sola variable. a) ecuaciones de primer grado.

Una ecuación de primer grado en una incógnita, tal como la que hemos visto en el ejemplo 1 puede expresarse de una manera general como:

a1 x + a0 = 0 con a1 ≠ 0 Un procedimiento sencillo (despejar la incógnita de la ecuación) permite obtener rápidamente la raíz de una ecuación de este tipo, tanto si es racional como si es irracional, es decir, cuando pertenece al conjunto de los números reales. En efecto; volviendo al ejemplo 1

2 x - 1 = 0 2 x = 1

x = ½ es la raíz de la ecuación.

b) ecuaciones de segundo grado.

Son las asociadas a los polinomios que tienen el aspecto:

P(x) = a2 x2 + a1 x + an con a2 ≠ 0

son del tipo: a2 x

2 + a1 x + an = 0 con a2 ≠ 0 y suelen escribirse generalmente:

a x2 + b x + c = 0

Page 28: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

28

Para calcular las raíces de esta ecuación seguiremos el siguiente procedimiento: 1º Pasamos el término independiente c al 2º miembro.

a x2 + b x = -c 2º Sacamos factor común a en el primer miembro

3º Dividimos ambos miembros por a

4º Multiplicamos y dividimos el 2º término del primer miembro por 2

5º Sumamos en ambos miembros

6º Observamos que el primer miembro es un trinomio cuadrado perfecto; el que corresponde al desarrollo de:

por lo que escribimos:

7º Obtenemos común denominador en el 2º miembro

8º operando:

expresión que debe permitirnos obtener (si existen) las dos raíces de la ecuación de segundo grado.

cxab

x a 2 −=

+

ac

xab

x2 −=+

x 2b2a

xca

2 + = −

b(2a)

2

2

x 2ba

x+b

(2a)ca

b(2a)

22

2

2

2+ = − +

2

2ab

x

+

2

22

4a

b

ac

2ab

x +−=

+

2

22

4a

4acb2ab

x−

=

+

x b2a

b 4ac

4a

2

2+ = ±−

xb b 4ac

2a

2

=− ± −

Page 29: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

29

La existencia de raíces reales en la ecuación de segundo grado puede analizarse si se observa la cantidad subradical que se denomina DISCRIMINANTE, para el cual pueden presentarse los siguientes casos: a) Si b2 > 4 a c se obtienen x1 ≠ x2 (dos raíces reales y distintas).

b) Si b2 = 4 a c se obtienen x1 = x2 (dos raíces reales e iguales, o sea una raíz doble).

c) Si b2 < 4 a c no existirán raíces reales, ya que la raíz cuadrada de un número negativo no tiene solución en el campo real).

Con el objeto de ilustrar los tres casos que hemos descripto, resolveremos un ejemplo de cada uno de ellos, efectuando las representaciones gráficas de las funciones polinómicas a que cada una de las ecuaciones está asociada. Ejemplo 1:

x2 - x - 2 = 0 Recordando el aspecto de la ecuación de 2º grado:

a x2 + b x + c = 0 resulta: a = 1; b = -1; c = -2 y entonces:

obteniéndose:

La función polinómica a que está asociada la ecuación resulta: f(x) = x2 - x - 2

Como puede observarse la representación cartesiana de la función corta al eje de abscisas en los puntos de coordenadas (-1,0) y (2,0). En dichos puntos las imágenes

x1 (-1) 4(1).(-2)

2.1

x1 1+8

2

x1 9

21 3

2

2

=+ ± −

=+ ±

=+ ±

x1 3

22

x1- 3

21

1

2

=+

=

= = −

III II

---

--

f(x)= x2 - x - 2

1 2 3-1-1

-2

1

2

3

x

y

-4

-2

x f(x)

-3

-2

-1

0

1

2

3

10

4

0

-2

-2

0

4

Page 30: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

30

de la función son nulas; las primeras componentes de estos pares ordenados son las raíces de la ecuación. El conjunto solución es entonces: S = { -1 , 2 }

Ejemplo 2: x2 - 4 x + 4 = 0

resultando:

La función a la que está asociada la ecuación resuelta es: f(x) = x2 - 4 x + 4

Observamos en este caso que la gráfica “corta” al eje de abscisas solo en el punto (2,0); la primer componente del par ordenado (x1 = 2) es la raíz doble de la ecuación resuelta. Ejemplo 3: x2 - 2 x + 4 = 0

y la ecuación no tiene solución en el campo numérico real.

x4 (-4) 4.1.4

2.1

x4 16 -16

2

x4 0

2x x 2

2

1 2

=± −

= =

x2 4 4.1.4

2.1

x2 -12

2

=± −

III II

---

--

f(x)= x2 - 4x + 4

1 2 3-1-1

-2

1

2

3

x

y

-4

-2

x f(x)

0

1

2

3

4

1

0

4

1

4

Page 31: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

31

La función f(x) = x2 - 2 x + 4

es tal que su gráfica no corta al eje de abscisas, lo que implica la inexistencia de raíces reales.

Ecuaciones con dos variables. Con el mismo concepto desarrollado anteriormente, decimos que si f(x,y)

es una función polinómica en dos variables, f(x,y) = 0 , será una ecuación en dos variables. a) ecuaciones de primer grado en dos variables.

Sea por ejemplo la función polinómica: f(x,y) = 3 x – y. La igualdad 3 x - y = 0; se denomina: ecuación de primer grado en dos variables y se satisface, entre otros, para los siguientes pares ordenados (x,y):

(0,0) ya que 3 . 0 - 0 = 0 (1,3) ya que 3 . 1 - 3 = 0 (2,6) ya que 3 . 2 - 6 = 0 (-1,-3) ya que 3 . (-1)-(-3) = 0

....... ........... ....................

Todos aquellos pares ordenados que satisfacen la ecuación son sus raíces. Como ya hemos visto, también en este caso las raíces de la ecuación son raíces o ceros de la función polinómica a la que la ecuación se encuentra asociada.

Resulta evidente que, para cada valor arbitrariamente elegido de x existirá un cierto valor de y que formará un par ordenado raíz de la ecuación. Cada raíz de la ecuación (par ordenado) es en este caso un punto perteneciente a la gráfica de la función que dio origen a la ecuación considerada; en este caso podemos decir que la gráfica y el conjunto solución coinciden.

III II

---

--

f(x)= x2 - 2x + 4

1 2 3-1-1

-2

1

2

3

x

y

-4

-2

x f(x)

0

1

2

3

4

3

4

7

-1 7

Page 32: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

32

Para nuestro ejemplo:

b) ecuaciones de segundo grado con dos variables.

Sea la función polinómica de segundo grado en dos variables:

f(x,y) = x2 - x - y + 2 que tiene asociada la ecuación:

x2 - x - y + 2 = 0 o lo que es igual:

y = x2 - x + 2 Esta ecuación (no confundir con el polinomio f(x) = x2 - x + 2) tiene

infinitas raíces: los pares ordenados (x,y) que se obtienen dando valores arbitrarios a x en la misma.

La parábola de la figura anterior es la representación gráfica de la solución de la ecuación:

x2 - x - y + 2 = 0

III II

---

--

1 2 3-1-1

-2

1

2

3

x

y

-4

-2

x y

0

1

2

3

6

0

-

III II

---

1 2 3-1

1

2

3

x

y

-4

-2

x f(x)

0

1

2

-1

-2 8

4

2

2

4

83

II I-3-4 4

----5

6

7

8

Page 33: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

33

Sistemas de ecuaciones lineales.

Las ecuaciones 3 x - y = 0 y 2 x - y = 1 de primer grado en dos variables pueden tener una o más raíces comunes y para encontrarlas, conformamos lo que se denomina un sistema de dos ecuaciones lineales con dos incógnitas, que se simboliza:

El conjunto de pares (x,y) que satisface simultáneamente las dos ecuaciones se denomina conjunto solución del sistema. Cuando el conjunto solución es vacío el sistema es incompatible. Si existe única solución (un solo par ordenado) el sistema se dice compatible determinado y si, el conjunto solución está conformado por más de un par ordenado, el sistema se denomina compatible indeterminado.

Generalizando, un sistema de dos ecuaciones lineales con dos

incógnitas puede adoptar el aspecto:

(1) (2)

Las ecuaciones (1) y (2), pueden expresarse en forma conjuntista:

S1 = {(x,y) / A1 x + B1 y + C1 = 0} S2 = {(x,y) / A2 x + B2 y + C2 = 0}

En estas condiciones, resolver el sistema de ecuaciones consiste

en hallar S1 ∩ S2, intersección de los conjuntos solución de las ecuaciones (1) y (2); lo que geométricamente es equivalente a encontrar (si existen), el punto o los puntos comunes a ambas rectas. Solucion grafica de un sistema de ecuaciones lineales. Ejemplo 1:

Sea el sistema de ecuaciones lineales con dos incógnitas

de (1) 3 x - y = 0 y = 3 x

de (2) 2 x - y = -1 y = 2 x + 1

=−

=−

0y2x

0y3x

=++

=++

0CyBxA

0CyBxA

222

111

−=−

=−

1y2x

0y3x

(1)

(2)

Page 34: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

34

cuya representación cartesiana es:

S1 = { ( x,y ) / 3 x - y = 0 } S2 = { ( x,y ) / 2 x - y = -1} S1 ∩ S2 = {(1,3)} el conjunto solución del sistema (S1 ∩ S2) tiene un único par ordenado (las rectas se cortan en un punto) y por lo tanto el sistema resulta ser compatible determinado. Ejemplo 2:

Sea el sistema:

Si representamos gráficamente las rectas que corresponden a las ecuaciones (1) y (2).

observamos que los lugares geométricos coinciden, razón por la cual el conjunto solución del sistema posee infinitos pares ordenados: los que corresponden a todos los puntos de cada una de las rectas; el sistema se dice, compatible indeterminado.

0=2y-6x

0=y-3x

II II

---

1 2 3-1

1

2

3

x

y

-4

x f(x)

1

2

3

6

I4

----5

6

7

8x f(x)

1

2

3

5y = 2x + 1

y = 3x

II II

---

1 2 3-1

1

2

3

x

y

-4

I4

----5

6

7

8

(1)

(2)

Page 35: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

35

Ejemplo 3:

Sea el sistema:

Representadas gráficamente las dos ecuaciones:

resultan rectas paralelas: no existe intersección, lo cual significa que el conjunto solución del sistema es vacío; por esta razón el sistema se dice incompatible. Resolución analítica de un sistema de ecuaciones lineales.

Para la resolución analítica de un sistema de dos ecuaciones lineales pueden utilizarse distintos métodos, algunos de ellos desarrollados en el ciclo secundario,: métodos de sustitución, igualación, sumas y restas, determinantes, razón por la cual solo enunciamos cada uno de ellos, remitiendo al lector para su estudio a los textos de la escuela media o bien al capítulo correspondiente a la recta en el temario de la asignatura Matemática.. Método de Eliminación Gaussiana.

Los métodos enunciados precedentemente resultan de sencilla

aplicación e interpretación cuando el sistema que se trata de resolver tiene un número reducido de variables. Como regla general puede utilizarse con ventaja sobre ellos el llamado método de eliminación Gaussiana o método de eliminación de Gauss; cuyo fundamento y disposición práctica se basa en la demostración ya efectuada para justificar el método de resolución por sumas y restas.

En efecto; retornando a las ecuaciones:

(2) b = x a + x a

(1) b = x a + x a

2222121

1212111

multiplicando la ecuación (1) por 21a y la ecuación (2) por 11a obtenemos:

=−

=−

2y3x

0y3x

( 1 )

( 2 )

II II

---

1 2 3-1

1

2

3

x

y

-4

I4

----5

6

7

--

y = 3x

y = 3x - 2

-1

-2

Page 36: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

36

(4) b a= x a a + x aa

(3) b a= x a a+ x aa

2112112211121

1212122111121

restando (3) de (4)

( a11 a22 - a12 a21 ) x2 = a11b2 - a21 b 1 (5) El sistema

(5) b a - ba = x ) a a - a (a

(1) b = x a + x a

121211221122211

1212111

es equivalente al (1) , (2) ya que, como puede verificarse, tiene el mismo conjunto solución. Hemos transformado mediante esta operación nuestro sistema original

(1) , (2) constituido por dos ecuaciones con dos incógnitas en un nuevo sistema que le es equivalente y en el cual la segunda ecuación (5) posee una sola incógnita, por lo que, obtenida la misma, puede recurrirse a la ecuación (1) para calcular la restante.

Como en realidad, la operatoria se efectúa sobre los coeficientes, puede

realizarse una disposición práctica para el cálculo: 1) a11 a12 b1 (1)

2) a21 a22 b2 (2)

3) a11 a12 b1 (1)

4) a11a22 - a12a21 a11b2 - a21b1 (5)

Se escriben los coeficientes de las ecuaciones (1) y (2) incluso los

términos independientes que se ubican a la derecha de una recta divisoria vertical; se traza una recta horizontal y debajo de ella se escriben los coeficientes del sistema modificado: la fila 3) debe leerse: a11 x1 + a12 x2 = b1 (1)

la fila 4) (a11 a22 - a12 a21) x2 = a11 b2 - a21 b1 (5)

Ejemplo 1: Sea el sistema:

(2) 1- = y- x 2

(1) 0 = y- x 3

Page 37: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

37

Escribimos: 3 -1 0 (1)

2 -1 -1 (2)

3 -1 0 (1)

0 -1 -3 (5) Desarrollo de (5): el cero que está debajo del coeficiente 3 de la ecuación (1) corresponde a que en la ecuación (5) no existe término en la incógnita x1; debajo del coeficiente -1 de la incógnita x2 de (1) escribimos el transformado del coeficiente de x2 de la (2)

(a11. a22 - a12 . a21) = [ 3 (-1) – 2 (-1) ] = -1 y debajo del término independiente de (1) el transformado del término independiente de (2):

a11 . b2 - b1 . a21 = [ 3 (-1) - 0 . 2 ] = - 3

Prácticamente el cálculo es así: el transformado del coeficiente a22 de (2) 3 -1

2 -1

3 -1 • -1

se obtiene resolviendo el: 3 -1

= -3 + 2 = -1

2 -1

y el transformado del término independiente de (2) 3 -1 0 2 -1 -1

se obtiene resolviendo el: 3 0

= -3

2 -1 El sistema equivalente resultante:

3 x1 - x2 = 0 (1) x2 = -3 (5)

Page 38: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

38

de donde: x2 = 3 3 x1 - 3 = 0 x1 = 1

Como vemos existe única solución y el sistema es compatible

determinado (geométricamente las gráficas son rectas que se cortan en el punto)

(x1 , x2) = (1 , 3) Ejemplo 2:

Sea el sistema: 3 x - y = 2 6 x - 2y = 4

3 -1 2

6 -2 4

3 -1 2

0 0 0

El sistema equivalente es:

3 x1 - x2 = 2 0.x2 = 0

La ecuación 0.x2 = 0 se satisface para cualquier número razón por la cual

el sistema tiene infinitas soluciones y se denomina compatible indeterminado. Cada una las posibles soluciones se obtiene fijando un valor arbitrario para x2 y obteniendo luego x1 de la otra ecuación. (Geométricamente las gráficas coinciden).

Page 39: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

39

Ejemplo 3:

Sea el sistema: 3 x1 - x2 = 2 3 x1 - x2 = 4

3 -1 2

3 -1 4

3 -1 2

0 6 Siendo el sistema equivalente:

3 x1 - x2 = 2 0.x2 = 6

La segunda ecuación de este sistema no tiene solución, ya que no existe

número que multiplicado por cero de como resultado seis; el sistema es incompatible (en este caso las rectas son paralelas).

Como hemos visto en los ejemplos anteriores el método de eliminación

Gaussiana no solo permite resolver con rapidez un sistema de ecuaciones sino además permite obtener el tipo de solución para cada caso particular. Resolución de un sistema de tres ecuaciones lineales con tres incógnitas.

Idéntico razonamiento al desarrollado para el método de eliminación Gaussiana en dos variables se utiliza para resolver un sistema de tres ecuaciones lineales con tres incógnitas:

Sea el sistema : a11 x1 + a12 x2 + a13 x3 = b1 (1) a21 x1 + a22 x2 + a23 x3 = b2 (2) a31 x1 + a32 x2 + a33 x3 = b3 (3)

En este caso el método consiste en tomar cualquiera de las ecuaciones (por ejemplo la (1)) y

eliminar la incógnita x1 primero con la ecuación (2) y luego, independientemente, con la ecuación (3) transformando el sistema original en uno equivalente con una ecuación en tres

incógnitas y las otras con dos incógnitas. De este nuevo sistema se toman las ecuaciones que tienen dos

incógnitas y se lo transforma siguiendo el procedimiento ya descripto en otro sistema equivalente, con una ecuación en dos incógnitas y la otra solo en una.

Page 40: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

40

Del resultado de esta última operación obtendremos un sistema equivalente al original, con la primera ecuación en tres incógnitas, la segunda en dos y la tercera en solo una, lo que nos permite obtener el conjunto solución. Ejemplo 1:

Sea el sistema 2 x1 - x2 + x3 = 5 x1 + x2 - 2 x3 = -3 3 x1 + 2 x2 - x3 = 8

Adoptando la disposición práctica descripta: 2 -1 1 5 1 1 -2 -3 3 2 -1 8

repetimos la 1º ec. 2 -1 1 5 0 3 -5 -11 0 7 -5 1

repetimos la 1º 2 -1 1 5 y la 2º ec. del paso 0 3 -5 -11 anterior. 0 0 20 80

El sistema equivalente

2 x1 - x2 + x3 = 5 3 x2 - 5 x3 = -11 20 x3 = 80

se obtuvo resolviendo, por ejemplo, para el elemento -5 que es el transformado de -1 el determinante:

2 1 = -2 -3 = -5

3 -1 De: 20 x3 = 80 x3 = 4

De: 3 x2 - 5 . 4 = -11 3 x2 = 20 - 11 x2 = 3 y por último de: 2 x1 - 3 + 4 = 5 2 x1 = 5 + 3 - 4 x1 = 2

Page 41: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

41

Ejemplo 2:

3 x1 - 5 x2 + 11 x3 = 7 2 x1 + 3 x2 + 8 x3 = 4

x1 - x2 + 9 x3 = -3

3 5 11 7

2 3 8 4

1 -1 9 -3

3 5 11 7

0 -1 2 -2

0 -8 16 -16

2 5 11 7

0 -1 2 -2

0 0 0 0

El sistema equivalente es:

3 x1 + 5 x2 + 11 x3 = 7 x2 + 2 x3 = -2

0.x3 = 0

El sistema admite infinitas soluciones, que se obtienen dando valores arbitrarios a x3: por esa razón es compatible indeterminado.

Page 42: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

42

Ejemplo 3: 4 x1 + x2 - x3 = 6

2 x1 - 4 x2 + 6 x3 = 5 2 x1 + 4 x2 - 6 x3 = -2

4 1 -1 6

2 -4 6 5

2 4 -6 -2

4 1 -1 6

0 -14 22 32

0 14 -22 -20

4 1 -1 6

0 -14 22 32

0 0 0 -168

El sistema equivalente es: 4 x1 + 1 x2 - 1 x3 = 6

14 x2 + 22 x3 = 32 0 x3 = -168

El sistema no tiene solución (no la tiene 0 . x3 = -168) y por lo tanto se denomina incompatible. Resolución de sistemas de ecuaciones lineales por inversión de matrices.

Sea el sistema de tres ecuaciones lineales con tres incógnitas:

a11 x1 + a12 x2 + a13 x3 = b1 (1) a21 x1 + a22 x2 + a23 x3 = b2 (2) a31 x1 + a32 x2 + a33 x3 = b3 (3)

podemos escribirlo en forma matricial si hacemos el producto:

=

++

++

++

=

3

2

1

333232131

323222121

313212111

3

2

1

333231

232221

131211

b

b

b

xaxaxa

xaxaxa

xaxaxa

x

x

x

aaa

aaa

aaa

del cual resulta la igualdad:

Page 43: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

43

=

3

2

1

3

2

1

333231

232221

131211

b

b

b

x

x

x

aaa

aaa

aaa

designando:

=

333231

232221

131211

aaa

aaa

aaa

A ;

=

3

2

1

x

x

x

X ;

=

3

2

1

b

b

b

B

simbolizamos: BXA =⋅

Siendo A y B matrices conocidas, resolver el sistema consiste en encontrar los elementos de la matriz X, lo que se consigue premultiplicando (multiplicando desde la izquierda) ambos miembros de la igualdad por la matriz inversa de A, que simbolizamos como la matriz A-1.

En efecto, de: BAXAA ⋅=⋅⋅ −− 11

teniendo en cuenta de acuerdo con la definición de matriz inversa que IAA =⋅−1 y que I es el elemento neutro en el producto de matrices, resulta:

BAX ⋅= −1 lo que significa que, para obtener la matriz de las incógnitas (matriz solución) basta con premultiplicar la matriz de los términos independientes por la matriz inversa de la matriz de los coeficientes de las incógnitas.

Si recordamos que A

AdjA

t

=−1 , sólo podremos resolver por inversión de matrices aquellos

sistemas en los cuales el determinante asociado a la matriz de los coeficientes de las incógnitas sea distinto de cero, es decir solamente los sistemas que sean compatibles determinados. Ejemplo: Hallar la solución del sistema de ecuaciones lineales:

−=++

=−+

=+−

123

32

22

zyx

zyx

zyx

en forma matricial el sistema se escribe:

=

1

3

2

213

121

112

z

y

x

Page 44: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

44

como sabemos, pueden efectuarse operaciones elementales sobre el sistema de ecuaciones o sobre la matriz ampliada (ver método de eliminación gaussiana) o bien, si existe, calcular la inversa de

=

213

121

112

A y luego, premultiplicar la matriz de los términos independientes por

10

555

315

135

213

121

112

555

315

135

1

−−

=

−−

==−

A

AdjA

t

; o sea:

−=

−=

−−

3

1

2

30

10

20

10

1

1

3

2

555

315

135

10

1;o sea; x = 2; y = -1; z = -

Teorema de Cramer.

Como hemos visto al resolver sistemas de ecuaciones lineales por el método matricial, la matriz de las incógnitas se obtiene mediante la expresión: BAX ⋅= −1 , la

que teniendo en cuenta A

AdjA

t

=−1 puede escribirse: BA

AdjX

t

⋅= que se puede desarrollar

para un sistema de tres ecuaciones con tres incógnitas, sin que la demostración pierda validez general de la siguiente manera:

=

3

2

1

333231

232221

131211

332313

322212

312111

3

2

1

b

b

b

aaa

aaa

aaa

AAA

AAA

AAA

x

x

x

expresión de la cual se obtienen la siguiente igualdad:

Page 45: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

45

333231

232221

131211

33323

23222

13121

333231

232221

131211

3312211111

aaa

aaa

aaa

aab

aab

aab

aaa

aaa

aaa

bAbAbAx =

⋅+⋅+⋅=

que se lee: “la incógnita x1 se obtiene como el cociente entre dos determinantes: el del denominador es el asociado a la matriz de los coeficientes de las incógnitas mientas que el del numerador es el mismo determinante en el cual se ha reemplazado la columna de los coeficientes de x1 por los términos independientes” Con similar razonamiento:

333231

232221

131211

33331

23221

13111

333231

232221

131211

3322221122

aaa

aaa

aaa

aba

aba

aba

aaa

aaa

aaa

bAbAbAx =

⋅+⋅+⋅=

y

333231

232221

131211

33231

22221

11211

333231

232221

131211

3332231133

aaa

aaa

aaa

baa

baa

baa

aaa

aaa

aaa

bAbAbAx =

⋅+⋅+⋅=

lo expresado para la incógnita x1 puede generalizarse de la siguiente manera:”las incógnitas de un sistema de ecuaciones lineales pueden obtenerse efectuando el cociente entre dos determinantes: el del denominador es en todos los casos el asociado a la matriz de los coeficientes de las incógnitas mientras que el del numerador es el mismo determinante en el cual se ha reemplazado la columna de los coeficientes de la incógnita que se quiere calcular por los términos independientes”. Ejemplo: Hallar la solución del sistema de ecuaciones lineales:

−=++

=−+

=+−

123

32

22

zyx

zyx

zyx

Page 46: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

46

310

113

321

212

;110

213

131

122

;2

213

121

112

211

123

112

−=−

=−=−

==

= zyx

Sstemas homogéneos.

Reciben este nombre los sistemas de ecuaciones lineales que tienen

todos los términos independientes nulos. Tienen el aspecto:

a11 x1 + a12 x2 + a13 x3 = 0 (1) a21 x1 + a22 x2 + a23 x3 = 0 (2) a31 x1 + a32 x2 + a33 x3 = 0 (3)

Hemos utilizado estos sistemas en el estudio de la dependencia e

independencia lineal al tratar los Espacios Vectoriales. Vimos entonces y, lo recordamos ahora que estos sistemas siempre tienen solución (la llamada trivial con todos los valores de las incógnitas iguales a cero)

Como ejemplos podemos citar para el espacio dos la intersección entre dos rectas que pasan por el origen de coordenadas y para el espacio tridimensional, la intersección de tres planos que pasan por el origen de coordenadas.

Se resuelven por cualquier método de los desarrollados; muchas veces sólo se necesita saber si el sistema es compatible determinado o compatible indeterminado, lo que se logra resolviendo el determinante asociado a la matriz de los coeficientes de las incógnitas. Si dicho determinante es distinto de cero, las tres ecuaciones son independientes y la solución es única (la trivial): si por el contrario el determinante resulta nulo, el sistema resulta compatible indeterminado (soluciones múltiples)

Page 47: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

47

Resolución Matricial de los sistemas de ecuaciones lineales incompatibles. (aplicación del concepto de Matriz Pseudoinversa).

Sea el sistema de ecuaciones independientes (por lo tanto incompatible)

=+

=+

=+

)3(

)2(

)1(

32313

22212

12111

qxbxa

qxbxa

qxbxa

que puede escribirse en notación matricial:

=

3

2

1

2

1

33

22

11

q

q

q

x

x

ba

ba

ba

(4)

o simbólicamente qxA =⋅

Como la matriz A tiene mayor número de filas que de columnas sólo resulta posible definir su matriz inversa (en este caso, pseudoinversa) por la izquierda.

Para despejar la matriz x se premultiplican ambos miembros de la

igualdad anterior por la matriz traspuesta de A : qAxAA tt ⋅=⋅⋅ (5)

Nota: “para el caso que nos ocupa ( ) ( ) ( )222332 xxx

t MAA =⋅ ”

“si hubiéramos hecho ( ) ( ) ( )333223 xxt

x MAA =⋅ resulta siempre singular (no admite matriz inversa)”

Como la matriz AAt ⋅ es cuadrada, si su determinante asociado es

distinto de cero, admite matriz inversa ( ) 1−⋅ AAt ; premultiplicando por esta matriz ambos

miembros de (5):

( ) ( ) ( ) qAAAxAAAA tttt ⋅⋅⋅=⋅⋅⋅⋅−− 11

(6)

siendo ( ) ( ) IAAAA tt =⋅⋅⋅−1

resulta:

( ) qAAAx tt ⋅⋅⋅=−1

expresión en la cual ( ) LAAA tt =⋅⋅−1

(matriz pseudoinversa por la izquierda: ver Matriz Inversa en el capítulo sobre Matrices y Determinantes)

Page 48: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

48

Ejemplo:

Sea el sistema de ecuaciones lineales:

=+

=−

=+

21

23

1

21

21

21

xx

xx

xx

por el aspecto las primera y última ecuaciones con primeros miembros iguales y segundos miembros distintos, el sistema es incompatible. Actividad: Analizar la compatibilidad mediante el cálculo de los rangos de las matrices

−=

11

11

11

A y

−=′

2111

2311

111

A

Escribimos el sistema del ejemplo en notación matricial:

=

212

3

1

11

11

11

2

1

x

x

premultiplicamos ambos miembros por

− 111

111

−=

−⋅

212

3

1

111

111

11

11

11

111

111

2

1

x

x

que operando nos conduce a:

=

0

3

31

13

2

1

x

x

Obtenido este sistema de ecuaciones, que por tener iguel número de

ecuaciones e incógnitas, resulta compatible determinado , el cálculo puede continuarse de las siguientes maneras;

Page 49: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

49

a) resolver por inversión de matrices.

Retomemos la ecuación matricial

=

0

3

31

13

2

1

x

xque obtuvimos después de

premultiplicar ambos miembros de la ecuación matricial del sistema por la matriz

− 111

111y operar. Premultiplicando ahora ambos miembros por la inversa de la matriz

de los coeficientes obtenemos:

=

−−

0

3

31

13

31

13

31

131

2

1

1

x

x

=

0

3

31

131

2

1

x

xI

−=

0

3

3.1

13

8

1

2

1

x

x

−=

838

9

2

1

x

x

resultando 8

91 =x y

83

2−=x

b) resolver por eliminación Gaussiana o por la Regla de Cramer. (realizar la actividad)

Forma práctica del cálculo. Consiste en premultiplicar la matriz ampliada del sistema original

incompatible por su matriz traspuesta. Si a la matriz resultante del producto le eliminamos la última fila, resulta la matriz ampliada del sistema de ecuaciones normales, que puede resolverse por los métodos expuestos precedentemente.

Consideremos la matriz ampliada que corresponde a un sistema de

ecuaciones lineales incompatible de cuatro ecuaciones con tres incógnitas:

=

4444

3333

2222

1111

´

qcba

qcba

qcba

qcba

A

vamos a premultiplicar (multiplicar desde la izquierda) por su matriz traspuesta:

Page 50: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

50

4321

4321

4321

4321

qqqq

cccc

bbbb

aaaa

4444

3333

2222

1111

qcba

qcba

qcba

qcba

=

[ ] [ ] [ ] [ ][ ] [ ] [ ] [ ][ ] [ ] [ ] [ ][ ] [ ] [ ] [ ]

qqqcqbqa

cqcccbca

bqbcbbba

aqacabaa

eliminando la última fila de la matriz producto obtenemos:

[ ] [ ] [ ] [ ][ ] [ ] [ ] [ ][ ] [ ] [ ] [ ]

cqcccbca

bqbcbbba

aqacabaa

Para el ejemplo que venimos desarrollando, la matriz ampliada es:

2111

2311

111

; premultiplicando por su matriz traspuesta:

21

231

111

111

2111

2311

111

=

41402

031

313

eliminando la última fila de la matriz producto obtenida llegamos a:

031

313

esta matriz, es la matriz ampliada de un sistema de ecuaciones compatible; solo resta encontrar la solución por cualquiera de los métodos desarrollados.

Page 51: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

51

Introducción a la Teoría de Grafos.

La isla Kueiphof en Konigsberg (Pomerania) está rodeada por un río que se divide en dos brazos. Sobre estos brazos estaban construidos siete puentes, siendo para los habitantes un motivo de distracción descubrir un itinerario de modo tal que pudieran regresar desde cualquier punto al mismo punto después de haber cruzado por los siete puentes pasando solo una vez por cada uno de ellos.

En 1736, el matemático alemán Leonard Euler (1707-1782) visitó la

ciudad y, para estudiar el problema, representó las distintas zonas A (isla Kueiphof), B, C y D mediante puntos, mientras que a los puentes los simbolizó mediante líneas que unen dichos puntos. A la figura la llamó grafo, a los puntos vértices o nodos y a las líneas les dio el nombre de aristas.

C •••• A •••• ••••B

D ••••

El problema inicial se corresponde con el del esquema y consiste en verificar si partiendo de uno cualquiera de los cuatro puntos (A,B,C,D) puede seguirse un camino que pase por todas las aristas de una sola vez. Dicho de otra forma el problema consiste en estudiar si la figura se puede dibujar de un solo trazo, sin levantar el lápiz del papel y sin pasar dos veces por el mismo sitio.

A (isla

B

C

D

Page 52: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

52

Para que ello sea posible, el número de líneas que concurren a un punto podrá ser impar a lo sumo en dos puntos de concurrencia, debiendo en los demás puntos concurrir un número par de caminos y en nuestro caso todos los puntos tienen un número impar de líneas que concurren a ellos, lo que nos indica que el problema no tiene solución.

En efecto; a la isla A llegan cinco puentes; a la parte B llegan 3 puentes; a la orilla C llegan tres puentes y a la orilla D llegan tres.

Otros ejemplos: a) los siguientes dibujos pueden construirse de un solo trazo:

b) estos dibujos no pueden construirse de un solo trazo:

Este estudio de Euler dio origen a la Teoría de Grafos, que se

emplea entre otros problemas en el estudio de los circuitos eléctricos, en los problemas de transporte, etc...

Un grafo es, por ejemplo, el mapa de las carreteras de la República Argentina, en el cual las ciudades están representadas mediante puntos (nodos) y los caminos que los unen mediante líneas (aristas).

Otros ejemplos de tipo similar son • • • Kirchoff, en 1847 utilizó esquemas de este tipo al trabajar sobre circuitos

eléctricos • • •

Page 53: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

53

• • Cayley en 1857 estudió la enumeración de los isótopos del compuesto

orgánico CnH2n+2 usando un esquema en el que cada punto estaba unido con una o cuatro líneas de acuerdo a la valencia de enlace.

• • • • • • Jordan, en 1869 estudió estructuras de árbol en forma abstracta

En épocas más recientes se planteó el problema de colorear mapas de manera tal que países con frontera común, tuviesen colores diferentes.

Lo común en todos los casos planteados, es poder simbolizar un

determinado problema mediante un esquema de las características de los que hemos descrito, llamado grafo, formado por puntos y líneas que los unen y estudiar soluciones al problema mediante reflexiones realizadas sobre el gráfico asociado.

Teniendo en cuenta que problemas distintos pueden tener como

representación el mismo gráfico, un estudio sobre estos esquemas permite resolver múltiples problemas a la vez.

La conformación de un grafo se reduce generalmente a plantear el

problema que se estudia utilizando un esquema simple. En el trazado que realizamos no tienen importancia ni la forma, ni la

longitud de las líneas que unen los puntos ni las ubicaciones relativas de los mismos; solo interesa visualizar las conexiones establecidas entre los puntos (nodos).

La Teoría de Grafos ha dado resultados importantes en distintos campos

de la actividad del hombre y, aplicada a problemas diversos ha demostrado importantes ventajas sobre algunos procedimientos analíticos.

La idea gestacional de la Teoría de Grafos puede explicarse de la

siguiente manera:

Page 54: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

54

Para analizar un determinado problema podemos trazar:

Puntos: para representar los elementos del conjunto que se estudia. Líneas: para representar las relaciones que vinculan los elementos.

Este simple razonamiento es, sin duda, la causa que dio origen, en diferentes disciplinas a similares esquemas que reciben distintos nombres; organigramas, circuitos eléctricos, árboles genealógicos, hojas de ruta, etc,...

Resulta frecuente en la vida cotidiana establecer relaciones entre los

elementos de dos o más conjuntos, o bien, entre los elementos de un mismo conjunto. Dar una relación R es fijar una cierta ley que permita decidir para cada

par de elementos a y b si a está relacionado con b o no. Escribimos aRb para indicar que (a,b) ∈R. Si por ejemplo R es la relación “a es hermano de b”, Juan R José o bien el par (Juan, José) significan que Juan es hermano de José. Representación de relaciones.

Sean los conjuntos: A = {1,2,3} B = {a,b,c,d} ; una cierta relación del conjunto A con el conjunto B puede expresarse mediante un diagrama de Venn, por una tabla de simple entrada (horizontal o vertical), mediante una tabla a doble entrada o matriz,

1 *

2 *

3 *

* a

* b

* c

* d

A B

A B

1

2

3

- a

b

c

d2

-A

B

1 2 3 -

ab c d

2

-

A

B

1

3

2

a b c d

Page 55: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

55

dcba

que también puede representarse utilizando unos y ceros:

0000

1100

0010

3

2

1

o por un conjunto de pares ordenados

G = { (1,b); (2,c); (2,d)} llamado GRÁFICA de la relación; esta gráfica puede representarse en coordenadas cartesianas ortogonales: De lo expuesto podemos dar la siguiente Definición:

Se llama relación R de A en B a toda terna compuesta por un conjunto A llamado "conjunto de partida", un conjunto B denominado "conjunto de llegada" y el conjunto G llamado "gráfica" cuyos elementos son pares ordenados tales que su primera componente pertenece al conjunto A y la segunda a B.

R = (A , B, G )

De la observación de la representación cartesiana puede inferirse que el llamado producto cartesiano A x B es una GRÁFICA; la que corresponde a la relación más completa que pueda definirse entre dos conjuntos, ya que todo elemento de A está relacionado con cada uno de los elementos de B.

Por ello, podemos afirmar que la gráfica de toda relación R = (A,B,G)

es un subconjunto del producto cartesiano.

R = (A, B, G): G ⊂⊂⊂⊂ A x B.

1 2 3A

B

a

b

c

d

A x B

G

Page 56: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

56

Estudiaremos ahora, como caso particular, las relaciones definidas en un mismo conjunto; para el caso que nos interesa en la Teoría de Grafos un conjunto de elementos vi que llamamos vértices

Dado el conjunto V = {v1; v2} podemos formar los siguientes pares

ordenados (v1,v1) ; (v1,v2) ; (v2,v1) ; (v2,v2). Si el número de elementos de V es n, podemos formar n2 pares ordenados. Como hemos visto el conjunto de todos los pares ordenados posibles, recibe el nombre de Producto Cartesiano VxV y corresponde a la relación más completa que se puede establecer con los elementos de un conjunto ya que vincula a cada elemento de V consigo mismo y con todos los demás elementos de dicho conjunto.

Si solamente algunos de los pares ordenados de VxV cumplen con una

determinada propiedad, dicha propiedad particiona el conjunto VxV en dos subconjuntos: el de los pares ordenados que verifican la relación y el de aquellos que no la verifican.

Estos dos conjuntos reciben el nombre de Grafos de V. Al igual que lo que sucede con las relaciones, un grafo puede

representarse mediante diagramas de Venn, diagramas cartesianos, utilizando tablas a simple entrada, a doble entrada que llamamos matrices, pero la practicidad de la representación ha hecho prevalente sobre estos grafismos la utilización del denominado diagrama sagital o simplemente, grafo, que para nuestro ejemplo tiene el aspecto:

De una manera más simple y conceptual un grafo queda definido por un conjunto de elementos vi pertenecientes a un conjunto V y una ley de correspondencia C entre dichos elementos. En nuestro Grafo V = {v1,v2} y la ley de correspondencia C se expresa

C(v1) = (v1,v2) C(v2) = (v1,v2)

Los grafos pueden ser orientados o no, según que lo sean o no sus

aristas; el grafo que hemos representado es orientado.

Veamos otro ejemplo:

V7

V1

V2

V4

V3

V1

V2 V5

V6

Page 57: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

57

El conjunto de los vértices es V = {v1,v2, v3, v4, v5, v6, v7} y la ley de correspondencia:

C(v1) = {v2, v3, v4} C(v2) = {v4, v5} C(v3) = {v4, v6}

C(v4) = {v5, v6, v7} C(v5) = {v7} C(v6) = {v7}

C(v7) = φ Observemos que aunque existe conexión entre v4 y v3 estando el arco

orientado no se puede ir de v4 a v3. Del mismo modo, el nodo v7 está conectado con v4, v5 y v6 pero no se puede avanzar en contra de cada una de las flechas. Por esta razón a la ley de correspondencia de v7 la designamos con φ (conjunto vacío).

Como puede entenderse con facilidad, resulta interesante dar vida real a

los nodos asociándolos con ciudades o establecimientos y a los arcos como símbolo de rutas o carreteras.

Para un grafo orientado tal como el del ejemplo precedente resulta interesante definir: Camino: conjunto de dos o más arcos. Circuito: camino cerrado. Bucle: camino de un solo arco. Longitud de un camino: es el número de arcos que lo componen. Pueden ser simples, si no se repite ningún arco y compuestos cuando se repite

algún arco. Se denominan elementales cuando no se repite ningún vértice y no elementales, si se repite alguno.

En el grafo de la figura anterior pueden verse:

Caminos (v1 – v4): Se dan a continuación algunos de los caminos posibles entre los nodos v1 y v4.

V1 – v7 –v4

V1 – v2 – v3 – v4

V1 – v7 - v5 –v4

V2

V7

V6

V5

V4

V3

V1

Page 58: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

58

Actividad: escribir otros tres caminos entre los vértices v1 y v4. Circuitos v1:

V1 – v7- v5 –v1

V1 – v6 – v5 –v1

Bucle v1: el bucle v1 – v1 es único.

Existen caminos y circuitos especiales, que por su interés, sobre todo en los problemas de distribución mencionaremos:

Caminos hamiltonianos: son aquellos grafos al cual pertenecen todos los vértices del grafo, una sola vez cada uno de ellos. Circuitos hamiltonianos: son los caminos hamiltonianos cerrados. Caminos eulerianos: son aquellos a los que pertenecen una sola vez todos los arcos del grafo. Circuitos eulerianos: son aquellos circuitos eulerianos que comienzan y terminan en el mismo vértice.

En el grafo de la figura que sigue daremos algunos ejemplos sobre los conceptos definidos: Camino simple elemental:

v1 – v3 - v5 – v6 – v8 –v7

Camino simple no elemental: v1 – v3 - v6 – v4 – v3- v5 – v7

(no se repite ningún arco, pero se repite el vértice v3.) Camino compuesto no elemental:

v1 – v3 – v5 – v6 – v4 – v3 – v5 – v7

(se repite el arco (v3 – v5) y los vértices v3 y v5. Circuito simple elemental:

v2 – v4 – v3 – v2

V8 V6 V2 V4

V1 V3 V5 V7

Page 59: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

59

Circuito simple no elementlal: v1 –v3 – v5 – v6 – v4 – v3 – v2 – v1

(se repite el vértice v3 pero ningún arco) Camino hamiltoniano:

v1 – v2 – v4 – v3 – v5 – v6 – v8 – v7

Ciruito hamiltoniano. En este grafo no hay circuitos hamiltonianos.

Camino y Ciruito euleriano:

Este grafo no tiene ni caminos ni circuitos eulerianos.

Veamos ahora el grafo de la figura siguiente: Circuito euleriano:

V1 – v3 – v4 – v5 – v7 – v8 – v6 – v3 – v2 – v1

Comprende todos los arcos del grafo una sola vez. Sin embargo no es

hamiltoniano porque se repite el vértice v4. Subconjuntos de un grafo:

a) Subgrafo:

Si de todos los vértices de un grafo consideramos solamente algunos de ellos con todos los arcos que le corresponden en el grafo original, definimos lo que se denomina subgrafo. En otras palabras, un subgrafo tiene una parte de los vértices del grafo y conserva todos los arcos que corresponden al grafo total.

Como ejemplo si el grafo total corresponde a la red carreteras de la República Argentina, un subgrafo podría ser la red de carreteras de la Provincia de Buenos Aires.

V7

V8 V6 V2 V4

V1 V3 V5

Page 60: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

60

Para el grafo que corresponde a la siguiente figura (grafo total):

si queremos estudiar, por ejemplo una red de distribución de un producto entre los puntos 3, 4, 5, 6, 7 y 8, obtendremos el subgrafo de la figura siguiente:

b) Grafo parcial: Cuando a partir de un grafo dado no varía el número de vértices, pero

acotamos la ley de correspondencia entre ellos, obtenemos un grafo parcial; Si las indican las carreteras provinciales y los caminos municipales, la figura siguiente es un grafo parcial:

3

4

5

6

7

8

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

Page 61: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

61

Grado de un vértice:

Si se trata de un grafo no orientado, el grado de cada uno de sus vértices es el número de arcos que llegan a él. En el grafo de la figura el grado de V1 es cuatro y grado de v3 es tres. Se simboliza:

gv1) = 4 g(v3) = 3

Si el grafo está orientado, deben definirse los conceptos de semigrado interior y exterior.

Actividad: Obtener los grados de los vértices 1, 2, 3, 4, 5, y 6 del grafo de la figura anterior.

Semigraqdo interior es el número de arcos que inciden sobre un determinado vértice Semigrado exterior es el número de arcos que salen de él.

En este grafo el semigrado interior de v7 rd igual a uno y el semigrado exterior del mismo vértice vale 3. Se simboliza:

gi(v7) = 1 ge(v7) = 3

Actividad: Obtener los semigrados interior y exterior de los restantes vértices del grafo de la figura.

V2

V7

V6

V5

V4

V3

V1

V2

V7

V6

V5

V4

V3

V1

Page 62: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

62

Número grado de un grafo:

Llamamos número grado de un grafo y lo simbolizamos g(G) el máximo de los grados de sus vértices si el grafo es no orientado y la máxima suma de los semigrados exterior e interior del mismo vértice, cuando está orientado; es decir: g(G) = max (ge(vi) + gi(vi)). Actividad: Obtener los números de grado de los vértices del grafo de la figura anterior. Matrices de un grafo

a) Matriz booleana: Es una matriz cuadrada cuyos elementos indican la existencia o no de

un arco al menos entre dos vértices cualesquiera de un grafo. Los elementos de la matriz son ceros y unos. Un uno en la posición vij indica que existe conexión entre los vértices i, j: Un cero en cualquier posición expresa la no existencia de conexión entre los vértices correspondientes

Como el grafo de la figura anterior tiene siete vértices, se puede

construir la matriz booleana de orden 7: 7654321

0011100

0010000

0001001

0000000

0001000

0000100

1100010

7

6

5

4

3

2

1

v

v

v

v

v

v

v

Las suma de los elementos de cada una de las filas y la suma de los

elementos de cada una de las columnas representan respectivamente los semigrados exteriores e interiores de cada uno de los vértices.

V2

V7

V6

V5

V4

V3

V1

Page 63: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

63

7654321

0011100

0010000

0001001

0000000

0001000

0000100

1100010

7

6

5

4

3

2

1

v

v

v

v

v

v

v

( )( )( )( )( )( )( )( )

=

7

6

5

5

4

3

2

1

3

1

2

0

1

1

2

vg

vg

vg

vg

vg

vg

vg

vg

e

e

e

e

e

e

e

e

[ ] ( )ii vg=1123211

Si recordamos que el grado de un vértice es la suma de los semigrados exterior e interior, podemos sumar el vector columna de los semigrados exteriores con el vector traspuesto del vector fila de los semigrados interiores, resultando:

( )( )( )( )( )( )( )

=

=

+

7

6

5

4

3

2

1

4

2

4

3

3

2

3

1

1

2

3

2

1

1

3

1

2

0

1

1

2

vg

vg

vg

vg

vg

vg

vg

Sumando las componentes del vector de los semigrados exteriores o

bien del vector de los semigrados interiores computamos el número de arcos del grafo o, lo que es aún más interesante, el número de caminos de longitud igual a la unidad:

2 + 1 + 2 + 0 + 2 + 1 + 3 = 11 1 + 1 + 2 + 3 + 2 + 1 + 1 = 11

lo que significa que el grafo tiene 11 arcos o bien que los caminos de longitud uno son once. Este sencillo cálculo sirve de comprobación de que la matriz booleana ha sido bien calculada.

Page 64: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

64

Matriz asociada:

Tiene la misma estructura que la matriz booleana; la diferencia estriba en que cada elemento de esta matriz indica el número de caminos existentes entre los vértices vi y vj. En el caso del grafo que hemos analizado construyendo su matriz booleana, su matriz asociada tiene exactamente el mismo aspecto.

Sean ahora nuestro grafo y su matriz asociada:

=

11010

01000

01000

00102

01010

M

respecto de los semigrados exterior e interior de cada uno de los vértices, de los grados de los vértices y de los caminos de longitud uno que se corresponden con el número de arcos, escribimos:

( ) ( ) ( )iiiie vgvgvg =+

=

+

4

5

2

5

4

1

4

1

2

2

3

1

1

3

2

( ) ( ) 10=+∑∑ iiie vgvg

es decir que el grafo tiene 10 arcos o, lo que es igual diez caminos de longitud uno. Caminos de longitud dos o más:

Si queremos ahora encontrar el número de caminos formados por dos arcos, es decir, el número de caminos de longitud dos, elevamos al cuadrado la matriz asociada y realizar las mismas operaciones sumando los números de cada fila y de cada columna.

V4

V3

V2

V1

V5

Page 65: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

65

==⋅

11010

01000

01000

00102

01010

2MMM

11010

01000

01000

00102

01010

=

7

1

1

5

4

12112

01000

01000

03020

01102

↓⊕ ↓⊕ [ ] [ ]1818234 ⊕

Existen dieciocho caminos posibles de longitud dos en el grafo analizado. Si queremos obtener ahora el número de caminos de longitud igual a

tres, debemos efectuar la operación matricial MMM ⋅= 23 y así sucesivamente para caminos de orden de longitud mayor. (Volveremos sobre este tema con más detalles al tratar las aplicaciones a la ciencia de la conducta). Ordenamiento de un grafo:

Dejando para más adelante la justificación del ordenamiento de los

grafos en niveles, vamos a ejemplificar la operación utilizando dos metodos.

a) ordenamiento por el método de los semigrados exteriores: Cuando hablamos de semigrados, estamos tratando implícitamente con grafos ordenados. Estudiemos el siguiente grafo, del cual plantearemos su matriz booleana.

V4

V5

V3

V1

V2

V6

V7

V8 V9

Page 66: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

66

987654321 vvvvvvvvv 543210 XXXXXX

=

=

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

M

0

0

1

0

0

1

2

0

0

1

1

1

2

1

0

1

2

0

2

2

2

1

1

0

1

2

1

3

2

2

010000000

001000000

000000000

000001000

000101000

001000000

101001000

000011000

000000110

Escrita la matriz booleana que corresponde al grafo calcularemos primero un vector columna

0X en el cual sus elementos son los semigrados exteriores de los vértices del grafo. Este vector columna está escrito al lado de la matriz booleana M .Un cero ubicado en cualquier posición de este vector columna nos está indicando que el vértice correspondiente tiene semigrado exterior cero, o lo que es lo mismo hemos determinado que de ese vértice no sale ningún arco., lo que significa que este vértice es el nudo final del arco.

Para el grafo que estamos estudiando se anula la séptima componente

de 0X . Tenemos entonces que 7v es el nudo final del grafo y por sí solo constituye un nivel que llamaremos nivel 0

El siguiente paso del ordenamiento consiste en formar otro vector 1X

que se obtiene restando al vector 0X el o los vectores que pertenecen al nivel 0, en nuestro

ejemplo 701 vXX −=

=

=

1

0

1

2

0

2

2

2

9

1

0

0

0

1

1

0

0

1

1

0

1

2

1

3

2

2

1

X

X

Los vértices que estarán en el nivel 1 serán los correspondientes a las

posiciones nulas de 1X : los vértices 84 vyv

Page 67: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

67

v

Para el siguiente nivel haremos la operación: 8412 vvXX −−=

=

=

0

0

1

1

1

2

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

1

0

1

1

2

2

2

2

X

X

X

X

X

X

X z

del último cálculo deducimos que los vértices que conforman el nivel 2 son 96 vyv Actividad: con razonamiento análogo,, demostrar que se verifica: NIVEL 0 1 2 3 4 5

VÉRTICES

v7

V4

v8

V6

V9

V3

V5

V2

V1

La ordenación en niveles del grafo estudiado es la siguiente:

v5 v6 v4

v1 v2 v7 v3 v9 v8

Page 68: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

68

Algunas aplicaciones importantes de Matrices y Grafos: Como hemos visto hasta ahora, hemos concebido un grafo como un

conjunto de vértices y una ley de correspondencia para cada uno de ellos que indica como está relacionado cada elemento del conjunto que se estudia con cada uno de los restantes elementos.

Podemos agregar, a los efectos de estudiar diversos problemas otra información sobre los arcos; dicha información está directamente relacionada con el “valor” que podemos asignar a cada uno de los mismos.

Supongamos que dos ciudades cualesquira A y B están relacionadas

entre sí mediante tres rutas: 50 A 40

60

Si asignamos un valor a cada uno de los arcos, podemos decir, por

ejemplo que los caminos que unen las ciudades A y B tienen 50, 40 y 60 Kilómetros respectivamente. En este supuesto el valor de cada uno de los arcos indica el valor de la variable distancia. Pero podrían interesarnos otras variables distintas, como ser el tiempo que se tarda en recorrer cada camino o el costo del peaje de cada una de las carreteras.

Cuando se trata de la variable tiempo, debe tenerse en cuenta que dicha

variable no es necesariamente proporcional a la longitud del camino ya que depende, entre otros parámetros del tipo y estado de cada una de las rutas. Estas consideraciones deberán tenerse en cuenta al momento de elegir las variables que intervienen en el grafo; de este modo, a partir de las variables que se elijan deberemos optimizar unas u otras.

Habrá ocasiones, como veremos, en las que lo que más interesa es el

costo del transporte, expresándose el costo en unidades monetarias (u.m) por kilómetro recorrido.

Supongamos ahora que una fábrica elabora productos para lo cual deben efectuarse un cierto número de operaciones; cada operación necesita emplear un cierto tiempo y algunas operaciones deben ser terminadas antes de comenzar otras. El problema consiste en elaborar un plan de trabajo que permita elaborar el producto en el menor tiempo posible. Una manera de resolver este problema consiste en construir un grafo en el cual cada una de las operaciones estará representada por un punto y en cada punto un número que indicará el tiempo que demanda la operación. Las secuencias en que se realizarán las operaciones deberán indicarse mediante flechas.

Para determinar un plan óptimo deberá explorarse metodológicamente el

grafo construido con el objeto de determinar un camino crítico que ejecute todo el proceso en el menor tiempo posible.

B

Page 69: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

69

Todo esto conduce al tratamiento de las componentes del grafo de una forma u otra según sean las variables a optimizar; la solución se obtiene en cada uno de los casos mediante distintos modelos de gestión que adquieren denominaciones típicas. Veamos algunos modelos:

Aplicación a Problemas de la Ciencia de la Conducta:

Las matrices que tienen como elementos solamente ceros y unos resultan de suma utilidad en el análisis de gráficas y de redes.

Una red de comunicación consiste en un conjunto de personas A1, A2, A3, etc... tales que entre algunos pares de esas personas existe posibilidad de comunicación.

La comunicación entre dos elementos cualesquiera del conjunto puede

establecerse en un sentido o en ambos. Por ej. la comunicación en dos sentidos podría efectivizarse mediante el uso de teléfono o radio, mientras que una comunicación en un sentido es, por ejemplo, la que utiliza una señal luminosa, una paloma mensajera, una señal de humo o acústica.

Utilizaremos el símbolo >> para indicar una conexión; Ai>>Aj significa que el individuo Ai puede comunicarse con Aj (en ese sentido). El único requisito que debe establecerse es: “Es falso que Ai >> Ai para todo i, esto es, un individuo no puede (o no necesita) comunicarse consigo mismo.

Una determinada red de comunicación queda expresada mediante un

grafo (también denominado diagrama sagital), en el cual los individuos están representados por puntos A1, A2, etc... y las vinculaciones mediante segmentos dirigidos (el sentido de la dirección está representado mediante flechas); por ejemplo:

A3 A2

A1

A4 El diagrama precedente puede representarse de manera práctica mediante una matriz cuadrada cuyos elementos son ceros y unos:

Page 70: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

70

=

0010

1000

0101

0010

D

en esta matriz los elementos de la fila 1 representan respectivamente las comunicaciones entre A1 y todos los individuos que intervienen en la red de comunicación; el 1 de la primera fila ubicado en la posición d12 nos indica que

A1>>A2 (A1 se comunica con A2)

La condición “Es falso que Ai >> Ai se manifiesta en la matriz por el

hecho de que los elementos de la diagonal principal (que tienen subíndices iguales) son todos nulos.

Otro ejemplo es el que corresponde a una relación de dominancia: es ésta una clase especial de relación de comunicación en el cual además de la propiedad ya vista:

1) Es falso Ai >> Ai, (es falso que Ai se domine a sí mismo), vale: 2) Para cada par i,j con i ≠ j, Ai >> Aj ó Aj >> Ai , pero no ambas a la vez; dicho en

palabras: para cada par de individuos existe exactamente uno que es dominante.

3) Si Ai >> Aj y Aj >> Ak no vale necesariamente Ai >> Ak (no se verifica la propiedad transitiva de las relaciones).

Este tipo de relación se verifica en la competencia por equipos en el

caso en que no se admitan empates.

Las relaciones de dominancia suelen describirse utilizando grafos dirigidos (con flechas) o bien mediante matrices. Por ejemplo:

A3 A3

A1 A2 A1 A2

⇓⇓⇓⇓ ⇓⇓⇓⇓

A1 >> A2 A1 >> A2 A2 >> A3 A1 >> A3 A3 >> A1 A2>> A3

Page 71: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

71

=

001

100

010

D

=

000

100

110

D

Puesto que tanto la matriz de comunicación como la de dominancia son cuadradas, podemos computar sus potencias C2, C3, etc...

Haciendo CxC = C2 = E = (eij)

nnnjnn

inijii

nj

nj

nnnjnn

inijii

nj

nj

cccc

cccc

cccc

cccc

cccc

cccc

cccc

cccc

......

..................

......

..................

......

......

......

..................

......

..................

......

......

21

21

222221

111211

21

21

222221

111211

el elemento genérico del producto eij se obtiene multiplicando la fila i por la columna j , resultando :

eij = ci1 c1j + ci2 c2j + ...........+cik ckj....................+ cin cnj

Un término del segundo miembro de la expresión anterior (por ejemplo el genérico de la forma cik ckj) puede ser no nulo sólo si ambos factores son no nulos, o lo que es lo mismo si ambos factores son iguales a uno.

Cuando se da esta situación, por ejemplo:

Cik = 1 ⇒ Ai >> Ak y Ckj = 1 ⇒ Ak >> Aj como se dan simultáneamente ambas situaciones:

Ai >> Ak >> Aj

que implica una dominancia establecida en dos etapas entre Ai y Aj

Ejemplo:

Sea una relación de dominancia establecida entre cuatro individuos, expresada mediante la matriz

=

0000

1000

1100

1110

C

Page 72: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

72

==

=

0000

0000

1000

2100

0000

1000

1100

1110

0000

1000

1100

1110

. E2C hacemos

Obtenida la matriz producto analizamos el 2 situado en el ángulo

superior derecho (elemento e14)

2 = e14 = c11 c14 + c12 c24 + c13 c34 + c14 c44 e14 = 0 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 1 + 1 ⋅ 0 ⇓ ⇓ A1>>A2>>A4 ∧ A1>>A3>>A4

En el grafo que corresponde al caso estudiado, pueden visualizarse las relaciones de segundo orden

A4 A1 A3 A2

se leen en el grafo las siguientes relaciones de primer orden :

A1 >> A2; A1 >> A3; A1 >> A4; A2 >> A3; A2 >> A4; A3 >> A4

y las que se detallan de segundo orden:

A1 >> A2 >> A3 ; A1 >> A2 >> A4 ; A1 >> A3 >> A4 ; A2 >>A3 >> A4

Sean ahora los siguientes diagramas sagitales y sus correspondientes

matrices:

A4

=

0010

1000

0101

0010

4

3

2

1

3

A

A

A

A

C

A3

A2

A1

Page 73: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

73

A1 A2 A3 A4

=

0010

0010

0001

0010

4

3

2

1

4

A

A

A

A

C

En estos casos particulares, donde existe comunicación recíproca entre individuos (A1 >>A2 y A2 >> A1) no se cumple la condición que aij = 1 aji = 0 como se puede ver, con los elementos recíprocos.

a12 = 1 y a21 = 1 Siendo las matrices de comunicación cuadradas, podemos calcular efectuando el producto de las mismas, las potencias sucesivas, es decir C2, C3, etc. Por ejemplo, si efectuamos el producto de C3 por si misma, resulta: A1 A2 A3 A4 A1 A2 A3 A4

0010

1000

0101

0010

4

3

2

1

A

A

A

A

x

0010

1000

0101

0010

4

3

2

1

A

A

A

A

=

==

0101

0010

1010

0101

23 EC

siendo ∑=

⋅=4

1k

kjikij aae

411431132112111111 cccccccce +++= teniendo en cuenta la definición del producto de matrices.

Un término de la forma cik⋅ckj solamente puede ser distinto de cero, como ya hemos expresado, si ambos factores son distintos de ceros, es decir, si ambos factores son iguales a la unidad.

A3

A1 A2

A4

Page 74: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

74

Si resulta que cik = 1 esto significa que Ai tiene comunicación con Ak es decir (Ai >> Ak). Si además ckj = 1 significa que Ak tiene comunicación con Aj, es decir, (Ak >> Aj); resultando en consecuencia Ai >> Ak >> Aj, relación de COMUNICACIÓN que se denomina: RELACIÓN DE COMUNICACIÓN EN DOS ETAPAS O DE SEGUNDO ORDEN.

El número resultante del cálculo de eij expresa el número de relaciones de COMUNICACIÓN EN DOS ETAPAS O DE SEGUNDO ORDEN, lo cual significa que el individuo Ai se comunica con el individuo Aj de una o más maneras distintas. En el ejemplo dado, por ser c11 = 1 indica que A1 puede comunicarse consigo mismo en dos etapas, que se identifican: A1 >> A2 >>A1 Por ser c13 = 1 indica que A1 se comunica con A3 en dos etapas: esta relación se escribe: A1 >> A2 >> A3 De la misma manera por ser c22 = 1 nos indica que A2 tiene una relación de comunicación consigo mismo, de segundo orden, es decir: A2 >> A1 >> A2 Para c32 = 1 resulta: A3 >> A4 >> A2 Para c41 = 1 resulta: A4 >> A2 >> A1 Para c43 = 1 resulta: A4 >> A2 >> A3

De esta manera, todas las relaciones de comunicación de segundo

orden, puede explicitarse desarrollando el correspondiente elemento de la matriz C32 = E o

bien observando grafo o diagrama sagital correspondiente.

El cubo de la matriz C33 = C3

2 x C13 nos puede suministrar la información

de tercer orden o tercer grado, de una manera completamente análoga a lo que nos suministra C3

2 en las comunicaciones de segundo orden. Así siguiendo, podríamos calcular las potencias C3

4, C35, ... etc. de una

matriz, para obtener información sobre comunicaciones indirectas entre los individuos de los grupos que se estudian.

Si en lugar de utilizar la relación “SE COMUNICA CON” entre los individuos, ponemos como relación la expresión “ELIGE” la matriz obtenida se llamará MATRIZ DE ELECCIÓN, mientras que si utilizamos la relación “DOMINA” obtendríamos un estudio de MATRICES DE DOMINANCIA, etc.

Page 75: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

75

Ejemplo: Efectuar el siguiente análisis en el diagrama de flechas y hallar las comunicaciones de segundo orden. A1 A2 A3 A4

=

0010

1011

1101

1110

4

3

2

1

A

A

A

A

A

==

==

1101

2221

2131

2122

0010

1011

1101

1110

0010

1011

1101

1110

2 CAAxA

c11 dos comunicaciones de segundo orden: A1 >> A2 >> A1 A1 >> A3 >> A1 c12 dos comunicaciones de segundo orden: A1 >> A3 >> A2 A1 >> A4 >> A2 c13 una comunicación de segundo orden: A1 >> A2 >> A3

c14 una comunicación de segundo orden: A1 >> A2 >> A4 c21 una comunicación de segundo orden: A2 >> A3 >> A1 c22 tres comunicaciones : A2 >> A1 >> A2 A3 >> A2 >> A1 A2 >> A4 >> A2

c23 una comunicación: A2 >> A1 >> A3 c24 dos comunicaciones: A2>> A1 >> A4 Actividad: escribir las restantes comunicaciones de segundo orden

A4

A1 A3

A2

Page 76: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

76

Ejercicio : Dados los siguientes grafos, armar las matrices correspondientes y estudiar las comunicaciones de 1ro y 2do orden. A2 A3

A1 A

A1 A2 A3 A4

EL PROBLEMA DEL TRANSPORTE Recibe este nombre debido a que muchas de sus aplicaciones se

refieren a la manera óptima de transportar bienes. Sin embargo, algunas de sus aplicaciones importantes como la

programación de la producción, de hecho nada tiene que ver con el transporte. Las aplicaciones del problema del transporte requieren, como veremos,

un número muy grande de restricciones y variables, de manera tal que una aplicación en computadora de los métodos tradicionales de la llamada programación lineal (particularmente el Método Simplex) puede conducir a un esfuerzo computacional muy grande.

Como resultado de este problema se han desarrollado otros algoritmos

con gran ahorro de tiempo en la resolución. Importantes ahorros en costos se han logrado a través de una adecuada

elección de la ruta de envío de mercaderías desde los puntos de existencia de la misma hasta los puntos de demanda.

Meta y restricciones de un modelo de transporte.

La meta de un modelo de transporte es minimizar el costo total de envío de un producto (o productos) desde los puntos de oferta (orígenes) hasta los puntos de demanda (destinos) bajo las siguientes restricciones:

1. Cada punto de demanda recibe su requerimiento 2. Las salidas desde un origen no exceden su capacidad disponible.

Page 77: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

77

Formulación de un modelo de transporte.

Consideremos una red de distribución de un producto con dos puntos de suministro (orígenes) y tres puntos de demanda (destinos)

Como el total de las disponibilidades 10 +15 = 25 es igual a la suma de las demandas 10 + 15 + 10 = 25 decimos que el problema de transporte que hemos planteado está equilibrado o balanceado.

En cada una de las ramas (flechas) está indicado el costo unitario de envío del producto; para enviar una unidad desde O1 hasta D1 se requieren $ 2. La información puede resumirse en la siguiente tabla que tiene las características de una matriz:

D1 D2 D3 Disponibilidad

O1 2 4 6 10 O2 3 6 9 15

Requerimientos 10 5 10 Total = 25 Para indicar el número de unidades a transportar del origen i al destino j

escribimos xij. El objetivo es minimizar el costo total de envío sujeto a las restricciones

de disponibilidad y de requerimientos, o sea:

Minimizar: Z = 2x11 + 4x12 + 6x13 + 3x21 + 6x22 + 9x23 (0)

sujeta a: x11 + x12 + x13 = 10 (1) x21 + x22 + x23 = 15 (2) x11 + x21 = 10 (3) x12 + x22 = 5 (4) x13 + x23 = 10 (5) con xij ≥≥≥≥ 0 (I = 1,2,3)

$9

$6 $3

$6

$4

$2 O1 (10)

O2 (15)

D1 (10)

D2 (5)

D3 (10)

Page 78: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

78

Las restricciones (1) y (2) son de disponibilidad, mientras que (3), (4) y (5) son restricciones de requerimiento o de demanda.

Consideremos ahora el caso en que la oferta es superior a la demanda

para los mismos orígenes y destinos con idénticos costos unitarios y con la siguiente tabla:

D1 D2 D3 Disponibilidad O1 2 4 6 15 O2 3 6 9 15

Requerimientos 10 5 10 25 30 Para construir un modelo equilibrado (oferta = demanda) creamos un

punto de demanda ficticio, con una cantidad requerida igual a la diferencia entre la oferta y la demanda (en nuestro caso, 5 unidades)

D1 D2 D3 Df Disponibilidad O1 2 4 6 0 15 O2 3 6 9 0 15

Requerimientos 10 5 10 5 30 Los costos asociados a la columna ficticia Df son nulos y su tratamiento

resulta igual que si fuera un punto de demanda más. Veremos más adelante otra manera de estimar los costos para la demanda ficticia.

Las variables que corresponden a las celdas de la demanda ficticia (en

nuestro caso x14 y x24) son variables ficticias y representan la cantidad de producto en los puntos de suministro O1 y O2 que no es enviada, es decir la cantidad de producto que estará almacenada en O1 y O2.

Cuando la demanda excede al suministro

D1 D2 D3 Disponibilidad O1 2 4 6 10 O2 3 6 9 15

Requerimientos 10 10 10 30 25

creamos un origen ficticio Of , resultando el modelo equilibrado de la siguiente tabla

Page 79: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

79

D1 D2 D3 Disponibilidad

O1 2 4 6 10 O2 3 6 9 15 Of 0 0 0 5

Requerimientos 10 10 10 Total: 30 aparecerán ahora las variables ficticias xf1; xf2 y xf3 que representan la cantidad de requerimientos en los puntos de demanda que no es satisfecha.

Una suposición básica para la resolución del problema del transporte es que el costo de distribución del origen i al destino j es directamente proporcional al número de unidades distribuidas.

Si Z es el costo total de distribución y xij (i=1,2,3,.....m y j = 1,2,3...n) es

el número de unidades que se transportarán desde el origen i al destino j, la formulación de programación lineal para el problema general es:

Minimizar ∑∑= =

⋅=m

i

n

j

ijij xcZ

1 1

Sujeta a:

∑=

=≤n

j

miiij Ox

1,......3,2,1

∑=

=≥m

i

njiij dx

1....3,2,1

jiijx ∀∀≥ ;0

El primer conjunto de restricciones nos dice que la suma de los envíos

desde un origen no puede ser mayor que su oferta; el segundo conjunto de restricciones requiere que la suma de los envíos a un destino satisfaga al menos su demanda.

El modelo que hemos descrito en el ejemplo precedente es un caso

particular en el cual la oferta es igual a la demanda; por dicha razón en el desarrollo del mismo en lugar de inecuaciones se ha planteado el sistema de las restricciones como un conjunto de ecuaciones. La solución puede obtenerse en este caso, incluyendo variables artificiales, mientras que en los problemas no equilibrados deberán introducirse previamente variables ficticias que funcionan del mismo modo que las variables de holgura.

Page 80: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

80

En los casos que deben resolverse para el mundo real, no siempre es cierto que la oferta sea igual a la demanda. Sin embargo, como hemos visto, un modelo de transporte siempre puede equilibrarse

Ejemplos: a) Modelo de transporte Standard:

Una fábrica de automóviles tiene plantas productoras en tres ciudades (orígenes O1, O2 y O3) y centros de distribución ubicados en los que llamamos puestos de demanda (D1 y D2).

Las capacidades mensuales de las tres plantas son 1000, 1500 y 1200 automóviles, mientas que las demandas son respectivamente 2300 y 1400 unidades.

El costo del transporte de un automóvil por tren es de 8 centavos por kilómetro. El diagrama de la distancia recorrida entre las plantas y los centros de distribución es el siguiente:

D1 D2

O1 1000 2690

O2 1250 1350

O3 1275 850

que se traduce en el siguiente cuadro de costos:

D1 D2

O1 80 215

O2 100 108

O3 102 68

Siendo que la oferta iguala a la demanda, nuestro problema está

equilibrado, resultando la matriz que representa el problema:

D1 D2 Disponibilidd

O1 80

x11

215

x12

1000

O2 100

x21

108

x22

1500

O3 102

x31

68

x32

1200

Requerim. 2300 1400 3700

Page 81: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

81

y el problema puede expresarse mediante restricciones de igualdad y consiste en: Minimizar:

Z = 80x11 + 215x12 + 100x21 + 108x22 + 102x31 +168x32 (0)

sujeta a: x11 + x12 = 1000 (1) x21 + x22 = 1500 (2) x31 + x32 = 1200 (3) x11 + x21 + x31 = 2300 (4) x12 + x22 +x32 = 1200 (5) con xij ≥≥≥≥ 0 Ejercicio: Supongamos que no queremos enviar ningún automóvil de O2 a D1. Cómo se puede incorporar esa condición? Respuesta: asignar un costo de transporte muy elevado, M, a la ruta. Consiste en una penalización.

Supongamos ahora que la capacidad de producción de O2 es de 1300 automóviles en lugar de 1500. La situación se ha desequilibrado debido a que la oferta (3500) no es igual a la demanda (3700). Resulta entonces que no será posible cubrir toda la demanda. Nuestro objetivo es ahora reformular el problema restituyendo el equilibrio perdido. Como la demanda es mayor que la oferta, agregamos un origen ficticio que designamos Of con una "capacidad de producción" de 200 autos.

Físicamente, la cantidad enviada a un destino desde un origen ficticio,

representaría la cantidad faltante en dicho destino. Para completar el modelo tenemos en cuenta que, como el origen ficticio

no existe, no habrá ningún envío físico y el costo unitario correspondiente será cero. Sin embargo, podemos enfocar la situación desde otro punto de vista diciendo que se incurre en un costo de penalización por cada unidad de demanda insatisfecha. En este caso los costos de transporte unitarios serán iguales a los costos de penalización unitarios en los diversos destinos.

Page 82: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

82

El modelo resulta:

D1 D2 Disponibilidd

O1 80

x11

215

x12

1000

O2 100

x21

108

x22

1300

O3 102

x31

68

x32

1200

Of 0 0 200

Requerim. 2300 1400 3700

De similar manera, si la oferta es mayor que la demanda, podemos agregar un destino ficticio Df que absorberá la diferencia. Si por ejemplo, D1 disminuye su demanda a 1900 vehículos

D1 D2 Df Disponibilidd

O1 80

x11

215

x12

0

x1f 1000

O2 100

x21

108

x22

0

x2f 1500

O3 102

x31

68

x32

0

x3f 1200

Requerim. 1900 1400 400 3700

"cualquier auto enviado a Df representa una cantidad excedente en la planta y en ese caso, el costo de transporte unitario será igual al de almacenamiento unitario. Ejercicio: 1) Será necesario agregar un origen ficticio y un destino ficticio para producir un modelo de

transporte equilibrado? Rta: NO. 2) Supongamos que los costos de penalización por cada automóvil no recibido en D1 y D2

son $ 200 y $ 260. Cambiar el modelo de modo que incluya esta información. Rta: el costo unitario deberá ser $ 200 y $ 260 respectivamente en lugar de cero.

3) Interpretar la solución en el modelo con Of si el número de automóviles enviados de Of a D1 y D2 son 150 y 50 respectivamente. Rta: órdenes faltantes en D1 y D2 son 150 y 50 respectivamente.

Page 83: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

83

4) Supongamos que en el modelo con Df la planta O2 debe enviar toda su producción (1500 autos) ¿cómo podemos implantar esta restricción? Rta: asignar un valor muy elevado (M) a la ruta O2Df.

5) En el caso siguiente indicar si se debe agregar Of o Df

O1 = 10 ; O2 = 5 ; O3 = 4 ; O4 = 6 D1 = 10 ; D2 = 5 ; D3 = 7 ; D4 = 9

La aplicación del modelo de transporte no se limita al "problema del

transporte de mercaderías" entre orígenes y destinos. Como hemos dicho al principio de estas notas, una aplicación importante es la programación de la producción, que veremos a continuación.

1) Dibujar un grafo que corresponda a la siguiente matriz de comunicación:

=

0111

1010

1001

0100

C

2) Si queremos conectar seis barrios con el menor número de caminos posibles, ¿cuántos hacen falta?. ¿Y si queremos conectarlos en forma máxima?.

3) Escribir la matriz de comunicación para el siguiente grafo y estudiar las comunicaciones de segundo y de tercer orden.

Aplicación al Urbanismo: ubicación óptima de un Centro de Salud.

4) El grafo del problema anterior representa la ubicación de seis barrios de una ciudad

entre los cuales se pretende ubicar la posición de un Centro de Salud de manera óptima. Los números que se han colocado sobre los arcos indican la longitud de cada camino. Un primer estudio técnico ha decidido que el Centro de Salud se ubicará en aquel barrio que verifique la condición de que la máxima distancia recorrida por uno de sus vecinos para llegar a los otros barrios sea la mínima posible. 4.a) Escribir la matriz que simbolice las distancias mínimas para ir de un barrio a otro y

decidir por su observación el barrio en que se instalará el Centro de Salud. 4.b) Cuales son los barrios que están mejor comunicados? 4.c) Si se deseara que todos los barrios estén conectados directamente mediante

caminos, cuántos caminos nuevos deberán construirse?

A B C

D E F

5 8

7

4

7

3

Page 84: Universidad acional de La Plata - UNLP · a elemento correspondiente, definiremos en forma análoga la suma entre dos matrices con el agregado de que, para que dos matrices resulten

84

4,d) Si se espera que, en promedio, una ambulancia del Centro de Salud debería realizar dos auxilios diarios a cada barrio, cuántos litros de combustible habrá que comprar para los próximos treinta días si el consumo es de un litro cada 12 kilómetros?.