114
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA CAROLINA LAMBERTINI OCCURRENCE PATTERNS OF Batrachochytrium dendrobatidis IN AMPHIBIANS FROM BRAZILIAN ATLANTIC FOREST AND AMAZONIA PADRÕES DE OCORRÊNCIA DE Batrachochytrium dendrobatidis EM ANFÍBIOS DA MATA ATLÂNTICA E AMAZÔNIA BRASILEIRAS CAMPINAS 2019

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE BIOLOGIA

CAROLINA LAMBERTINI

OCCURRENCE PATTERNS OF Batrachochytrium dendrobatidis IN

AMPHIBIANS FROM BRAZILIAN ATLANTIC FOREST AND

AMAZONIA

PADRÕES DE OCORRÊNCIA DE Batrachochytrium dendrobatidis EM

ANFÍBIOS DA MATA ATLÂNTICA E AMAZÔNIA BRASILEIRAS

CAMPINAS

2019

Page 2: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

CAROLINA LAMBERTINI

OCCURRENCE PATTERNS OF Batrachochytrium dendrobatidis IN

AMPHIBIANS FROM BRAZILIAN ATLANTIC FOREST AND AMAZONIA

PADRÕES DE OCORRÊNCIA DE Batrachochytrium dendrobatidis EM

ANFÍBIOS DA MATA ATLÂNTICA E AMAZÔNIA BRASILEIRAS

Thesis presented to the Institute of

Biology of the University of Campinas

in partial fulfillment of the

requirements for the degree of Doctor,

in the area of Animal Biology, specific

area of Animal Biodiversity

Tese apresentada ao Instituto de

Biologia da Universidade Estadual de

Campinas como parte dos requisitos

exigidos para a obtenção do título de

Doutora em Biologia Animal, na área

de Biodiversidade Animal

ESTE EXEMPLAR CORRESPONDE À

VERSÃO FINAL DA TESE DEFENDIDA

PELA ALUNA CAROLINA LAMBERTINI,

E ORIENTADA PELO PROF. DR. LUIS

FELIPE DE TOLEDO RAMOS PEREIRA

Orientador: Prof. Dr. Luis Felipe de Toledo Ramos Pereira

CAMPINAS

2019

Page 3: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini
Page 4: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

Campinas, 28 de Maio de 2019.

COMISSÃO EXAMINADORA

Prof.(a) Dr.(a). Luis Felipe de Toledo Ramos Pereira

Prof.(a). Dr.(a) Cinthia Aguirre Brasileiro

Prof.(a) Dr(a). Rodrigo Lingnau

Prof.(a) Dr(a). Mariana Lucio Lyra

Prof.(a) Dr(a). Marcelo José Sturaro

Os membros da Comissão Examinadora acima assinaram a Ata de Defesa, que se

encontra no processo de vida acadêmica do aluno.

Page 5: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

Dedico este trabalho à minha família, que esteve sempre ao meu lado em

momentos difíceis e felizes, me incentivando e me dando forças para seguir em

frente.

Page 6: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

“And those who were seen dancing were thought to be insane by those who could not

hear the music”

FRIEDRICH NIETZSCHE

Page 7: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

AGRADECIMENTOS

Ao Programa de Pós-graduação em Biologia Animal da UNICAMP.

O presente trabalho foi realizado com apoio da Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES) - Código de

Financiamento 001.

À Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP

#2011/51694-7; #2014/23388-7; #2016/25358-3) e Conselho Nacional de

Desenvolvimento Científico e Tecnológico (CNPq #405285/2013-2; #312895-2014-3)

pelo financiamento do presente trabalho.

Ao meu orientador Prof. Dr. Luís Felipe Toledo, por estar ao meu lado durante

nove anos de orientação, por todo seu tempo e dedicação em me ensinar e me formar

intelectualmente, e pelas inúmeras oportunidades de crescimento profissional que me

concedeu. Além da orientação, pela amizade, confiança e parceria que desenvolvemos

durante todos esses anos, e por me ajudar a superar alguns dos momentos mais difíceis

que tive de passar em meu caminho. Meu eterno carinho e gratidão.

Ao Prof. Dr. Domingos da Silva Leite, que me abriu as portas da carreira

científica, sempre com muita paciência e atenção ao me ensinar diversas técnicas

laboratoriais. Muito obrigada por toda dedicação.

Aos membros da banca de avaliação prévia, Prof. Dr. Rodrigo Lingnau, Prof.

Dr. André Rinaldo Senna Garrafoni, Prof. Dra. Elaine Maria Lucas Gonsales, e aos

membros da banca examinadora Prof. Dr. Rodrigo Lingnau, Prof. Dra. Cinthia

Brasileiro, Prof. Dr. Marcelo José Sturaro, Dra. Mariana Lyra, pela disponibilidade e

auxílio para grandes melhorias na qualidade do presente trabalho.

Aos Professores Doutores Danilo Ciccone Miguel, André Rinaldo Senna

Garrafoni, Martin Francisco Pareja e Adriano Cappellazzo Coelho por toda a ajuda,

paciência e compreensão no processo de qualificação.

Ao Instituto Chico Mendes de Biodiversidade e ao Instituto Florestal pela

concessão das autorizações necessárias para a elaboração do presente trabalho.

À minha família, Nuno Lambertini, Divina Felício de Souza Lambertini, Nuno

Lambertini Jr., Marlene Soares Lambertini, Bruno Lambertini, Keylla Mara Campos

Lambertini, Pedro Campos Lambertini, Fernanda Lambertini Piva, Adailton Renato

Piva, e aos dois novos membros Vinicius Lambertini Piva e Felipe Lambertini Piva,

Page 8: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

pelo amor incondicional, parceria, compreensão e motivação, por acreditarem em mim e

serem meus maiores exemplos de vida.

À minha família científica, Camila Zornosa Torres, Simone Dena, Mariane de

Oliveira, Guilherme Augusto Alves, Raoni Rebouças, Ronaldo M. N. Santos, Mariana

Rettuci Pontes, Diego Moura, Tamilie Carvalho, Luisa de Pontes Ribeiro, Anat Belasen,

Carlos Henrique L. N. Almeida, Victor Fávaro Augusto, Janaina Serrano, Raquel Salla

Jacob, Joice Ruggeri Gomes, Daniel Christofer Medina López, Thomas S. Jenkinson,

Lucas Forti, Prof. Dr. C. Guilherme Becker, Prof. Dr. Timothy Y. James, Prof. Dr.

David Rodriguez, Prof. Dra. Kelly R. Zamudio, muito amor e gratidão a todos.

Aos meus amores da vida, Anita C. Presotto, Fernanda C. O. Fernandes, Marjori

Laporte, Carolina Marcucci, Luís Fernando Moreno de Lima, Lucas Beraldo Martins,

por estarem sempre ao meu lado, mesmo eu estando ausente em diversos momentos,

obrigada pela compreensão, amizade e parceria eterna.

À minha família de Barão Geraldo, Bruno Polato Sanches, Eduardo Teodoro

Fernandes, Mariane de Oliveira Freitas, Lucas Madureira e Júlia Lombardi, por

compartilharmos a mesma casa, nos unirmos nas situações difíceis que já enfrentamos,

pelo suporte que damos uns aos outros em diversos momentos, por sermos família!

À Sandra Borsetti, pela enorme ajuda no início de tudo. Um anjo que caiu no

meu caminho, sem você nada disso seria possível.

À Dra. Ana Paula José e Dr. Mário Fernando Oliveira Rocha pelo

acompanhamento e ajuda excepcional no meu processo de formação. Muito carinho e

eterna gratidão por vocês!

Page 9: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

RESUMO

Doenças infecciosas emergentes são consideradas uma das principais ameaças à

biodiversidade mundial, e sua ocorrência é determinada através da influência do

ambiente nas interações entre patógenos e hospedeiros. A quitridiomicose, causada pelo

fungo Batrachochytrium dendrobatidis (Bd), é uma doença infecciosa emergente que

acomete populações de anfíbios em todo o mundo, e sua dinâmica de infecção já foi

diretamente associada à variação ambiental, direcionando condições para o

desenvolvimento do patógeno e/ou interferindo na susceptibilidade do hospedeiro. O Bd

é um patógeno generalista, infectando em sua maioria Anura, porém já detectado em

Caudata e Gymnophiona, mas até então não existem informações sobre os padrões de

ocorrência de Bd em cecílias no mundo. No Brasil, o bioma Amazônia foi considerado

como região de baixa adequabilidade ambiental para o desenvolvimento do Bd, e dois

estudos retrospectivos corroboraram esse padrão. A Mata Atlântica, por sua vez, é uma

região que apresenta alta adequabilidade ambiental para o Bd, na qual o patógeno já foi

amplamente detectado, principalmente na porção sul. Contudo, não existem estudos até

então que analisaram padrões de ocorrência do Bd em populações naturais de anfíbios

da Amazônia, e abrangendo a Mata Atlântica como um todo. Com isso, realizamos uma

ampla amostragem de espécimes fixados da ordem Gymnophiona ao longo da América

do Sul, para verificar se existe variação nos padrões de ocorrência do Bd nesse grupo.

Realizamos também uma amostragem de populações naturais de anfíbios na região

amazônica, abrangendo não somente espécies da ordem Anura, mas também das ordens

Gymnophiona e Caudata, verificando potenciais associações entre variáveis bióticas e

abióticas com as taxas de infecção, e testando experimentalmente o efeito da potencial

chegada de cepas exóticas de Bd em hospedeiros endêmicos da região. Finalmente,

realizamos uma ampla amostragem de anuros ao longo de um transecto latitudinal na

Mata Atlântica, identificando padrões de ocorrência do Bd, e potenciais associações

entre variáveis bióticas e abióticas nas taxas de infecção dos hospedeiros. Descrevemos

aqui o primeiro registro de infecção por Bd no Brasil em espécies da ordem Caudata e

Gymnophiona, propondo que as últimas podem servir como reservatório patógeno,

devido à história de vida dos hospedeiros. Na região amazônica, detectamos altas taxas

de prevalência de infecção, padrão oposto ao esperado para região, onde as variáveis

ambientais não foram boas preditoras de ocorrência do patógeno, e detectamos

experimentalmente variação em resposta dos hospedeiros à infecção por diferentes

Page 10: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

cepas de Bd. Detectamos uma associação positiva entra as taxas de infecção por Bd e

variação latitudinal ao longo do transecto na Mata Atlântica; identificamos variáveis

abióticas e bióticas associadas às taxas de infecção encontradas, e detectamos um efeito

de amplificação da riqueza de espécies de hospedeiros nas taxas de infecção por Bd. O

presente trabalho traz informações inéditas sobre os padrões de ocorrência do Bd nos

biomas Mata Atlântica e Amazônia.

Page 11: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

ABSTRACT

Emerging infectious diseases are one of the main threats to worldwide biodiversity,

being determined by the environmental influence on host-pathogen interactions.

Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is an

emerging infectious disease that affects amphibian populations worldwide, and its

infectious dynamics has been already directly associated to environmental variation, by

basically driving conditions for the pathogen development and/or interfering on host’s

susceptibility. Bd is a generalist pathogen, infecting mostly Anuran species, but also

detected in Gymnophiona and Caudata species. However, there is no information until

now on Bd occurrence patterns in Gymnophiona species in the world. In Brazil,

Amazonia was considered a region with low environmental suitability for Bd, and two

retrospective studies detected low Bd infection prevalence rates. On the other hand,

Atlantic Forest is a region considered environmentally suitable for Bd, and it has been

already widely detected, mainly in the south portion of the biome. But, no studies

attempted to analyze Bd occurrence patterns on amphibian natural populations from

Amazonia and in Atlantic Forest as a whole. Given this, we broadly sampled

Gymnophiona museum specimens across South America, to verify if Bd occurrence

patterns vary in this group. We also sampled wild amphibian populations across

Brazilian Amazon, including Gymnophiona and Caudata species, to test for potential

associations between biotic and abiotic variables and infection rates, and we

experimentally tested the effects of exotic Bd strains on host species from the region.

Finally, we broadly sampled anuran species along a latitudinal transect across Brazilian

Atlantic Forest, identifying Bd occurrence patterns and potential associations between

biotic and abiotic variables with Bd infections. We describe here the first report of Bd

infections in Caudata and Gymnophiona species from Brazil, and propose that

individuals from the last order may serve as pathogen reservoir because of host’s life

history. In Amazonia, we detected higher Bd infection prevalence, which is the opposite

pattern expected for the region, where environmental variables were not good predictors

for Bd occurrence, and we experimentally detected variation in host response to the

infection by exotic Bd strains. We detected a positive relationship between Bd infection

rates and latitudinal variation across the transect in Atlantic Forest. We also identified

biotic and abiotic variables associated to Bd infections, and an amplification effect of

Page 12: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

species richness on Bd infections. The present study provides new information on Bd

occurrence patterns in Brazilian Atlantic Forest and Amazon.

Page 13: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

LISTA DE ILUSTRAÇÕES

Introdução Geral

Figura 1. Modelo conceitual do triângulo da doença, representando os três vértices e

suas interações: impacto do ambiente, susceptibilidade dos hospedeiros e virulência

do patógeno. Fonte: Scholthof 2007.......................................................................... 20

Figura 2. Distribuição mundial dos fungos Batrachochytrium dendrobatidis e

Batrachochytrium salamandrivorans. Fonte: Bower et al. 2017............................... 22

Figura 3. Esquema simplificado representando o ciclo de vida do Bd. Zoósporo livre

(A), após penetrar na epiderme do hospedeiro inicia-se o desenvolvimento do

zoosporângio (B), seguido do processo de maturação e produção de zoósporos, e

formação de papilas de descarga (C), com a liberação dos zoósporos recém-formados

(D). Fotos: Luís Felipe Toledo................................................................................... 23

Capítulo 1. Spatial Distribution of Batrachochytrium dendrobatidis in South American

Caecilians

Figura 1. Amostragem de Batrachochytrium dendrobatidis em espécimes fixados de

cecílias do Brazil e Uruguai (amostras positivas: círculos vermelhos; amostras

negativas: círculos brancos), e cecílias coletadas na natureza (amostras positivas:

cruz vermelha; amostras negativas: cruzes brancas; Vásquez-Ochoa et al. 2012,

Gower et al. 2013, Rendle et al. 2015, presente trabalho). Siphonops paulensis é uma

espécie terrestre fossorial encontrada na porção leste do Brazil, e Chthonerpeton

indistinctum é uma espécie aquática, e representa a única espécie de cecília

encontrada no Uruguai. Créditos: Dr. Daniel Loebmann (fotos), US National Park

Service (layer).......................................................................................................... 41

Page 14: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

Capítulo 2. The Killing-Chytrid Fungus in Amphibian Populations of the Brazilian

Amazon

Figura 1. Pontos de amostragem de Batrachochytrium dendrobatidis (pontos pretos)

ao longo da Amazônia brasileira. O tamanho dos pontos representa o valor da

prevalência de infecção para cada localidade amostrada........................................... 57

Figura 2. Associações entre prevalência (A) e carga de infecção (B) por

Batrachochytrium dendrobatidis e tipo de habitat das espécies de hospedeiros. As

letras minúsculas (a, b e c) representam diferenças entre cada categoria.................. 58

Figura 3. Curvas de sobrevivência de Atelopus aff. spumarius. Grupos infectados

por Batrachochytrium dendrobatidis são representados pela linha marrom (CLFT

156), linha amarela (CLFT 102), e grupo controle pela linha azul (A). Diferenças

entre carga de infecção dos grupos experimentais no meio (ou morte) e ao final do

experimento (B)......................................................................................................... 59

Figura S1. Ponto de coleta de Atelopus hoogmoedi (azul: Manaus, Amazonas,

Amazon), e localidades de isolamento de cepas de Batrachochytrium dendrobatidis

(marrom = CLFT 156: Morretes, Paraná; amarelo = CLFT 102: Camacan, Bahia;

ambos na Mata Atlântica).......................................................................................... 60

Figura S2. Dendrograma da análise de cluster utilizando variáveis bioclimáticas de

temperatura e precipitação, mostrando similaridade climática entre localidades de

isolamento de cepas de Batrachochytrium dendrobatidis (CLFT 156 e CLFT 102), e

localidade de coleta de Atelopus aff. spumarius (Manaus). O eixo y representa

distâncias Euclidianas................................................................................................ 61

Capítulo 3. Latitudinal Distribution of the Frog-Killing Fungus across the Brazilian

Atlantic Forest

Figura 1. Pontos de amostragem de Batrachochytrium dendrobatidis (pontos pretos)

ao longo de um transecto latitudinal na Mata Atlântica. Pontos vermelhos a azuis são

extremos de um contínuo de prevalência e carga de infecção para cada ponto de

Page 15: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

amostragem. A linha pontilhada no topo do Rio Doce indica o limite entre as porções

sul e norte da Mata Atlântica, delimitando também os dados utilizados nos gráficos

inseridos na figura...................................................................................................... 75

Figura 2. Associação entre prevalência e carga de infecção de Batrachochytrium

dendrobatidis com tipo de hábito (A, B) e habitat dos hospedeiros (C,

D)............................................................................................................................... 76

Page 16: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

LISTA DE TABELAS

Capítulo 1. Spatial Distribution of Batrachochytrium dendrobatidis in South American

Caecilians

Tabela 1. Famílias, espécies tamanho amostral, tipo de ambiente e país nos quais

indivíduos da família Gymnophiona foram capturados, e prevalência de infecção por

Batrachochytrium dendrobatidis (número de positivos/total)................................... 39

Tabela 2. Resultados da análise de model averaging, com o ranqueamento de

variáveis ambientais que explicam a ocorrência de Batrachochytrium dendrobatidis

em cecílias da América do Sul................................................................................... 40

Tabela S1. Contempla os dados brutos das análises referentes ao presente capítulo.

Material em formato de mídia eletrônica com acesso disponível em: <

https://www.int-res.com/articles/suppl/d124p109_supp.pdf >.

Tabela S2. Seleção de modelo com variáveis bioclimáticas associadas à infecção por

Batrachochytrium dendrobatidis............................................................................... 42

Capítulo 2. The Killing-Chytrid Fungus in Amphibian Populations from the Brazilian

Amazon

Tabela 1. Prevalência (positivos/total) e carga de infecção (g.e.) por

Batrachochytrium dendrobatidis (valores representam média ± desvio padrão) por

local de coleta na bacia Amazônica Brasileira.......................................................... 55

Tabela 2. Prevalência [porcentagem (positivo/total)] e carga de infecção (valores são

média ± desvio padrão) de Batrachochytrium dendrobatidis por local de coleta na

bacia Amazônica Brasileira....................................................................................... 56

Tabela S1. Contempla os dados brutos das análises referentes ao presente capítulo.

Este material será disponibilizado em formato de mídia eletrônica no momento da

publicação.

Page 17: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

Capítulo 3. Latitudinal Distribution of the Frog-Killing Fungus across the Brazilian

Atlantic Forest

Tabela 1. Prevalência (positive/total) e carga de infecção de Batrachochytrium

dendrobatidis (rounded without decimals) por família e modo reprodutivo. Valores

de intensidade de infecção (equivalentes genômicos de zoósporos - g.e.) são média ±

desvio padrão (variação)............................................................................................ 72

Tabela 2. Localidades de coleta e detecção de Batrachochytrium dendrobatidis ao

longo do transecto latitudinal na Mata Atlântica....................................................... 73

Tabela 3. Melhor modelo para prevalência de infecção por Batrachochytrium

dendrobatidis ao longo do transecto latitudinal......................................................... 74

Tabela S1. Contempla os dados brutos das análises referentes ao presente capítulo.

Este material será disponibilizado em formato de mídia eletrônica no momento da

publicação.

Tabela S2. Cinco melhores modelos para prevalência e carga de infecção por

Batrachochytrium dendrobatidis. Bio 1 = Temperatura Média Anual; Bio 2 =

Variação Média Diurna; Bio 4 = Sazonalidade de Temperatura; Bio 5 = Máxima

Temperatura do Mês Mais Quente; Bio 12 = Precipitação Anual; Bio 18 =

Precipitação do Quarto Mais Quente......................................................................... 77

Page 18: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

SUMÁRIO

INTRODUÇÃO .............................................................................................................. 19

Capítulo 1. SPATIAL DISTRIBUTION OF Batrachochytrium dendrobatidis IN

SOUTH AMERICAN CAECILIANS ........................................................................ 30

Capítulo 2. THE KILLING-CHYTRID FUNGUS IN AMPHIBIAN

POPULATIONS OF THE BRAZILIAN AMAZONIA ............................................. 44

Capítulo 3. LATITUDINAL DISTRIBUTION OF THE FROG-KILLING FUNGUS

ACROSS THE BRAZILIAN ATLANTIC FOREST ................................................. 62

SÍNTESE GERAL .......................................................................................................... 78

REFERÊNCIAS ............................................................................................................. 81

ANEXOS ........................................................................................................................ 99

Page 19: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

19

INTRODUÇÃO

Doenças infecciosas emergentes (DIE) são definidas como aquelas que aparecem

pela primeira vez em uma população, aumentando em incidência, patogenicidade, impacto,

distribuição geográfica e número de hospedeiros afetados em um curto período de tempo

(Morse 1995, revisado em Williams et al. 2002, Daszak et al. 2003). Eventos de DIE’s

aumentam substancialmente ao longo do tempo, afetando tanto seres humanos quanto

diversos outros táxons na natureza (Daszak et al. 2001, Daszak et al. 2003, Jones et al. 2008,

Tompkins et al. 2015). As DIE’s são causadas por uma grande diversidade de patógenos

como bactérias, vírus/príons, fungos, protozoários e helmintos (Daszak et al. 2000, Jones et

al. 2008). Em seres humanos, a maioria dos agentes infecciosos que causam DIE’s são

bactérias (principalmente estirpes que apresentam resistência a antibióticos) e, pelo menos

60% dos eventos de DIE’s são representados por zoonoses (doenças infecciosas de origem

animal), sendo a grande maioria de origem selvagem (Jones et al. 2008). Em outros

vertebrados, vírus representam a maioria dos agentes infecciosos responsáveis por surtos de

doenças, seguidos de bactérias e fungos (Dobson e Foufopoulos 2001, Tompkins et al. 2015).

A origem e emergência de doenças infecciosas representam um risco crescente

tanto para seres humanos, quanto para a biodiversidade como um todo (Daszak et al. 2000,

Cunningham et al. 2017), e são diretamente associadas ao declínio de populações de diversas

espécies no mundo (Lips et al. 2006, Skerrat et al. 2007, Blehert et al. 2009, Vredenburg et al.

2010, Tompkins et al. 2011, Lorch et al. 2016). Duas hipóteses competem pela explicação da

origem de uma doença infecciosa. A Novel Pathogen Hypothesis (NPH) sugere que, em um

período recente, determinado patógeno se espalhou afetando novas espécies ou espécies

altamente susceptíveis. A Endemic Pathogen Hypothesis (EPH) por sua vez, sugere que um

patógeno já estabelecido e disseminado em determinado ambiente encontra novos hospedeiros

ou apresenta aumento em patogenicidade (Laurance et al. 1996, Alford 2001, Rachowicz et al.

2005, Skerrat et al. 2007). A origem de diversas doenças pode ser explicada tanto pela NPH

quanto pela EPH e, a classificação dentre essas duas hipóteses, pode influenciar diretamente

em medidas de conservação que podem interferir na disseminação de um dado patógeno

novo, ou prevenir surtos de um patógeno endêmico (Rachowicz et al. 2005).

Dentre os potenciais fatores que direcionam a emergência de doenças infecciosas

em vertebrados, além de alterações ecossistêmicas de origem natural ou antropogênica e

movimentação de patógenos ou vetores (revisado em Willians et al. 2002), podemos citar

fatores relacionados aos hospedeiros como instabilidade e baixa diversidade genética,

Page 20: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

20

Figura 1. Modelo conceitual do triângulo da doença, representando os três vértices e suas interações: impacto

do ambiente, susceptibilidade do hospedeiro e virulência do patógeno. Fonte: Sholthof (2007).

deficiência nutritiva e pouca variação de suplementos alimentares, exposição a agentes

infecciosos provenientes de outras populações naturais ou domésticas, estresse relacionado à

alteração de habitats e alterações na resposta imunológica, estresse térmico e mudanças

climáticas (Daszak et al. 2003, Tompkins et al. 2015). Em resumo, as inter-relações entre

ambiente e características dos patógenos e hospedeiros determinam diretamente a emergência

de doenças infecciosas na natureza (Scholthof et al. 2007, Engering et al. 2013).

Para uma melhor compreensão de tais interações, foi desenvolvido um modelo

conceitual denominado triângulo da doença (McNew 1960), que descreve como fatores

ambientais afetando a susceptibilidade do hospedeiro e a virulência do patógeno, podem

resultar em potenciais surtos de doenças (Figura 1) e, como estas podem ser previstas,

limitadas ou controladas (Keane and Keer 1997, Scholthof 2007).

Por exemplo, sabe-se que a variação em temperatura e precipitação impactam as

interações patógeno-hospedeiro em diferentes sistemas de doenças (Altizer et al. 2006),

resultando em uma alta incidência do patógeno em uma população e potencial morte dos

hospedeiros (Altizer et al. 2006, Fisher et al. 2012, Flory et al. 2012, Ruggeri et al. 2018).

Diversos grupos de vertebrados são afetados por doenças infecciosas, resultando

em declínios de populações e extinções de espécies por todo o mundo (McMichals 2004,

Tompkins et al. 2015), com surtos de doenças ocorrendo principalmente durante modificações

Page 21: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

21

ambientais (Anfíbios: Daszak et al. 2000; Peixes: Snieszko 1974; Humanos: Eisenberg et al.

2007). Um dos mecanismos pelos quais a variação ambiental pode influenciar o

desenvolvimento de uma determinada doença pode ser exemplificado com a White-Nose

Syndrom, uma doença infecciosa cutânea causada pelo fungo Geomyces destructans. Essa

doença afeta seriamente morcegos que hibernam em cavernas nos Estados Unidos e Canadá

(Blehert et al. 2009, Warnecke et al. 2012), e a variação de temperatura dentro dos

hibernáculos, pode influenciar tanto na severidade do patógeno quanto nas taxas de

sobrevivência dos hospedeiros afetados por essa doença (Boyles et al. 2010, Verant et al.

2012). Outro exemplo importante é a Snake Fungal Disease, uma doença infecciosa causada

pelo patógeno Ophidiomyces ophiodiicola, que afeta diversas espécies de serpentes

distribuídas ao leste dos Estados Unidos (Allender et al. 2016, Lorch et al. 2016), e foi

detectada uma correlação negativa entre a média de temperatura mensal e severidade dos

sinais clínicos apresentados pelos hospedeiros infectados (McCoy et al. 2017).

A quitridiomicose, mais um exemplo de DIE, afeta uma grande diversidade de

espécies de anfíbios e já teve sua dinâmica diretamente associada à variação ambiental em

diversas localidades no mundo (Kriger et al. 2007, Becker e Zamudio 2011, Bacigalupe et al.

2017, Carvalho et al. 2017, Greenberg et al. 2017). Esta doença é causada pelos fungos

patogênicos Batrachochytrium dendrobatidis (Bd) e Batrachochytrium salamandrivorans

(Bsal), que ameaçam de forma imperativa diversas populações de anfíbios no mundo (Martel

et al. 2013, James et al. 2015, Berger et al. 2016, Scheele et al. 2019).

Os anfíbios são classificados como o grupo de vertebrados mais ameaçado do

planeta (Stuart et al. 2004), apresentando o maior número de representantes dentro de

categorias de ameaça (pelo menos 40% das espécies) (IPBES 2019, IUCN 2019), e diversos

fatores como poluição ambiental, introdução de predadores e competidores (Daszak et al.

1999), contaminações químicas, comercialização de espécies, aumento na incidência de

radiação UV (Semlitsch 2003, McMenamin et al. 2008, Mann et al. 2009), mudanças

climáticas (Pounds et al. 2006), fragmentação e perda de habitats (Becker et al. 2007, Skerrat

et al. 2007), e doenças infecciosas (Daszak et al. 2000, Blehert et al. 2009, Allender et al.

2016, Scheele et al. 2019) exercem influência no declínio de populações. A fragmentação de

habitats atua de forma direta na ameaça aos anfíbios, como por exemplo, através do processo

de desconexão de habitats (Habitat split), que representa um grande risco para espécies de

anfíbios que necessitam realizar migrações reprodutivas (Becker et al. 2007). Em conjunto

com a fragmentação e perda de habitats, a quitridiomicose representa um impacto cada vez

mais significativo no declínio e extinção de anfíbios ao redor do mundo (Berger et al. 1998,

Page 22: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

22

Figura 2: Distribuição mundial dos fungos Batrachochytrium dendrobatidis e Batrachochytrium

salamandrivorans. Fonte: Bower et al (2017).

Lips et al. 2006, Skerrat et al. 2007, Kriger & Hero 2008, Vredenburg et al. 2010, James et al.

2015, Berger et al. 2016, Scheele et al. 2019).

O Bd foi descoberto em 1998 (Berger et al. 1998), descrito no ano de 1999

(Longcore et al. 1999), e já foi registrado acometendo além de Anura, espécies de Caudata e

Gymnophiona (Longcore et al. 1999, Raffel et al. 2010, Doherty-Bone et al. 2013, Berger et

al. 2016). O Bsal foi descrito recentemente e, acreditava-se que acometia apenas espécies de

Caudata (Martel et al. 2013, Martel et al. 2014), mas atualmente sabe-se que também infecta

anfíbios anuros (Stegen et al. 2017). Além disso, foi descrito recentemente o primeiro caso de

coinfecção de Bd e Bsal em uma população de salamandras de fogo na Alemanha (Lötters et

al. 2018).

Enquanto Bsal possui registros de ocorrência apenas na Europa e Ásia (Martel

et al. 2013, Martel et al. 2014, Bower et al. 2017, Lötters et al. 2018), Bd foi amplamente

detectado em todo o mundo (Olson & Ronnenberg 2014, Bower et al. 2017, Scheele et al.

2019) (Figura 2) e associado a declínios substanciais de populações e extinções de espécies

em determinadas regiões na Austrália, América do Norte, América Central e América do Sul

(Berger et al. 1998, Lips et al. 2005, Lips et al. 2006, Vredenburg et al. 2010).

Cepas do Bd possuem faixa de temperatura de crescimento que em geral varia

entre 4 e 28ºC (Piotrowski et al. 2004). Porém, recentemente foi detectada uma variação em

tolerância térmica, e determinadas cepas apresentaram viabilidade de crescimento mesmo

Page 23: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

23

Figura 3: Esquema simplificado representando o ciclo de vida do Bd. Zoósporo livre (A), após penetrar na

epiderme do hospedeiro inicia-se o desenvolvimento do zoosporângio (B), seguido do processo de maturação e

produção de zoósporos, e formação de papilas de descarga (C), com a liberação dos zoósporos recém-formados

(D). Fotos: Luís Felipe Toledo.

após choques de baixa (-12ºC) e alta (28ºC) temperatura, mas em geral apresentam faixa

ótima de crescimento entre 17 e 23ºC, o que influencia diretamente sua

virulência/patogenicidade (Piotrowsky et al. 2004, Voyles et al. 2017). O Bsal, por sua vez,

possui uma faixa ótima de crescimento que varia entre 10 e 15ºC, com cepas apresentando

mortalidade acima de 25ºC e, essa variação em preferência térmica em comparação com o Bd,

pode explicar sua distribuição geográfica mais restrita (Martel et al. 2013).

Ambos patógenos são aquáticos, apresentando ciclo de vida similar com fase

infectante representada pelo zoósporo móvel, e fase séssil representada pelo zoosporângio,

com formação em talo monocêntrico ou colonial (Longcore et al. 1999, Martel et al. 2013,

James et al. 2015). Os zoósporos colonizam a epiderme do hospedeiro (Figura 3A), formam

um tubo germinativo que penetra na membrana celular, transferem seu conteúdo para o

interior das células, e após esse processo ocorre o início da maturação dos zoosporângios

(Figura 3B) e formação de papilas de descarga (Figura 3C) que atravessam a epiderme para a

liberação dos zoósporos recém-formados (Figura 3D) (Berger et al. 2005, Greenspan et al.

2012). O mecanismo pelo qual o Bsal penetra e se desenvolve na epiderme de seus

hospedeiros provavelmente varia em comparação com o Bd, já que os sinais clínicos são mais

agressivos (Martel et al. 2013), porém não existem trabalhos que descrevem esse mecanismo

até então.

O desenvolvimento da quitridiomicose nos hospedeiros infectados pelo Bd afeta

processos fisiológicos de troca de água, gases e eletrólitos que ocorrem através da pele,

desencadeando um desequilíbrio nas concentrações de íons no plasma sanguíneo e morte

através de parada cardíaca em assistolia (Voyles et al. 2009). Além disso, ocorre a inibição da

resposta imune devido à produção de fatores tóxicos pelo patógeno (Fites et al. 2013).

Hospedeiros infectados pelo Bsal apresentam lesões erosivas multifocais e ulcerações

Page 24: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

24

profundas, mostrando taxa de mortalidade rápida pós-infecção (Martel et al. 2013, Martel et

al. 2014).

O Bd é um patógeno generalista, tendo sido detectado em pelo menos 600

espécies de anuros ao redor do mundo (Olson e Ronnenberg et al. 2014, Scheele et al. 2019).

Em relação às outras ordens de anfíbios, infecções por Bd já foram relatadas em mais de 80

espécies de Caudata (Olson & Ronnemberg 2014), provenientes de diversas regiões nas

Américas (Davidson et al. 2003, Padgett-Flohr & Longcore 2007, Gaetner et al. 2009, Van

Rooij et al. 2011), Ásia (Parto et al. 2013) e Europa (Bovero et al. 2008). No Brasil não

existem registros, até então, de infecção por Bd em espécies de Caudata, que possuem

distribuição restrita à região Amazônica. Em relação à Gymnophiona, pelo menos sete

espécies testaram positivo para Bd (Olson & Ronnemberg 2014), com registros na África

(Doherty-Bone et al. 2013, Gower et al. 2013) e Guiana Francesa (Rendle et al. 2015).

Esforços amostrais foram realizados em outras regiões (e.g. Savage et al. 2011, Vasquez-

Ochoa et al. 2012, Penner et al. 2013, Labisko et al. 2015), porém todas as amostras foram

negativas. No Brasil, até o momento não existem registros de Bd infectando representantes

dessa ordem.

Aplicando o modelo conceitual do triangulo da doença à quitridiomicose, diversos

estudos correlacionaram cada vértice aos padrões de ocorrência da doença no mundo. Em

termos de variação ambiental, estudos demonstraram uma associação negativa entre

temperatura e taxas de infecção por Bd (Pushendorf et al. 2009, Ruggeri et al. 2015, Becker et

al. 2016, Carvalho et al. 2017, Lambertini et al. 2017). Precipitação, por sua vez, foi

positivamente associada às taxas de infecção (Pushendorf et al. 2009, Becker & Zamudio

2011, Ruggeri et al. 2015, Becker et al. 2016, Lambertini et al. 2017), além de densidade de

vegetação (Pushendorf et al. 2009, Becker et al. 2012, Becker et al. 2016), e elevação, que

frequentemente apresentam associação positiva com as taxas de infeção (Brem & Lips 2008,

Gründler et al. 2012, Catenazzi et al. 2013), e possivelmente a última apenas em faixas de

altitudes mais elevadas (Lambertini et al. 2016). Além desses fatores, grau de desmatamento

(Becker & Zamudio 2011), sazonalidade (Kriger & Hero 2007, Longo et al. 2010, Ruggeri et

al. 2015), complexidade topográfica (Becker et al. 2016) e grau de perturbação antrópica

(human footprint) também já foram associados às taxas de infecção por Bd (Becker et al.

2016, Carvalho et al. 2017).

Em relação ao patógeno, diversas características já foram diretamente associadas

aos padrões de infecção por Bd nos hospedeiros. Cepas de Bd isoladas de diversas localidades

do mundo apresentam variação genotípica, com o genótipo que apresenta distribuição global

Page 25: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

25

denominado Global Pandemic Lineage (Bd-GPL) (Farrer et al. 2011, Schloegel et al. 2012),

considerado uma linhagem hipervirulenta, e previamente associado a surtos epizoóticos que

declinaram diversas populações de anfíbios em diversas regiões como Américas e Austrália

(Berger et al. 1998, Lips et al. 2005, Lips et al. 2006, Vredenburg et al. 2010, Farrer et al.

2011, James et al 2015). Outras linhagens com distribuição mais restrita foram descritas em

diferentes regiões, como Bd-CH (Europa), Bd-CAPE (África), e Bd-Brazil, e consideradas

como linhagens enzoóticas (Farrer et al. 2011, Schloegel et al. 2012), além de linhagens

genéticas altamente divergentes e endêmicas da Ásia (Bataille et al. 2013). Recentemente, o

sequenciamento genômico de diversos isolados de Bd no mundo, e a descoberta de uma

linhagem hiperdiversa na península Coreana, redefiniram essas linhagens e suas relações,

sendo então as principais linhagens divergentes de Bd definidas como: Bd-GPL, Bd-Asia-1,

Bd-CAPE, Bd-Asia-2/Bd-Brazil (O´Hanlon et al. 2018). No Brasil, além da linhagem Bd-

GPL, detectada por toda extensão da Mata Atlântica e recentemente na Amazônia, e da

linhagem endêmica Bd-Brazil, foi detectado pela primeira vez um genótipo híbrido entre as

linhagens Bd-GPL e Bd-Brazil, isolado na porção sul da Mata Atlântica, sendo a primeira

evidência de reprodução sexuada do patógeno (Schloegel et al. 2012, Rosenblum et al. 2013

Jenkinson et al. 2016).

A diversidade de genótipos de Bd e genótipos híbridos podem acarretar variação

em virulência do patógeno, afetando diretamente hospedeiros infectados (Jenkinson et al.

2016, Greenspan et al. 2018). Recentemente, um estudo avaliou a variação de virulência do

Bd utilizando cepas pertencentes aos três genótipos encontrados no Brasil, e detectou alta

virulência em cepas de genótipos híbridos, em comparação com hospedeiros infectados com

as linhagens Bd-GPL e Bd-Brazil, em um hospedeiro nativo (Brachycephalus ephippium),

evidenciando então o risco do processo de hibridização deste patógeno (Greenspan et al.

2018).

Além de variação genotípica, cepas de Bd também apresentam variações

fenotípicas. Inicialmente, foi detectada uma associação entre tamanho dos zoosporângios e

diferenciação genética de cepas isoladas na Europa (Fisher et al. 2009). Em seguida, o

tamanho dos zoósporos foi linearmente associado à variação de conteúdo de DNA de cepas

provenientes do Brasil, Panamá e Estados Unidos (Schloegel et al. 2012). Recentemente, a

variação fenotípica de cepas de Bd foi associada às taxas de infecção do patógeno na

natureza. Especificamente, o tamanho dos zoósporos e zoosporângios provenientes de um

transecto de elevação realizado na Mata Atlântica, foi positivamente associado às taxas de

prevalência e intensidade de infecção ao longo das áreas amostradas (Lambertini et al. 2016).

Page 26: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

26

Além disso, foi detectado um efeito da variação de temperatura na plasticidade fenotípica de

cepas de Bd, para os três diferentes genótipos encontrados no Brasil, principalmente em

relação ao tamanho dos zoosporângios, que são maiores em temperaturas mais baixas

(Multez-Wolz et al. 2019).

Finalmente, diferentes espécies de hospedeiros apresentam variações em

susceptibilidade ou resistência às mesmas ou diferentes cepas do patógeno (Andre et al. 2008,

Gahl et al. 2012, Peterson et al. 2013, Greenberg et al. 2017). Fatores intrínsecos ao

hospedeiro podem mediar a variação em susceptibilidade apresentada por diferentes espécies,

com modificações temporais na intensidade de infecção por Bd espécie-específicas (Gervasi

et al. 2013). A riqueza de espécies dentro de uma comunidade é um fator que pode gerar

efeito tanto de diluição quanto de amplificação da doença, basicamente devido aos processos

pelos quais o patógeno é transmitido (Becker & Zamudio 2011, Searle et al. 2011, Becker et

al. 2014, Lambertini et al. em prep.). Além disso, o comportamento agregativo de

determinadas espécies, tanto para forrageamento quanto como defesa contra predadores (Han

et al. 2008), aumenta as taxas de infecção por Bd, pois representa uma maior fonte de

disseminação de zoósporos em uma dada área (Venesky et al. 2011) e, o tipo de

desenvolvimento de espécies de hospedeiros influencia taxas de infecção por Bd, que são

maiores em espécies de desenvolvimento direto devido à deficiência de respostas adaptativas

(Mesquita et al. 2017).

Inicialmente, acreditava-se que o Bd possuía a África como localidade de origem,

e que o comércio mundial de espécies africanas como Xenopus leavis e Xenopus tropicalis

contribuía para a disseminação do patógeno, o que suportava a hipótese de patógeno novo

(NPH) (Daszak et al. 1999, Weldon et al. 2004). Além disso, o comércio mundial da espécie

norte-americana Lithobates catesbeianus também foi reconhecido como parte fundamental do

mecanismo de disseminação do patógeno no mundo, por ser uma espécie tolerante à infecção

por Bd e comercializada para fins alimentícios (Fisher e Garner 2007, Schloegel et al. 2012).

Outras regiões já foram apontadas como potenciais localidades de origem do Bd, como

Américas do Sul e Norte (Rodriguez et al. 2014, Talley et al. 2015). Atualmente, a origem de

ambos os patógenos foi estabelecida para o continente asiático, com o Bsal apresentando uma

recente incursão em populações de salamandras na Europa (Martel et al. 2014), e com o

surgimento do Bd coincidindo com expansão do comércio global de anfíbios, sendo o leste da

Ásia considerado como hotspot de biodiversidade de linhagens genéticas de Bd (O’Hanlon et

al. 2018).

Page 27: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

27

No Brasil, o primeiro registro de infecção por Bd foi realizado na Mata Atlântica,

na qual o patógeno foi detectado infectando uma espécie de riacho (Hylodes magalhaesi) de

altitude elevada no estado de Minas Gerais (Toledo et al. 2006). A partir deste registro,

muitos trabalhos foram realizados até então, principalmente na porção sul do bioma (Toledo

et al. 2006a, Toledo et al. 2006b, Vieira et al. 2012, Vieira et al. 2013, Lisboa et al. 2013,

Rodrigues et al. 2014, James et al. 2015, Preuss et al. 2015, Ruggeri et al. 2015, Valencia-

Aguilar et al. 2015, Jenkinson et al. 2016, Lambertini et al. 2016, Carvalho et al. 2017,

Lambertini et al. 2017, Lambertini et al. in prep).

Ao contrário de outras regiões nas Américas, declínios e extinções de espécies

não haviam sido associados a surtos epizoóticos de Bd no Brasil. Um estudo retrospectivo de

anuros, na porção sul da Mata Atlântica, detectou prevalência de infecção por Bd

relativamente constante ao longo do tempo, indicando um padrão enzoótico de dinâmica do

patógeno (Rodriguez et al. 2014). Porém, declínios enigmáticos de espécies de anfíbios que

ocorreram entre as décadas de 80 e 90 foram recentemente associados à quitridiomicose

(Carvalho et al. 2017), com comunidades de anfíbios apresentando uma proporção alta de

declínio, similar às comunidades afetadas pelo Bd em locais onde epizootias foram

acompanhadas e documentadas, como na América Central (Lips et al. 2008, Carvalho et al.

2017).

A Amazônia brasileira, por sua vez, é uma região pouco explorada em termos de

detecção do Bd. Trabalhos de modelagem de nicho fundamental consideraram este bioma

como uma região com probabilidade de ocorrência do Bd extremamente baixa ou nula, de

acordo com suas condições de adequabilidade para o patógeno (Ron et al. 2005, Rödder et al.

2010). O primeiro registro de Bd contou com a detecção do patógeno em um indivíduo da

espécie Adelphobates galactonotus (Valencia-Aguilar et al. 2015), apresentando carga de

infecção baixa em comparação com a média conhecida para a Mata Atlântica (Rodriguez et

al. 2014). Outro estudo realizou uma amostragem mais ampla na região, analisado a

distribuição histórica do Bd e variáveis ambientais que explicavam a prevalência de infecção

(Becker et al. 2016). No entanto, as análises foram restritas a espécimes depositados em

coleções científicas e pertencentes à família Leptodactylidae, cujos representantes apresentam

hábito altamente aquático e desenvolvimento indireto (Haddad et al. 2013). Carvalho et al.

(2017) analisaram a ocorrência do Bd com o diagnóstico de infecção pela análise do aparato

bucal de girinos, também depositados em coleções científicas. Esses estudos nos trazem uma

compreensão sobre determinados padrões de ocorrência do Bd, porém não existem estudos

analisando a dinâmica de infecção do Bd em populações naturais de anfíbios (incluindo

Page 28: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

28

cecílias e salamandras), abrangendo uma maior diversidade de espécies e ocupando diferentes

microhabitats.

Além de ser uma região de ocorrência exclusiva de espécies da ordem Caudata,

outra particularidade da Amazônia brasileira é a presença de anuros do gênero Atelopus. Em

outras regiões das Américas, representantes deste gênero foram classificados como em

condição crítica, com suas populações sofrendo um declínio dramático, sendo que pelo menos

81% das espécies do gênero mostraram evidências de declínio e desaparecimento, e pelo

menos 30 espécies já foram extintas na natureza (LaMarca & Lötters 1997, Ron et al. 2003,

LaMarca et al. 2005). Declínios associados à infecção por Bd foram registrados em algumas

regiões como Costa Rica, Panamá, Equador, Venezuela e Peru (Berger et al. 1998, Lips et al.

2008, LaMarca et al. 2005, Lampo et al. 2006, Rodríguez-Contreras et al. 2008), e um estudo

recente identificou Atelopus como o gênero mais afetado pelo Bd no mundo (Scheele et al.

2019). No entanto, não se sabe se no Brasil as espécies do gênero presentes na Amazônia

estão infectadas pelo Bd, e qual seria a resposta dos indivíduos frente a potenciais eventos de

infecção por cepas exóticas, já que diferentes cepas de Bd podem ser amplamente

disseminadas por vias naturais e antropogênicas (Kilburn et al 2011, Garmyn et al. 2012,

Pontes et al. 2018).

Desde o primeiro registro de ocorrência do Bd na Mata Atlântica, muitos

trabalhos que exploram diferentes aspectos relacionados à dinâmica de infecção foram

desenvolvidos, mas a grande maioria se concentra na porção sul do bioma (James et al. 2015,

Jenkinson et al. 2016, Lambertini et al. 2016). Até então, não existem trabalhos que

exploraram a variação dos padrões de infecção por Bd ao longo do bioma por inteiro. Além

disso, os trabalhos desenvolvidos na região amazônica até então, são restritos a espécimes

depositados em coleções científicas, o que obviamente nos trazem informações importantes e

possibilitam uma ampla amostragem ao longo do bioma, mas não refletem com acurácia a

dinâmica de infecção do Bd em populações naturais.

Frente a todos os fatores acima citados, este trabalho analisou os padrões de

ocorrência do Bd nos biomas Amazônia e Mata Atlântica, explorando variáveis relacionadas

aos hospedeiros e ao ambiente dentro deste contexto. Levando em conta a escassez de

trabalhos que abordam a dinâmica de infecção por Bd espécies de Gymnophiona, realizamos

uma ampla amostragem de espécimes depositados em coleções científicas, e identificamos os

padrões de ocorrência do patógeno em cecílias ao longo da América do Sul. Além disso,

realizamos uma amostragem na região amazônica, identificando padrões de ocorrência do Bd

em populações naturais de anfíbios, buscando associações entre variáveis bióticas e abióticas

Page 29: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

29

com as taxas de infecção detectadas. Também amostramos espécies de Caudata, que ocorrem

exclusivamente na região amazônica e, não existem até então, registros de Bd para tais

espécies no Brasil. Avaliamos através de experimentação em laboratório, os efeitos de

infecção por cepas exóticas de Bd em hospedeiros endêmicos da Amazônia, evidenciando

assim os riscos da disseminação de cepas do patógeno. Finalmente, realizamos uma ampla

amostragem de anfíbios anuros ao longo de um transecto latitudinal por toda extensão da

Mata Atlântica. Essa amplitude de amostragem nos possibilitou analisar a variação dos

padrões de infecção por Bd ao longo do bioma, e detectar associações entre variáveis bióticas

e abióticas e as taxas de infecção detectadas. O presente trabalho foi dividido em três

capítulos, os quais estão completamente detalhados a seguir, em formato de publicações

científicas.

Page 30: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

30

Capítulo 1. SPATIAL DISTRIBUTION OF Batrachochytrium dendrobatidis IN SOUTH

AMERICAN CAECILIANS

** Artigo publicado no periódico

Diseases of Aquatic Organisms (2017)

Carolina Lambertini*,1

, C. Guilherme Becker2, Cecilia Bardier

1,3,

Domingos da Silva Leite4, Luís Felipe Toledo

1

1Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de

Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São

Paulo, 13083-862, Brazil.

2Departamento de Zoologia, Universidade Estadual Paulista, Rio Claro, São Paulo, 13506-

900, Brazil.

3Laboratorio de Sistemática e Historia Natural de Vertebrados, Instituto de Ecología y

Ciencias ambientales, Universidad de la República, Montevideo, 11400, Uruguay.

4Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade

Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil.

*Corresponding author:

Carolina Lambertini

E-mail: [email protected]

Page 31: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

31

Abstract

The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) is linked to

population declines in anurans and salamanders globally. To date, however, few studies

attempted to screen Bd in live caecilians; Bd-positive caecilians were only reported in

Africa and French Guiana. Here, we performed a retrospective survey of museum

preserved specimens to (i) describe spatial patterns of Bd infection in Gymnophiona

across South America and (ii) test whether areas of low climatic suitability for Bd in

anurans predict Bd spatial epidemiology in caecilians. We used quantitative PCR to

detect Bd in preserved caecilians collected over a 109-year period, and performed

autologistic regressions to test the effect of bioclimatic metrics of temperature and

precipitation, vegetation density, and elevation on the likelihood of Bd occurrence. We

detected an overall Bd prevalence of 12.4%, with positive samples spanning across the

Uruguayan savanna, Brazilian Atlantic Forest, and the Amazon basin. Our Autologistic

models detected a strong effect of macroclimate, a weaker effect of vegetation density,

and no effect of elevation on the likelihood of Bd occurrence. Although most of our Bd-

positive records overlapped with reported areas of high climatic suitability for the

fungus in the Neotropics, many our new Bd-positive samples extend far into areas of

poor suitability for Bd in anurans. Our results highlight an important gap in the study of

amphibian chytridiomycosis: the potential negative impact of Bd on Neotropical

caecilians and the hypothetical role of caecilians as Bd reservoirs.

Keywords: Chytrid infection dynamics, Gymnophiona, Life history, Environmental

variables

Page 32: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

32

Introduction

Amphibian fungal pathogens of the genus Batrachochytrium are linked to

population declines in anurans and salamanders globally through the infectious disease

chytridiomycosis (Berger et al. 1998, Lips et al. 2008, Martel et al. 2013). The

amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) has been acknowledged

as one of the most destructive wildlife pathogens to wildlife (Fisher & Garner 2007,

Skerratt et al. 2007), causing population declines in a large fraction of infected species.

Bd is generalist among amphibians (Valencia-Aguilar et al. 2015), infecting anurans

and salamanders from tropical and temperate regions (Lips et al. 2006, Lips et al. 2008,

Vredenburg et al. 2010, Cheng et al. 2011). Reports of Bd infection in caecilians

(Gymnophiona), however, are rare in the literature. To our knowledge, only four reports

of Bd from wild-caught caecilians are available to date (Doherty-Bone et al. 2013,

Gower et al. 2013, Hydeman et al. 2013, Rendle et al. 2015).

The first study screening for Bd in caecilians reported 53 Bd-positive

caecilians out of 85 tested individuals from Cameroon (Doherty-Bone et al. 2013). In

the same year, Gower et al (2013) reported the first case of lethal chytridiomycosis in

caecilians from Cameroon and Tanzania. They reported that wild-caught specimens

from the genus Geotrypetes seraphini that tested positive for Bd died in captivity with

signs of chytridiomycosis. Bd infections were also confirmed in an endemic caecilian

(Schistometopum thomense) from an island of the archipelago of São Tomé and

Príncipe (Hydeman et al. 2013). The only record of Bd infecting caecilians outside

Africa was recently published for a wild-caught specimen from French Guiana (Rendle

et al. 2015). Despite the observed high Bd prevalence in African caecilians, sampling

efforts to detect Bd in Gymnophiona have been made in other regions but without any

Bd-positive samples from specimens collected in the wild in peninsular Malaysia (n=2;

Savage et al. 2011), Colombia (n=1; Vasquez-Ochoa et al. 2012), West Africa (n=6;

Penner et al. 2013), and the Seychelles archipelago (n=78; Labisko et al. 2015). The

small sample sizes of these published reports reflect the difficulty and/or lack of effort

in working with this generally inconspicuous taxon (e.g. Gower & Wilkinson 2005), it

cannot be ruled out that Gymnophiona suffers with Bd as extensively as do anurans.

Furthermore, conspicuous die-offs due to chytridiomycosis, such as those observed in

anurans, are relatively unlikely to be observed in caecilians (Gower et al. 2013: p.180)

due to their fossorial or fully-aquatic life styles (Wells 2007, Vitt & Caldwell 2014).

Caecilians are broadly distributed in the tropics (Taylor 1968, Frost 2016), often co-

Page 33: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

33

occurring with anuran populations heavily impacted by chytridiomycosis (James et al.

2015, Seimon et al. 2007, Gower et al. 2012, Bataille et al. 2013), and inhabiting

microhabitats within Bd’s optimal growth conditions of temperature and humidity

(Piotrowski et al. 2004). Determining whether caecilians are suffering with

chytridiomycosis as do anurans and salamanders, and if they are serving as pathogen

reservoirs, is relevant for amphibian conservation (Gower & Wilkinson 2005).

Several environmental factors influence Bd infection in anurans. Infection

prevalence and zoospore loads are often positively correlated with elevation (Brem &

Lips 2008, Gründler et al. 2012, Catenazzi et al. 2013), vegetation density (Puschendorf

et al. 2009, Becker & Zamudio 2011, Becker et al. 2015), precipitation (Becker &

Zamudio 2011), and negatively correlated with temperature (Becker & Zamudio 2011,

Becker et al. 2015, Ruggeri et al. 2015). Because most caecilians are fossorial, they are

likely exposed to lower microclimatic fluctuations dictated by land cover, insolation,

and humidity. Therefore, microclimatic optimum/average of caecilians might fall within

Bd’s optimal growth conditions, allowing Bd to persist in areas where it would

otherwise not endure year-round.

Here, we performed a retrospective survey of museum preserved specimens

to (i) describe spatial patterns of Bd infection in Gymnophiona in South America and

(ii) test whether areas of low climatic suitability for Bd in anurans predict Bd spatial

epidemiology in caecilians. We used quantitative PCR to detect Bd in preserved

caecilians collected over a 109 year period, and performed autologistic regressions to

test the effect of bioclimatic metrics of temperature and precipitation, vegetation

density, and elevation on the likelihood of Bd occurrence. Our results provide novel

information on Bd spatial epidemiology and suggest that caecilians could be potentially

threatened or serve as a Bd reservoir in regions where anurans are not infected during

most of the year.

Methods

Species sampling

We sampled 193 museum-preserved specimens of Gymnophiona; 160 from

Brazil (Caeciliidae, Siphonopidae, and Typhlonectidae) and 33 from Uruguay

(Typhlonectidae; Table 1). We screened specimens from three our of four South

American caecilian families housed at the following herpetological collections: Museu

Paraense Emílio Goeldi (MPEG), Museu de Zoologia “prof. Adão José Cardoso”,

Page 34: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

34

Universidade Estadual de Campinas (ZUEC), Museu Nacional, Universidade Federal do

Rio de Janeiro (MNRJ), Coleção de Anfíbios Célio F. B. Haddad, Universidade

Estadual Paulista (CFBH), and Colección de Vertebrados de la Universidad de La

Republica, Montevideo (ZVCB) (Table S1). For standardization purposes, we did not

include in our analyses published Bd data from wild caught caecilians from French

Guiana, Guyana and Colombia (Vásquez-Ochoa et al. 2012, Gower et al. 2013, Rendle

et al. 2015). We gathered GPS coordinates in decimal degrees for each sampled

specimen based on museum data. We used the geographic centroid of municipalities as

an approximation when precise geographic coordinates were not available. We did not

consider records of Bd from captive and live specimens for methodological consistency

(e.g. Raphel and Pramuk 2007, Churgin et al. 2013).

Bd detection

Retrospective sampling of museum specimens has been used widely to

determine Bd-historical dynamics across space and time (Weldon et al. 2004, Ouellet et

al. 2005, Soto-Azat et al. 2010, Cheng et al. 2011, Vredenburg et al. 2013, Rodriguez et

al. 2014, Becker et al. 2015, Courtois et al. 2015, Talley et al. 2015). We swabbed

individual specimens on their head, anal disc, dorsal, and ventral surfaces with a single

swab per individual, following Rendle et al (2015), and stored each sample in a 1.5 mL

dry sterile tube. We extracted DNA from each swab using 50 µL de PrepMan

ULTRA®, and proceeded with the molecular detection with TaqMan® qPCR assay

(Life Technologies), using the strain CLFT 023 as a quantitative standard for the

reactions diluted from 103 to 10

-1zoospore genomic equivalents (g.e.) (Boyle et al. 2004,

Lambertini et al. 2013). We considered Bd-positive samples with g.e. ≥ 1 (Kriger et al.

2007).

Statistical Analyses

We described patterns of Bd infection in Caecilians from Brazil and

Uruguay (proportion of Bd-infected individuals ± binomial 95% CI). We classified

species based on their predominant life history (aquatic or fossorial) and reported the

proportion (± binomial 95% CI) of infected individuals for each life-history category

and ecoregion. We also reported on spatiotemporal patterns of Bd infections from 1905-

2014; 28 specimens lacking information of collection year were excluded from these

calculations.

Page 35: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

35

Furthermore, we conducted a multi-model inference using Autologistic

regressions to test the effect of bioclimatic variables, vegetation density, and elevation

on the likelihood of Bd infection while accounting for the effects of spatial

autocorrelation (Rangel et al. 2010). For each sampling location we extracted 19

bioclimatic variables of temperature and precipitation averaged over a period of 50

years (Hijmans et al. 2005), vegetation density (FAO 2010) and elevation, using Arc

Map v.10.1 (ESRI 2012). We used a model averaging procedure, including Bd as the

response variable (presence vs. absence) and the aforementioned environmental factors

as explanatory variables. Our model averaging ranked all possible models based on AIC

and averaged beta coefficients of variables present in 90% of models within ΔAIC < 2.

We reported the strength and the direction that each environmental variable influenced

Bd. We used SAM v4.0 to perform statistical analyses (Rangel et al. 2010).

Results

Our qPCR reactions detected Bd in 24 out of 193 screened specimens

(12.4%, 95% CI = 0.08-0.17; Fig. 1). Infected individuals belonged to the families

Siphonopidae (eight individuals) and Typhlonectidae (16 individuals) distributed across

the Uruguayan savanna (proportion of infected individuals = 12.1%, 95% CI = 0.03 -

0.28, n = 33), the Amazon Basin (16%, 95% CI = 0.08 - 0.26, n = 75), and Brazilian

Atlantic Forest (13.5%, 95% CI = 0.06 - 0.24, n = 59). We did not detect Bd in

individuals of Caeciliidae and also in samples from the Brazilian Cerrado, Caatinga, and

Pantanal, though our sampling size in these ecoregions was small (n = 2, n = 22 and n =

2, respectively). We detected a proportion of infected individuals of 11.7% in aquatic

species (95% CI = 0.06 - 0.18, n = 136) and 14% in terrestrial (typically fossorial)

species (95% CI = 0.06 - 0.25, n = 57).

Although our sampling spanned 109 years, most of our Bd positive

specimens (n = 16) were collected after 1994. Only five samples before this period

tested positive for Bd, and were collected from the wild between 1965 and 1994.

Twenty-one samples collected prior to 1971 were screened, and they all tested negative

for Bd.

Our spatial regression models indicated a significant effect of macroclimate

on the likelihood of Bd occurrence (Table 2). Our Autologistic model averaging showed

a negative effect of maximum temperature of warmest month and precipitation of

wettest quarter, and a positive effect of annual precipitation on Bd infection likelihood;

Page 36: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

36

full set of significant variables found on Table 2. Vegetation density had a weak

negative effect on Bd occurrence, and elevation was not a significant variable in our

models (Table 2; Table S2).

Discussion

Seasonal variations in temperature and precipitation strongly mediate Bd

infections by changing optimal physiological conditions of hosts and pathogen

(Piotrowski et al. 2004, Becker & Zamudio 2011, Ruggeri et al. 2015). These

environmental constraints are revealed in several environmental niche models,

indicating that much of South America is unsuitable for Bd during at least for part of the

year (Rödder et al. 2009, Liu et al. 2013, Becker et al. 2015, James et al. 2015).

Although most of the Bd-positive records overlapped with reported areas of high

climatic suitability for the fungus in the Neotropics (Rödder et al. 2009, Liu et al. 2013,

Becker et al. 2015, James et al. 2015), many new Bd-positive records extend far into

areas of poor suitability for Bd in anurans (e.g., central Amazon: see Becker et al.

2015). Our data points to widespread Bd infections in Neotropical caecilians, and that

this taxon may serve as an environmental reservoir, perhaps because hosts are able to

avoid harsh seasonal extremes where Bd would otherwise not persist year-round. These

results, combined with the recent report of lethal chytridiomycosis in wild-caught

caecilians (Gower et al. 2013), indicate that Gymnophiona are potentially experiencing

silent population declines in the wild due to Bd.

Spatial regressions are also consistent with the observed associations

between macroclimate and Bd infection in anuran species (Becker & Zamudio 2011,

Becker et al. 2015, James et al. 2015). Specifically, we detected a positive effect of

precipitation and a negative effect of temperature variables on the likelihood of Bd

infection in caecilian hosts. Vegetation density, which is often positively associated

with Bd infection in anurans (Raffel et al. 2010, Becker & Zamudio 2011, Becker et al.

2012), showed a weak negative effect on Bd in caecilians. This finding might be due to

the high degree of fossoriality of terrestrial caecilian species, which spares them from

the direct or indirect effects of habitat quality, with downstream shifts in both macro-

and micro-climates. Elevation, which is often positively associated with Bd infection in

anurans (Walker et al. 2010, Piovia-Scott et al. 2011, Gründler et al. 2012) due to

optimal growth conditions in highlands (Piotrowski et al. 2004), showed no effect on Bd

in Caecilians. Although our sampling spanned 1000 meters in elevation, most of our

Page 37: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

37

samples were collected at lower altitudes. This uneven sampling across the elevation

gradient may have thus impacted our ability to detect a significant effect of elevation in

our analyses. Although large-scale climate may play a role in Bd epizootiology of

caecilians, these results indicate that infection dynamics in caecilians and anurans might

be different.

Although results suggest that caecilians could act as pathogen reservoirs in

environments or periods of harsh microclimatic conditions, there is limited natural

history information for most caecilian species (Gower & Wilkinson 2005, Vitt &

Caldwell 2014). Basic information on foraging behavior, population densities, and

breeding habits that would be key to quantify transmission dynamics between

Gymnophiona and Anura are typically lacking. It is known that five out of 10 families

of caecilians are found in South America (Wilkinson et al. 2011, Frost 2016), and that

these five families span from completely fossorial to aquatic (Haddad et al. 2013, Vitt &

Caldwell 2014). We predict that fossorial and fully aquatic species will be less likely

exposed to environmental and climatic fluctuation than terrestrial anurans because they

spend longer periods of time underground or underwater; future studies of caecilians’

foraging behavior and habitat use may help test the link between habitat use and

temperature variability. Lower temperature extremes and variability are linked to higher

Bd growth and persistence in amphibian hosts both in the wild and in the laboratory

(Pounds et al. 2006, Raffel et al. 2013, 2015). Because Bd is a waterborne fungus

(Longcore et al. 1999, Kilpatrick et al. 2009), we also expect fully aquatic caecilians to

be exposed to the pathogen not only during early life stages. Therefore, fossorial and

aquatic life styles observed in caecilians are two life history traits that likely make an

efficient host reservoir, especially in areas where Bd does not persist in anuran hosts

year-round.

In areas of low predicted suitability for Bd such as the Amazon basin (Ron

et al. 2005, Becker et al. 2015, James et al. 2015), we detected an infection prevalence

of 16%, which is surprisingly high compared to the observed ~3% in museum-preserved

anurans in this region (Becker et al. 2015). In contrast, the proportion of infected

caecilians in the Atlantic Forest was slightly lower than what has been observed for

preserved anurans (~23%) in this ecoregion (Rodriguez et al. 2014). Nonetheless,

limited sample size for caecilians prior to the 1970s precludes us from making any

concrete spatio-temporal comparison between Bd in caecilians and in anurans from both

the Atlantic Forest (Rodriguez et al. 2014) and the Amazon basin (Becker et al. 2015).

Page 38: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

38

Although most aquatic caecilians included in this study were sampled from the Amazon

basin and most terrestrial caecilians from the Atlantic Forest, we did not detect a

significant effect of host life style (aquatic vs. terrestrial) on the likelihood of Bd

infection. These results further indicate that Bd infection dynamics in Gymnophiona

might experience a lower pressure from macroclimate than Anura.

Our results highlight an important gap in the study of amphibian

chytridiomycosis: the possible impact of Bd on Neotropical caecilians and the

hypothetical role of caecilians as Bd reservoirs. To date, information on susceptibility of

caecilian hosts to Bd infection is still lacking. Therefore, Bd genotypes detected in

caecilians may present different adaptations to host histophysiology or microclimates,

which provides a key opportunity to isolate and genotype new Bd isolates from live

caecilians and test the virulence of these new isolates in anurans. Because Bd has a

disproportionately higher impact in tropical amphibians, a better understanding of Bd

infection dynamics in Gymnophiona may increase our knowledge about the

chytridiomycosis pandemic and advance our conservation efforts in the wild.

Acknowledgements

We thank Adriano O. Maciel, Alexandre F.R. Missassi, Manoela Woitovicz Cardoso,

Nadya C. Pupin and Tamilie Carvalho for help with swabbing and providing museum

specimens. Ana L.C. Prudente (MPEG), Célio F.B. Haddad (CFBH), José P. Pombal Jr.

(MNRJ) and Raúl Maneyro (ZVCB) allowed access to museum specimens. David J.

Gower and two anonymous reviewers for constructive feedback on our manuscript. Our

work was funded by Coordination for the Improvement of Higher Education Personnel

(CAPES) and the National Council of Technological and Scientific Development

(CNPq #405285/2013-2; #312895/2014-3) and Sao Paulo Research Foundation

(FAPESP #2014/23388-7).

Page 39: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

39

Table 1. Families, species, sample size, environment and country where individual

caecilians were captured, and prevalence (as the number of positives/total screened).

Family n Habit Habitat Country Prevalence

Caeciliidae

Caecilia gracilis 01 Fossorial Rainforest Brazil 0/1

Siphonopidae

Luetkenotyphlus brasiliensis 09 Fossorial Rainforest Brazil 3/9

Siphonops annulatus 12 Fossorial Rainforest Brazil 1/12

Siphonops cf. annulatus 01 Fossorial Rainforest Brazil 1/1

Siphonops paulensis 08 Fossorial Rainforest Brazil 2/8

Siphonops cf. paulensis 15 Fossorial Rainforest

Grassland

Brazil 0/15

Siphonops sp. (aff. paulensis) 02 Fossorial Grassland Brazil 0/2

Siphonops hardyi 02 Fossorial Rainforest Brazil 0/2

Siphonops sp. 07 Fossorial Rainforest

Grassland

Brazil 1/7

Typhlonectidae

Atretochoana eiselti 04 Aquatic Rainforest Brazil 0/4

Chthonerpeton braestrupi 06 Aquatic Rainforest Brazil 0/6

Chthonerpeton indistinctum 33 Aquatic Grassland Uruguay 4/33

Chthonerpeton indistinctum 01 Aquatic Rainforest Brazil 0/1

Chthonerpeton noctinetes 08 Aquatic Rainforest Brazil 0/8

Chthonerpeton sp. 01 Aquatic Rainforest Brazil 0/1

Chthonerpeton tremembe 04 Aquatic Grassland Brazil 0/4

Chthonerpeton viviparum 08 Aquatic Rainforest Brazil 0/8

Potamotyphlus kaupii 39 Aquatic Rainforest Brazil 9/39

Typhlonectes compressicauda 32 Aquatic Rainforest Brazil 3/32

Page 40: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

40

Table 2. Model averaging results ranking significant environmental variables

explaining Batrachochytrium dendrobatidis occurrence in South American caecilians.

Variable Rank Importance Beta coefficient 95% CI

Bio 5 43 -0.038 0.002

Bio 12 32 0.003 0.001

Bio 16 22 -0.009 0.004

Bio 3 12 0.076 0.032

Bio 13 11 0.039 0.011

Bio 17 10 0.002 0.008

Bio 15 9 -0.029 0.006

Bio 14 9 -0.027 0.023

Bio 18 7 0.003 0.001

Bio 19 7 0.002 0.001

Vegetation Density 6 -0.011 0.003

Bio 10 4 -0.034 0.003

Bio 9 3 -0.011 0.006 Rank importance corresponds to the number of models that each variable was present. CI stands for confidence

interval. Description of bioclimatic variables: Bio 3 = Isothermality, Bio 5 = Temperature of Warmest Month, Bio

9 = Mean Temperature of Driest Quarter, Bio 10 = Mean Temperature of Warmest Quarter, Bio 12 = Annual

Precipitation, Bio 13 = Precipitation of Wettest Month, Bio 14 = Precipitation of Driest Month, Bio 15 =

Precipitation Seasonality, Bio 16 = Precipitation of Wettest Quarter, Bio 17 = Precipitation of Driest Quarter, Bio

18 = Precipitation of Warmest Quarter, Bio 19 = Precipitation of Coldest Quarter

Page 41: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

41

Figure 1

Page 42: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

42

Table S2. Model selection showing bioclimatic variables associated to

Batrachochytrium dendrobatidis infection.

Model No. of

variables

AIC ΔAIC

Bio 15, Bio 3, Bio 5 3 139.356 0

Bio 12, Bio 5 2 139.596 0.240

Bio 12, Bio 13, Bio 14, Bio 16, Bio 5 5 139.707 0.351

Bio 12, Bio 13, Bio 16, Bio 5 4 139.752 0.396

Bio 12, bio 16, Bio 5 3 139.878 0.522

Bio 15, Bio 3, Bio 5, Bio 9 4 140.012 0.656

Bio 12, Bio 15, Bio 5 3 140.035 0.679

Bio 13, Bio 15, Bio 16, Bio 3n, Bio 5n 5 140.106 0.750

Bio 16, Bio 18, Bio 19, Bio 5n 4 140.382 1.026

Bio 14, Bio 17, Bio 5 3 140.421 1.065

Bio 12, Bio 13, Bio 5 3 140.422 1.066

Vegetation density, Bio 12, Bio 14, Bio 16, Bio 10 5 140.466 1.067

Bio 12, Bio 13, Bio 16, Bio 17, Bio 5 5 140.466 1.110

Bio 11, Bio 18, Bio 2, Bio 3 4 140.495 1.139

Bio 12, Bio 14, Bio 16, Bio 19, Bio 5 5 140.505 1.149

Bio 13, Bio 15, Bio 16, Bio 5 4 140.559 1.203

Bio 17, Bio 3, Bio 5 3 140.561 1.205

Bio 12, Bio 17, Bio 5 3 140.627 1.271

Bio 17, Bio 5 2 140.638 1.282

Bio 12, Bio 14, Bio 16, Bio 5 4 140.642 1.286

Vegetation density, Bio 12, Bio 14, Bio 16, Bio 5 5 140.642 1.286

Bio 15, Bio 18, Bio 3, Bio 5 4 140.709 1.353

Bio 12, Bio 5, Bio 8 3 140.715 1.359

Bio 15, Bio 18, Bio 19, Bio 5 4 140.725 1.369

Bio 11, Bio 15, Bio 2, Bio 3, Bio 6 5 140.821 1.465

Vegetation density, Bio 12, Bio 16, Bio 5 4 140.829 1.473

Elevation, Bio 12, Bio 13, Bio 16, Bio 5 5 140.848 1.492

Bio 12, Bio 14, Bio 5 3 140.853 1.497

Bio 18, Bio 19, Bio 5 3 140.947 1.591

Bio 12, Bio 4, Bio 5 3 141.003 1.647

Bio 18, Bio 2, Bio 3, Bio 6 4 141.008 1.652

Bio 12, Bio 16, Bio 19, Bio 5 4 141.010 1.654

Bio 12, Bio 5, Bio 9 3 141.030 1.674

Bio 12, Bio 10 2 141.049 1.693

Bio 11, Bio 12, Bio 5 3 141.052 1.696

Bio 14, Bio 3, Bio 5 3 141.061 1.705

Vegetation density, Bio 12, Bio 13, Bio 16, Bio 5 5 141.066 1.710

Bio 13, Bio 17, Bio 5 3 141.091 1.735

Bio 12, Bio 5, Bio 1 3 141.155 1.799

Bio 12, Bio 6, Bio 7 3 141.160 1.804

Bio 12, Bio 6,Bio5 3 141.176 1.820

Bio12, Bio5, Bio7 3 141.178 1.822

Bio12, Bio16, Bio17, Bio5 4 141.254 1.898

Vegetation density, Bio12, Bio16, Bio17, Bio5 5 141.254 1.898

Bio 12, Bio 13, Bio 16, Bio 3, Bio 5 5 141.259 1.903

Bio 15, Bio 3, Bio 9 3 141.295 1.939

Bio 12,Bio 16, Bio 3, Bio 5 4 141.305 1.949

Bio12, Bio 13, Bio 16, Bio 19, Bio 5 5 141.310 1.954

Vegetation density, Bio 12, Bio 16, Bio 17, Bio 10 5 141.310 1.954

Bio 14, Bio 5 2 141.311 1.955

Page 43: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

43

Bio 18, Bio 19, Bio10 3 141.352 1.996

Bio 16,Bio 17, Bio 5 3 141.360 2.004 Bio 1 = Annual Mean Temperature, Bio 2 = Mean Diurnal Range, Bio 3: Isothermality, Bio 4 = Temperature

Seasonality, Bio 5 = Maximum Temperature of Warmest Month, Bio 6 = Minimum Temperature of Coldest Month,

Bio 7 = Temperature Annual Range, Bio 8 = Mean Temperature of Wettest Quarter, Bio 9 = Mean Temperature of

Driest Quarter, Bio 10 = Mean Temperature of Warmest Quarter, Bio 11 = Mean Temperature of Coldest Quarter,

Bio 12 = Annual Precipitation, Bio 13 = Precipitation of Wettest Month, Bio14 = Precipitation of Driest Month,

Bio15 = Precipitation Seasonality, Bio16 = Precipitation of Wettest Quarter, Bio17 = Precipitation of Driest Quarter,

Bio 18 = Precipitation of Warmest Quarter, Bio 19 = Precipitation of Coldest Quarter.

Page 44: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

44

Capítulo 2. THE KILLING-CHYTRID FUNGUS IN AMPHIBIAN POPULATIONS

OF THE BRAZILIAN AMAZONIA

Carolina Lambertini1, Alexandre F. R. Missassi

2, Rafael F. Jorge

3, Domingos da Silva

Leite4, Albertina P. Lima

3, Luís Felipe Toledo

1

1Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de

Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas,

São Paulo, 13083-862, Brazil

2Programa de Pós-graduação em Biodiversidade e Evolução, Departamento de

Zoologia, Museu Paraense Emílio Goeldi, Belém, Pará, 66077-830, Brazil

3Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, 69067-375, Brazil

4Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade

Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil.

*Corresponding author:

Carolina Lambertini

E-mail: [email protected]

Page 45: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

45

Abstract

Infectious diseases pose one of the main threats to biodiversity. Chytridiomycosis,

caused by the fungus Batrachochytrium dendrobatidis (Bd), was responsible for

amphibian massive losses all over the globe and Bd establishment and development

may be dictated by environmental variation over areas that can be or not suitable for the

pathogen. The Brazilian Amazonia was considered climatic unsuitable for Bd, and

retrospective surveys detected low infection rates, but we lack information of Bd

infection dynamics in current wild amphibian populations. We sampled 462 amphibians

in seven sites in the Brazilian Amazonia and quantified Bd infections by qPCR. We

tested whether abiotic variables explained Bd infections. We also tested for

relationships between species reproductive biology and type of habitat with Bd

infections. Finally, we experimentally tested the effect of Bd infections on Atelopus cf.

spumarius with two different strains (CLFT 156 and CLFT 102 – isolated from the

south and north Atlantic forest, respectively). We detected high Bd infection rates in

Amazonia, and infection in all three orders of amphibians. Only annual mean

temperature explained Bd infection prevalence, and none of the examined variables

explained infection load. Host’s reproductive biology was not related with Bd

infections, but we detected a positive relationship between species’ type of habitat and

Bd infections. Besides, we detected higher mortality rate on the group of Atelopus aff.

spumarius infected with CLFT 156, probably because this strain was isolated from a

site more environmentally distinct than the strain isolated in the northern Atlantic forest.

Contrary to ecological niche modellings, neither climate nor the other abiotic variables

we tested explained Bd occurrence in our small scale sampling, and we found a much

higher prevalence than previously modeled. Based on our study, it is clear that the

Amazon is still underexplored and different disease dynamics could be described after

future studies targeting all amphibian orders in this region.

Keywords. Batrachochytrium dendrobatidis, disease ecology, tropical forest,

susceptible species, Anura, Gymnophiona, Caudata

Page 46: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

46

Introduction

Infectious diseases are one of the main drivers of population declines and

species extinctions globally (Daszak et al. 2000, Skerrat et al. 2007, Jones et al. 2008,

Scheele et al. 2019), caused by a diversity of pathogenic agents and affecting several

taxa (Tompkins et al. 2015). For example, fungal infectious disease outbreaks have

caused remarkable population declines in coral species (Aspergillus sydowii, Kim and

Harvell 2004), bats (Geomyces destructans, Blehert et al. 2009), snakes (Ophidiomyces

ophiodiicola, Allender et al. 2016), salamanders (Batrachochytrium salamandrivorans,

Martel et al. 2014) and anurans (Batrachochytrium dendrobatidis, Longcore et al.

1999). Given the biodiversity crisis and its current threat by spreading of infectious

diseases (Stuart et al. 2004, Tompkins et al. 2015), characterizing factors that influences

and drives the dispersion and establishment of a particular pathogenic agent in a given

area, is imperative to development of conservation actions targeting populations at risk.

Environment has a key role on host-pathogen interactions (Scholthof 2007)

and spreading of diseases, basically because its variation (e.g., climate) may dictate

whether a given area is suitable or not for the establishment and development of a

pathogen (Ron 2005, Rödder et al. 2010), which may be characterized by using

ecological niche modelling analysis (Elith and Leathwick 2009). This approach has

been applied in widely spread diseases with huge impact on biodiversity, such as the

chytridiomycosis, an emerging infectious disease that caused the declines of amphibian

populations all over the globe (Scheele et al. 2019).

This disease is caused by the water-borne fungus Batrachochytrium

dendrobatidis (hereafter Bd) (Longcore et al. 1999). While Bd is enzootic in some

regions, epizootics has already occurred causing amphibian population massive losses

(Scheele et al. 2019). For example, Bd rapidly emerged and spread in a wave-like

pattern throughout Central America, which seriously affected several amphibian

populations (Lips et al. 2006). In Brazil, a retrospective study showed that Bd was

potentially enzootic at Atlantic forest (Rodriguez et al. 2014), but enigmatic amphibian

declines that occurred about three decades ago were associated to chytridiomycosis

(Carvalho et al. 2017). Therefore, both the arrival of the pathogen and some changes in

its local dynamics can lead to permanent amphibian extinctions (Toledo 2017).

On the other hand, the Brazilian Amazonia has been considered a region

with low suitability for Bd, due to its climate that generally is inadequate for the

pathogen development (Ron et al. 2005, Rödder et al. 2010, Liu et al. 2013, Becker et

Page 47: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

47

al. 2016, Voyles et al. 2017). Two retrospective studies has already been conducted in

Brazilian Amazonia, analyzing museum preserved anuran species, and both studies

detected lower Bd infection prevalence (i.e., less than 4 %: Becker et al. 2016, Carvalho

et al. 2017). However, at the same time that samplings of wild amphibian populations

(Bd detection and quantification) in several other regions accurately reflected Bd

environmental suitability or unsuitability by distribution models (Murray et al. 2011,

Flechas et al. 2017), some studies detected the opposite, where distribution models

detected suitable areas for Bd development, but Bd detection in wild populations did not

reflect modelling results (e.g., Asia, Swei et al. 2011). For the Brazilian Amazonia, we

lack information on whether Bd infections in wild populations are in agreement with

predicted environmental suitable areas for Bd. We also lack information on general

patterns of Bd infections, as which biotic and abiotic factors may explain potential Bd

infection variation. Finally, we also don’t know which Bd lineage are in the Amazon,

since at least three highly divergent strains occurs in the Brazilian Atlantic forest

(Jenkinson et al. 2016).

The Brazilian Amazonia harbors at least three species of the genus Atelopus

(A. spumarius, A. hoogmoedi, A. flavescens) (Frost, 2018). Populations of several

species of Atelopus from Central and South America are suffering dramatic declines,

with at least 80 % of the species showing evidences of declines, and at least 30 species

are considered to be extinct from the wild (Scheele et al. 2019). Atelopus spp. declines

were associated to Bd infections in Costa Rica, Ecuador, Panama, Venezuela and Peru,

being considered a genus highly susceptible to Bd infections (Berger et al. 1998, Lips et

al. 2008, LaMarca et al. 2005, Lampo et al. 2006, Rodríguez-Contreras et al. 2008,

Scheele et al. 2019). Atelopus spp. occurrence in Brazil is restricted to Amazon forest,

and since we have no information on Bd infections in wild populations, we lack

information on whether or not Atelopus are susceptible to Bd infection, and if the

patterns of host response to infection vary with different Bd strains.

Therefore, we sampled 462 wild-caught amphibian (Anura, Caudata and

Gymnophiona) individuals in seven sites, and tested whether abiotic and biotic variables

were related to Bd infection prevalence and load across the Brazilian Amazonia. We

also experimentally infected individuals of Atelopus aff. spumarius with two Bd strains

isolated from different regions to verify if the strain isolated in more similar climatic

conditions to the site where Atelopus aff. spumarius was found induced higher mortality

rates than the infection with the other, more distinct, strain. We show different patterns

Page 48: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

48

of Bd infection dynamics at Brazilian Amazonia when compared to other Neotropical

rainforest, as the Brazilian Atlantic forest and discuss the implications of such

divergence.

Methods

Study site and species samplings

We sampled amphibians in the Brazilian Amazonia, in seven sites within

five municipalities from the states of Amapá, Amazonas and Pará (Figure 1, Table 2).

We also sampled salamander specimens housed at the Coleção Herpetológica Osvaldo

Rodriguez da Cunha, Museu Paraense Emílio Goeldi (MPEG), municipality of Belém,

state of Pará, and Museu de Zoologia, Universidade Federal do Acre (UFAC),

municipality of Rio Branco, state of Acre, Brazil.

We conducted field samplings for amphibians (Anuran, Caudata and

Gymnophiona) by active and acoustic searches, also by using pitfall traps, between

2014 and 2018. We sampled 462 individuals, allocated into 13 families, 24 genera and

57 species, covering all three classes of amphibians (Table 1, Table S1). We recorded

GPS coordinates in decimal degrees for each sampling location, and used the

municipality geographic centroid when GPS coordinates were unavailable. Given the

small sample size of salamander specimens, we also sampled 56 museum preserved

Bolitoglossa spp. specimens, housed at the herpetological collections Museu Paraense

Emílio Goeldi (MPEG) and Universidade Federal do Acre (UFAC) (Table 1).

Experimental design and infection

We collected 23 individuals of Atelopus aff. spumarius, at the Reserva

Florestal Adolpho Ducke, municipality of Manaus, state of Amazonas. Each individual

was placed into plastic boxes containing Sphagnum sp. and water, simulating terrestrial

and aquatic environments. We then proceeded with the infection of individuals, using

two different strains of the fungus Batrachochytrium dendrobatidis, one of those

isolated from municipality of Morretes, state of Paraná, south Atlantic Forest (CLFT

156), and the other from municipality of Camacan, state of Bahia, north Atlantic Forest

(CLFT 102). Both strains belong to the Global Pandemic Lineage (GPL), and were

reactivated from liquid stock in petri dishes containing 1% Triptone, incubated at 21 ºC

during seven days. After that, plates were flooded with distilled water, and the total

number of zoospores in the suspension was defined with a hemocytometer (1 x 106

Page 49: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

49

zoospores) (Lambertini et al. 2013). Before experimental infection, all individuals were

tested for Bd presence by qPCR, and they were all uninfected. The individuals were

then infected individually, each one in a clean Petri plate in direct contact with the

zoospore suspension (or distilled water for the control group) during 50 minutes and,

right after allocated in their respective boxes, where they were kept until the end of

experiment. We defined three experimental groups: i) CLFT 156 group (n = 8), ii)

CLFT 102 group (n = 8) and iii) Control group (n = 7). We fed individuals with

Drosophila sp. ad libitum and they were daily monitored during all experimental

procedure. Infected individuals that survived until the end of experiment (day 48) were

euthanized with Lidocaine 5% and deposited at the Museu de Zoologia prof. Adão José

Cardoso (ZUEC), UNICAMP, Campinas, Brazil.

Pathogen detection

During field samplings, we placed the specimens individually in plastic

bags, to avoid cross contamination. We then swabbed each individual on their skin,

following standard protocols (Hyatt et al. 2007, Lambertini et al. 2013). For museum

specimens, we followed the same swabbing protocol, but each specimen was rinsed

with 70% EtOH before, avoiding cross contamination from the storage (Rodriguez et al.

2014). Swabs were placed individually in 2.0 mL cryotubes and stored at -20 ºC until

molecular analyses were performed. We then extracted DNA from the samples using

PrepMan ULTRA® and proceeded with molecular detection and quantification by using

TaqMan® qPCR Assay (Life Technologies) (Boyle et al. 2004, Lambertini et al. 2013).

We used the strain CLFT 159 to generate the qPCR standard curve, serially diluted from

103 to 10

-1 zoospore genomic equivalents (g.e.). We considered Bd-positive samples

with at least one g.e. (Kriger et al. 2007). All infection load results were rounded to

integer numbers.

Abiotic variables

We extracted seven bioclimatic metrics for temperature and precipitation –

Annual Mean Temperature (Bio1), Mean Diurnal Range (Bio 2), Temperature

Seasonality (Bio 4), Maximum Temperature of Warmest Month (Bio 5), Annual

Precipitation (Bio 12), Precipitation Seasonality (Bio 15), Precipitation of Warmest

Quarter (Bio 18), for each sampling site (Hijmans et al. 2005). We also extracted data

Page 50: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

50

on human footprint, elevation and topographic complexity using Arc Map v.10.1 (ESRI

2012).

Statistical analyses

In order to verify if there were associations between abiotic variables and

Bd infection rate, we performed a model selection [parameters: GLM with binomial

distribution (prevalence) and Gaussian distribution (infection load)], testing whether

bioclimatic variables, elevation, topographic complexity and human footprint could

better explain Bd infection prevalence and load across the Brazilian Amazon.

To test for biotic variables and Bd infections, we classified the species by

their type of habitat (Forested, Open/Forested and Open areas) and simplified

reproductive mode, according to their reproductive biology [aquatic (aquatic larvae) and

terrestrial (direct and indirect development)] (Table 1; Table S1). We performed

analysis of variance (ANOVA), to test for differences between type of habitat and

infections rates, and t test for differences between species reproductive modes and

infections rates, with a Tukey test a posteriori to verify where the differences were.

For the experiment result analyses, we performed a logrank-test, using the

package survival (Therneau 2012), to detect differences between mortality curves

among the treatments. We then performed a t test to verify if there were differences on

Bd infection load between both treatments. Finally, to test for bioclimatic similarity

between the strains isolating sites and Atelopus aff. spumarius collecting site, we

performed a hierarchical clustering using the algorithm (UPGMA) based on Euclidean

similarity index. The statistical analyses were performed in R (R Core Team, 2012) and

Past v.2.16.

Results

We detected an overall infection prevalence of 14.5 %, and a mean infection

load of 95 zoospore g.e. at the Brazilian Amazonia. Infection prevalence varied from

2.6 to 28.8 %, and the mean infection load from 2 to 221 g.e. across sampling sites

(Figure 1, Table 2). The highest infection prevalence was detected at the municipality of

Altamira, state of Pará (28.8 %), and the highest infection load was detected in an

individual of the species Allobates cf. hodlii (1,672 g.e.), also from municipality of

Altamira. Besides in anurans, we detected Bd in two wild-caught salamanders and two

Page 51: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

51

caecilians (Table 1, Table S1). These individuals were from the municipality of

Altamira. We did not detect Bd in museum preserved salamanders (Table 1).

Our model selection did not detect influence of bioclimatic variables,

elevation, topographic complexity, and human footprint on Bd infection load. However,

our best model showed that annual mean temperature explained Bd infection prevalence

(β = -0.152396; P = 0.0006). For the reproductive biology, we did not detect differences

on Bd infection prevalence and load between aquatic and terrestrial species (t = -1.031;

P = 0.302 and t = 0.735; P = 0.462, respectively). For species type of habitat, we

detected higher Bd infection prevalence and load in forested areas than open/forested

and open areas (F[2,380] = 9.1840; P < 0.0001 and F[2,380] = 5.4086; P < 0.0001,

respectively, Figure 2 A,B).

According to our logrank-test, infected individuals from the treatment CLFT

156 showed higher mortality rate than infected ones from the treatment CLFT 102 (P <

0.0001, Figure 3 A), in which all individuals survived until the end of experiment. The

infection load of individuals from the treatment CLFT 156 was higher than infection

load from the treatment CLFT 102, both in the middle and at the end of experiment (t =

2.3077; P = 0.0464, and t = 4.1809; P = 0.0009, respectively, Figure 3 B). The strain

CLFT 102 showed a higher climatic similarity with the A. hoogmoedi collecting site

than the strain CLFT 156 (cophenetic correlation coeficient = -0.9311) (Figure S2).

Discussion

Our samplings across the Brazilian Amazonia showed unexpected Bd

infection rates. Specifically, we detected higher Bd infection prevalence, compared with

was previously detected in retrospective analyses (Becker et al. 2016, Carvalho et al.

2017), and with what was predicted by ecological niche modellings done for the region,

which classified the Brazilian Amazon as environmentally unsuitable for Bd (Ron 2005,

Rödder et al. 2010, Liu et al. 2013, Becker et al. 2016). In terms of Bd infection load,

we have no previous data to make comparisons, as Bd molecular detection in museum

preserved specimens or visual detection only provides presence/absence data

(Rodriguez et al. 2014, Becker et al. 2016, Carvalho et al. 2017, Lambertini et al. 2017).

Nevertheless, we detected high infection loads across the regions and unexpected high

infection prevalence.

Other factors commonly associated to Bd infections in other regions, as

precipitation, elevation, topographic complexity, and human footprint (Brem & Lips

Page 52: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

52

2008, Pushendorf et al. 2009, Becker & Zamudio 2011, Gründler et al. 2012, Ruggeri et

al. 2015, Becker et al. 2016), were also tested, but did not explain both Bd infection

prevalence and load. On the other hand, annual mean temperature explained Bd

infection prevalence in the Amazonia. Our sampling scale was smaller than other

retrospective studies developed in the same region (Becker et al. 2016, Carvalho et al.

2017). The effects of certain variables on infection patterns, in general, depends on the

scale in which data is sampled (Levin 1992, Cohen et al. 2016), and abiotic factors

normally explain Bd infections on large-scale samplings, where there is higher

environmental variability. In small scales, biotic factors play a larger role, and are more

likely to predict Bd occurrence (Cohen et al. 2016). Therefore, the relatively small

geographical range scale of our sampling could explain our results.

We detected a negative relationship between temperature and Bd infection

as previous studies (Becker & Zamudio 2011, Ruggeri et al. 2015, Becker et al. 2016).

However, this variable did not explain the high infection prevalence we detected.

Therefore, we suggest that in our small-scale sampling, other factors could be

influencing the measured variables, as biotic factors related to host species (Becker et

al. 2012, Cohen et al. 2016).

Analyzing host-related factors, both Bd infection prevalence and load were

not associated to species reproductive biology, contrary to our expectations. We

expected that aquatic species would show higher responses to Bd infections than

terrestrial species (as in Mesquita et al. 2017). We probably did not detect any

association because the number of terrestrial specimens sampled was small, only 12.5 %

of the samples. In spite of that, we detected higher Bd infection prevalence and load in

host species from forested areas, than species from intermediate and open areas, which

was expected given that areas with higher canopy density favors Bd development by

mechanisms related to microclimate regulation (Becker et al. 2012). Hence, the type of

habitat seems to be a good predictor of infection rates in local scales, where there is

more variation compared to abiotic factors (Cohen et al. 2016). Nevertheless, host-

related factors do explain variation on Bd infections as well, but still does not explain

the higher infection rates we detected.

We propose here two different scenarios to explain the higher infections we

detected. The first one would be a potential recent emergence of Bd strains, thermally

adapted to environmental conditions of some regions of the Amazonia. Bd strains were

thought to have a thermal optima restricted to a range between 17-23 ºC, but it was

Page 53: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

53

recently described an increasing on strains thermal tolerance, where Bd strains showed

viability after heat shocks of 28 ºC (Piotrowski et al. 2004, Voyles et al. 2017, Muletz-

Wolz et al. 2019), which potentially allows Bd strains to have a successful development

over areas classified as unsuitable by the previous ecological niche modellings (Ron

2005, Rödder et al. 2010, Liu et al. 2013, Becker et al. 2016).

Another scenario would be a potential arrival of virulent strains in the

region. Bd strains may be widely dispersed by natural (Kilburn et al. 2011, Garmyn et

al. 2012, Pontes et al. 2018) and/or anthropogenic pathways (Schloegel et al. 2012,

James et al. 2015). Also, Bd isolates virulence varies with the size of zoospores and

zoosporangia (Fisher et al. 2009, Lambertini et al. 2016), among different genetic

lineages (Greenspan et al. 2018), different strains (Berger et al. 2005, O’Hanlon et al.

2018), and temperature (Voyles et al. 2012, Stevenson et al. 2013). As we expected, the

strains showed to different virulence in our experimental trails. We detected a higher

mortality rate on Atelopus.aff. hoogmoedi group infected with the strain CLFT 156.

This strain was isolated from south region, which is latitudinally farther from the host’s

original distributional range (Figure S1), showing lower climatic similarity to host’s

collecting site than the strain CLFT 102 (Figure S2). Therefore, we propose that CLFT

102 was less virulent by being isolated from a region closer to environmental conditions

from host’s distribution (Piotrowsky et al. 2004, Voyles et al. 2017, Lambertini et al. in

prep).

Recently, a study have associated larger Bd zoosporangia with lower

temperatures (Muletz-Wolz et al. 2019), and larger zoosporangia has already been

linked to higher infection rates than smaller ones, for example by potentially producing

and releasing more zoospores (Fisher et al. 2009, Lambertini et al. 2016). Therefore, Bd

strains from regions with lower overall mean temperatures might be more virulent by

potentially having higher diameters, and probably that is why individuals infected with

the strain CLFT 156 showed higher mortality rates.

Our study is the first report of Bd infection in in salamanders in Brazil and

the first for wild caecilians. In a previous study Bd was only reported in Brazilian

caecilians from museum preserved specimens (Lambertini et al. 2017). Besides this, this

is the first experiment providing data on differential tolerance to Bd of a Brazilian

species of Atelopus, recognized as a particularly susceptible Neotropical genus (Scheele

et al. 2019). Our findings advance in the understanding of Bd infections in wild

populations in the Amazon. As we found some contradictory patterns and unexpected

Page 54: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

54

high prevalence and load, we highlight the need of further investigation in this region,

which could reveal different Bd dynamics than what is already reported. Also, the

proper identification of the Bd genetic lineages in the Amazon is fundamental for the

better understanding of Bd population genetics over a, both broader and finer-scale

geographic ranges. As a general, the Amazon remains underexplored in relation to Bd,

and future research must target this biome as well.

Legal and ethics statement

All samplings and experimental protocols were approved by Instituto Chico Mendes de

Conservação da Biodiversidade – SISBIO/ICMBio (Permit # 46876-6), local animal

care and use committee (Comissão de ética no uso de animais da Universidade Estadual

de Campinas – CEUA/UNICAMP #4440-1) and Conselho de Gestão do Patrimônio

Genético (SISGen #A1D66BF).

Acknowledgements

We thank Ana Paula Costa, Annelise D’Angiolella, Augusto Jarthe and Luisa Diele

Viegas for helping with field samplings. Daniel Medina and Raoni Rebouças for

helping with statistical analyses. This study was funded by Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES Finance Code 001), Conselho

Nacional de Desenvolvimento Científico e Tecnológico (CNPq #300896/2016-6), and

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP #2016/25358-3).

Page 55: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

55

Table 1. Batrachochytrium dendrobatidis infection prevalence (positive/total) and load

(zoospore g.e.) (values presented as mean ± standard deviation) per family, habit

(according to their reproductive biology) and habitat. An asterisk represents museum-

preserved specimens; all others were sampled in the wild.

Family n Prevalence Infection load Habit Habitat

Anura

Allophrynidae 8 0/8 0 Aquatic Forested Areas

Aromobatidae 45 15/45 119.22 ± 429.89

(1.19 – 1672.39) Aquatic Forested Areas

Bufonidae 42 5/42 350.98 ± 597.71

(2.55 – 1383.56) Aquatic Forested Areas

Centrolenidae 7 2/7 1.81 ± 0.72

(1.30 – 2.32) Aquatic Forested Areas

Craugastoridae 18 4/15 2.48 ± 1.04

(1.49 – 3.66) Terrestrial Forested Areas

Dendrobatidae 39 12/39 203.78 ± 494.29

(1.52 – 1593.36) Aquatic Forested Areas

Hylidae 195 16/195 4.86 ± 7.28

(1.05 – 29.31) Aquatic

Open, Open/Forested,

Forested Areas

Leptodactylidae 76 7/76 40.54 ± 45.63

(2.39 – 114.94)

Terrestrial/

Aquatic Open, Open/Forested

Phyllomedusidae 18 1/18 2.88 Aquatic Open, Forested Areas

Pipidae 1 0/1 0.00 Aquatic Forested Areas

Caudata

Plethodontidae 4 2/4 2.95 ± 1.26

(2.06 – 3.84) Terrestrial Forested Areas

Plethodontidae* 56 0/56 0.00 Terrestrial Forested Areas

Gymnophiona

Caeciliidae 1 1/1 2.58 Terrestrial Forested Areas

Siphonopidae 8 2/8 2.82 ± 1.54

(1.73 – 3.91) Terrestrial Forested Areas

Page 56: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

56

Table 2. Batrachochytrium dendrobatidis infection prevalence [as: percentage

(positive/total)] and infection load (values as mean g.e. ± standard deviation) per

collecting locality across Brazilian Amazon basin.

State / Municipality Locality n Prevalence Infection load

Pará / Belém Parque Estadual do

UTINGA 115

2.6%

(3/115)

43.70 ± 62.08

(1.11 – 114.94)

Pará / Altamira UHE Belo Monte 146 28.8%

(42/146)

101.83 ± 367.95

(1.19 – 1672.39)

Pará / Acará Private property 87 3.4%

(3/87)

23.08 ± 29.56

(2.88 – 57.02)

Amapá / Macapá Floresta Nacional do

Amapá 18

5.5%

(1/18) 1.62

Amapá / Macapá Lontra da Pedreira 35 14.3%

(5/35)

1.91 ± 0.25

(1.61 – 2.29)

Amapá / Macapá Abacate da Pedreira 24 20.9%

(5/24)

24.54 ± 35.83

(1.46 – 85.23)

Amazonas / Manaus Reserva Florestal

Adolpho Ducke 37

21.6%

(8/37)

220.71± 486.29

(1.05 – 1383.56)

Page 57: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

57

Figure 1

Page 58: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

58

Figure 2

Page 59: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

59

Figure 3

Page 60: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

60

Figure S1

Page 61: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

61

Figure S2

Page 62: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

62

Capítulo 3. LATITUDINAL DISTRIBUTION OF THE FROG-KILLING FUNGUS

ACROSS THE BRAZILIAN ATLANTIC FOREST

Carolina Lambertini1, C. Guilherme Becker

2, Anat Belasen

3, Anyelet Valencia-

Aguilar4, Carlos Henrique L. N. de Almeida

1, Clarisse M. Betancourt-Roman

3, David

Rodriguez5, Domingos da Silva Leite

6, Igor S. Oliveira

7, João Luiz R. Gasparini

8, Joice

Ruggeri1, Tamí Mott

4, Thomas S. Jenkinson

3,9, Timothy Y. James

3, Kelly R. Zamudio

10,

Luís Felipe Toledo1

1Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de

Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas,

São Paulo, 13083-862, Brazil

2Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama,

35487, United States of America

3Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor,

Michigan, 48109, United States of America

4Setor de Biodiversidade, Instituto de Ciências Biológicas e da Saúde, Universidade

Federal de Alagoas, 57052-970, Maceió, Alagoas, Brazil

5Department of Biology, Texas State University, San Marcos, Texas, 78666, United

States of America

6Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade

Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil

7Campus Floresta, Universidade Federal do Acre, Cruzeiro do Sul, 69895-000, Acre,

Brazil

8Departamento de Ciências Agrárias e Biológicas, Universidade Federal do Espírito

Santo, 29932-540, São Mateus, Espírito Santo, Brazil

9Department of Environmental Science, Policy, and Management, University of

California, Berkeley, California, 94720, United States of America

10Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New

York, 14853-2701, United States of America

*Corresponding author:

Carolina Lambertini

E-mail: [email protected]

Page 63: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

63

Abstract

Latitudinal variation directly reflects differences in disease outcomes mainly because of

non-uniformity of environmental variables that influences on infection rates of a given

pathogen. Chytridiomycosis, an infectious frog disease caused by the fungus

Batrachochytrium dendrobatidis (Bd), is strongly influenced by environmental

variations, and also by biotic factors, related to host species. Chytrid infections have

been documented all over south portion of Brazilian Atlantic forest, but there is no

information regarding Bd infection dynamics all over the biome. We sampled 2,554

anuran individuals from 21 field sites along a 3,600 km latitudinal transect across

Brazilian Atlantic forest. We quantified Bd infections by qPCR and performed a model

selection to verify whether abiotic variables explained Bd infections along the transect.

We also tested for associations between Bd infections and species richness, species

reproductive modes, and type of habitat. We detected a positive association between

infection prevalence and intensity with latitude; elevation, temperature and precipitation

better explained infection prevalence, and temperature best explained infection load

along the transect. We also detected an amplification effect between species richness

and Bd infections; and associations between Bd infections and host reproductive modes

and type of habitat. We characterized infection dynamics across a large scale latitudinal

transect and our results highlight the importance of taking into account the

environmental variability at different data sampling scales.

Keywords: Disease ecology, Environment, Species richness, Host life history, Tropical

forest, Batrachochytrium dendrobatidis

Page 64: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

64

Introduction

Latitude impacts a number of biotic and abiotic conditions that in turn affect

host-pathogen interactions (Engering et al. 2013). For example, variation in temperature

and rainfall are known to influence host-pathogen interactions in several disease

systems, dictating population-level prevalence patterns and pathogen infection

intensities at the individual level (Altizer et al. 2006, Fisher et al. 2012, Flory et al.

2012, Ruggeri et al. 2018). In fact, the number emergent infectious diseases are

increasing rapidly, with sometimes severe consequences for species persistence

(Williams et al. 2002, Jones et al. 2008), due to population declines and species

extinctions across the globe (McMichals 2004, Tompkins et al. 2015), and important

infectious diseases caused by different taxa have been associated with latitudinal

variation. For instance, reports of influenza virus from several countries all over the

world had its epidemic time and duration associated with latitude (Bloom-Feshbach et

al. 2013). Also, the incidence of Lyme disease all over United States increased across a

latitudinal range (Tuite et al. 2013).

Chytridiomycosis is one of the emerging infectious diseases that have had

catastrophic consequences for amphibian diversity (James et al. 2015, Berger et al.

2016). This disease is caused by the chytrid fungus Batrachochytrium dendrobatidis

(hereafter Bd), a generalist pathogen of amphibians that has caused declines in over 500

species globally (Scheele et al. 2019). In the amphibian-Bd system, a number of

environmental factors have a marked influence on variation of pathogen occurrence and

disease outcome of infected hosts (Garner et al. 2011, Ruggeri et al. 2015), and it has

been already associated to latitude in a tropical forest in Australia, for instance (Kriger

et al. 2007).

The most common abiotic factors driving spatial variation in Bd infections

are temperature, precipitation, elevation and vegetation density. Bd infections are

negatively associated with temperature (Puschendorf et al. 2009, Ruggeri et al. 2015,

Becker et al. 2016, Carvalho et al. 2017, Lambertini et al. 2017), and positively

associated with precipitation, elevation and vegetation density (Brem & Lips 2008,

Pushendorf et al. 2009, Becker & Zamudio 2011, Gründler et al. 2012, Ruggeri et al.

2015, Becker et al. 2016, Carvalho et al. 2017, Lambertini et al. 2017). These are basic

known patters for the Bd-host system; however, these relationships vary in direction of

response (e.g. Lambertini et al. 2016, Ruggeri et al. 2018), possibly due to data

Page 65: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

65

sampling in different geographic regions or at different spatial scales (Cohen et al.

2016).

A recent study showed no effect of elevation on Bd prevalence and infection

load at a local sampling scale (200 – 700 m above sea level) in Brazilian Atlantic forest

(Lambertini et al. 2016), but the opposite pattern was true at a regional scale (Walker et

al. 2010, Gründler et al. 2012). Similarly, a latitudinal sampling transect over 2,300 km

in the Australian coast revealed that both Bd infection prevalence and intensity were

higher with increased rainfall and colder temperatures (Kriger et al. 2007), whereas a

local scale study in Brazil revealed higher infection intensities during cooler periods but

lower intensities during the rainy season (Ruggeri et al. 2018). In terms of biotic factors,

host species richness is known to be negatively associated to Bd infections, due to the

dilution effect (Searle et al. 2011, Becker et al. 2014), but the opposite was detected in a

large scale study performed in Costa Rica and Australia, where species richness was

positively associated to Bd infections (Becker and Zamudio 2011). Host species

richness may dilute or amplify pathogen transmission through different mechanisms

(Luis et al. 2018). In general, it seems likely that several factors influence Bd infection

in different ways, and there are many different mechanisms where biotic and abiotic

factors might influence Bd infections. Given these contradictory results, we could infer

that data sampled at the local scale do not provide sufficient resolution to analyze

environmental variables, whereas regional scales include greater environmental

variability, and potentially more power for analysis of relationships between abiotic

variables and Bd infections. Indeed, abiotic factors such as climate, for instance, are

more variable and significantly predict Bd infections at regional scales, whereas biotic

factors are more variable and significantly predict Bd dynamics at local scales (Cohen et

al. 2016).

Here our goal is to disentangle the mechanisms responsible for Bd infection

variation at a regional scale, by focusing on biotic and abiotic variables. Specifically, we

performed anuran samplings over a 3,600 km latitudinal transect at the Brazilian

Atlantic forest, to test whether and how potential structuring factors as temperature,

precipitation, elevation, vegetation density and topographic complexity influences Bd

infections. We also tested the associations between species richness, reproductive mode,

and type of habitat with Bd infections. Our results shed light on large scale Bd infection

dynamics in natural landscapes.

Page 66: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

66

Methods

Study sites and Species Sampling

We sampled 21 field sites along a north to south 3,600 km latitudinal transect across the

Brazilian Atlantic Forest. Sampling sites were in the states of Santa Catarina, Paraná,

São Paulo, Rio de Janeiro, Espírito Santo, Bahia, Sergipe, Alagoas, Pernambuco,

Paraíba and Rio Grande do Norte (Figure 1). Anuran sampling permits were approved

by Chico Mendes national institute for biodiversity conservation (SISBio #27745-13)

Conselho de Gestão do Patrimônio Genético (SISGen #A1D66BF).

We field sampled anurans during the breeding season for each region:

between June and July in the northern region (north of the Rio Doce River, from

northern Bahia to Rio Grande do Norte) and between December and February in the

southern region (south of the Rio Doce River, from southern Bahia to Santa Catarina)

during the years of 2011-2015. We sampled 2,554 individual frogs across the latitudinal

transect. For each site, we aimed to sample the greatest diversity of species possible,

totaling 14 families, 43 genera, and 148 anuran species (Table S1). We recorded GPS

coordinates in decimal degrees for each sampling location. When GPS coordinates were

not available for data that had been previously collected, we used the geographic

centroid of municipalities for geographic analyses.

Bd prevalence and infection load

We swabbed the skin of each field-captured frog following established

protocols (Hyatt et al. 2007). Swabs were placed individually in 1.5 mL cryovials, and

stored at -20ºC until molecular diagnosis in the lab. We extracted DNA from each swab

using 50µL of PrepMan ULTRA® (Life Technologies) and then proceeded with

molecular detection and quantification using TaqMan® qPCR Assay (Life

Technologies) (Boyle et al. 2004, Lambertini et al. 2013). To generate the qPCR

standard curve, we used the Atlantic Forest collected strain CLFT 023 as a quantitative

standard, serially diluted from 103 to 10

-1 zoospore genomic equivalents (g.e.). We

considered samples with at least one g.e. positive for Bd (Kriger et al. 2007).

Abiotic variables

For each sampling location, we extracted seven bioclimatic metrics for

temperature and precipitation (BioClim, WorldClim) – Annual Mean Temperature

(Bio1), Mean Diurnal Range (Bio 2), Temperature Seasonality (Bio 4), Maximum

Page 67: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

67

Temperature of Warmest Month (Bio 5), Annual Precipitation (Bio 12), Precipitation

Seasonality (Bio 15), Precipitation of Warmest Quarter (Bio 18), at a scale of 1 km for

each metric (Hijmans et al. 2005). We also extracted data on vegetation density (FAO

2010), elevation, topographic complexity and IUCN species richness using Arc Map

v.10.1 (ESRI 2012).

Statistical Analysis

We performed a Generalized Linear Model (GLM), with binomial

distribution and logit link, and a Generalized Regression (GR), with a zero inflated (ZI)

negative binomial distribution, to test whether latitude is associated to prevalence and

infection load, and to test whether bioclimatic metrics, as well as vegetation density,

elevation, topographic complexity and IUCN species richness explain prevalence and

infection load along our latitudinal transect.

To test for the influence of host species richness on Bd infections, we

performed a model selection for Bd prevalence and infection load, using IUCN species

richness data for each sampling locality as a fixed factor. We classified all the species

by their habitat (Forested, Open/Forested and Open areas) and performed analysis of

variance (ANOVA) and Tukey test a posteriori, to verify if there were differences

between both prevalence and infection load and species habitat. We also classified all

the species by their habit, according to their reproductive biology [aquatic (aquatic

larvae) and terrestrial (direct and indirect development)] and performed a t test to verify

if there were differences between both prevalence and infection load and species habit.

We used the software JMP-SAS v.10. to perform statistical analyses (SAS 2010).

Results

We observed an overall prevalence of 24.7%, and a mean infection load of

713.5 zoospore genomic equivalents (g.e.) along our latitudinal transect. We detected

the highest infection prevalence in the family Hylodidae and the highest infection load

in the family Craugastoridae. Individuals from only two out of the 14 sampled families

(Centrolenidae and Eleutherodactylidae) did not test positive for Bd (Table 1; Table

S1).

We detected Bd at 95% of our sampling sites (Table 2). From the 11 states

sampled across our latitudinal transect, we detected the lowest infection prevalence in

the northeast region, in the state of Rio Grande do Norte (0.8%), and the highest

Page 68: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

68

infection prevalence in the south region, state of Paraná (51.7%). For the infection load,

we detected the lowest rate in the southeast region, state of São Paulo (1.00 g.e.) and the

highest rate in the northeast region, state of Alagoas (158,772 g.e.). Our GLM analysis

indicated that both infection prevalence (X2

= 194.0014; P < 0.0001) and infection load

(X2

= 99.1909; P < 0.0001) were positively associated with latitude (Fig. 1).

We performed model selection analysis including environmental variables

and IUCN species richness for each sampling locality, and the best model showed that

elevation, mean diurnal range, temperature seasonality and annual precipitation best

explain infection prevalence (Table 3), and that annual mean temperature best explained

the infection load (β = -0.022387; P = 0.0009). We also report the 5 best models for

prevalence and infection load (Table S2).

When analyzing IUCN species richness for each sampling locality in our

model selection, we detected a positive relationship between this parameter and both

prevalence (P < 0.0001) and infection load (P = 0.0093) throughout the transect.

For species reproductive mode, we detected higher infection prevalence for

aquatic species than for terrestrial species (t = 3.2160; P = 0.0013, Fig. 2A), but the

opposite for infection load, where higher intensity was observed for terrestrial species (t

= -2.9433; P = 0.0032, Fig. 2B). We also detected higher infection prevalence and

intensity in forested areas, than for species from open/forested and open areas (F[2,2551] =

16.9224; P < 0.0001, F[2,2551] = 19.3534; P < 0.0001, respectively, Fig. 2C, D).

Discussion

Our large-scale sampling throughout Brazilian Atlantic forest revealed

latitudinal variation in Bd prevalence and infection load, with a positive association

between infection rates and latitude (Fig. 1). This same pattern was described in a

similar study with broad latitudinal sampling along the Australian coast, where Bd

prevalence showed a trend toward increasing with latitude, and infection load were

positively associated with latitude (Kriger et al. 2007). The decrease in Bd in northern

Atlantic forest is likely because environmental conditions become less suitable for Bd

development as latitude decrease. Our results clearly show higher infection rates in

southern portions (Fig 1) where environmental conditions as annual mean temperature

are more suitable for Bd development. In contrast, a recent study detected a negative

trend between Bd prevalence and latitude, in a latitudinal sampling throughout a

Chilean tropical forest (Bacigalupe et al. 2017). But, this pattern can be partly explained

Page 69: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

69

by the ongoing spread of Bd in the region, due to a recent introduction of Xenopus

leavis (Bacigalupe et al. 2017). This means that different mechanisms might influence

different patterns of Bd infections in samples collected over large spatial scales, but

environmental variation is in fact a strong predictor of this variance.

Based on our model selection, the variables that better explained Bd

infection prevalence and intensity were macroclimate and elevation.

Environmental conditions are highly heterogeneous throughout the forest, and probably

this explains the patterns we detected, given that in large geographic scales we may

detect higher environmental variability. Our results are in agreement with previous

studies performed at large geographic scales. For example, positive relationships

between elevation, topographic complexity and rainfall, and negative relationships

between temperature and the likelihood of Bd occurrence, were reported in tadpoles

from all Brazilian biomes (Carvalho et al. 2017). In the Amazon Basin, which shows

different patterns of environmental conditions compared to Brazilian Atlantic forest,

milder temperatures and higher precipitation and vegetation density were significant

predictors of Bd occurrence in anurans (Becker et al. 2016). Besides anuran hosts,

temperature and precipitation also had a negative and positive effect, respectively, on

the likelihood of Bd infections in South American caecilians (Lambertini et al. 2017).

Both prevalence and infection load were negatively correlated with the mean

temperature of the warmest quarter along the sampling transect on east coast of

Australia, but positively correlated to rainfall (mm) metrics of each sampling locations

(Kriger et al. 2007).

At smaller geographic scales patterns of Bd infection rates may vary

significantly. For example, several studies detected a positive correlation between

elevation and infection rates (Brem & Lips 2008, Gründler et al. 2012, Catenazzi et al.

2013), but at a small spatial scale, this correlation was not detected (Lambertini et al.

2016). Given that one of the proposed mechanisms by which elevation influences Bd

infections is that cooler temperatures at higher elevations would provide better

conditions for the pathogen growth (Longcore et al. 1999, Piotrowski et al. 2004,

Voyles et al. 2017), we hypothesize that there must be a threshold on the effect of

elevation on Bd infections. The influence of elevation was detected when there was a

high elevational variation (in this case, from 10 to 1,400 m a.s.l.), but not detected in a

small elevational variation, from 200 to 700 m a.s.l. (Lambertini et al. 2016), probably

due to low variation in temperature.

Page 70: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

70

Cohen et al (2016) proposed that abiotic factors were significant and most

important for Bd infections only at regional scales, whereas biotic factors were more

important at local scales. For instance, species richness was important and negatively

correlated to Bd prevalence only at local scales and its relative importance decreases at

larger scales of analysis. Here, we detected an amplification effect on Bd infection

prevalence and intensity along our transect. Specifically, infection rates increased with

increasing species richness, which is the opposite of what has been reported in

controlled laboratory experiments, where for both larval and adult amphibians,

increased species richness reduced Bd infections (Searle et al. 2011, Becker et al. 2014).

On the other hand, the amplification effect on Bd infections has also been detected in

large scale analysis of wild amphibian populations in Costa Rica and Australia, and this

pattern could be explained by a greater diversity of species enhancing Bd transmission

due to the expanded availability of susceptible hosts (Becker & Zamudio 2011). These

different patterns indicate that the complexity of interactions in natural communities is

much greater than those in controlled laboratory experiments, and the difficulty of

capturing these community level mechanisms may bias experimental results. Also, even

though the dilution effect has been detected in plant and animal diseases almost seven

times more than the amplification effect (Cardinale et al. 2012), and in general the effect

of diversity and density of host population is stronger, the dilution and amplification

effects might occur at the same time in the same host-pathogen system through different

mechanisms (Luis et al. 2018), which means that the role of species diversity on Bd

infections has to be better elucidated.

In accordance with our expectations, both reproductive modes and type of

habitat from host species were related to Bd infection prevalence and intensity.

Prevalence was higher for aquatic species, which is expected given that Bd is a

waterborne fungus (Longcore et al. 1999; Berger et al. 2005). However, terrestrial

species harbored higher Bd infection intensities, and this might happen because

terrestrial species are less exposed to Bd and therefore they lack adaptive responses to

this pathogen (Mesquita et al. 2017). Our results reinforce that host life history is an

important predictor of Bd infections. For species habitat, we detected higher Bd

infection prevalence and intensity in species from forested areas. This pattern was also

expected, given that canopy density modulates temperature in natural vegetation, which

is directly associated to disease risk (Becker et al. 2012).

Page 71: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

71

In this study, we identified several critical factors affecting Bd infections in

natural landscapes, and characterized infection dynamics across a large scale latitudinal

transect with significant environmental gradients. Our results highlight the importance

of taking into account the environmental variability at different data sampling scales,

and the need for studies focusing on a better understanding of the relations between host

species diversity and Bd infections in the wild.

Acknowledgements

We thank M. J. M. Dubeux, L. R. Lima, U. G. da Silva, C. N. S. Palmeira, D. Santana,

A. de Padua Almeida for field assistance, and Paula P. Morão for qPCR assistance. This

work was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(CAPES, Financial Code 001), Conselho Nacional de Desenvolvimento Científico e

Tecnológico (CNPq #300896/2016-6) and Sao Paulo Research Foundation (FAPESP

#2016/25358-3).

Page 72: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

72

Table 1. Batrachochytrium dendrobatidis prevalence (positive/total) and infection load

(rounded without decimals) per family, and habit (according to their reproductive

biology). Infection load (g.e.) values are mean ± standard deviation (range).

Family N Habit Prevalence Infection load

Brachycephalidae 237 Terrestrial 50/237 1,741 ± 6,113

(1 – 38,999)

Bufonidae 102 Aquatic 17/102 576 ± 1,681

(1 – 6,599)

Centrolenidae 9 Aquatic 0/9 0.0

Craugastoridae 119 Terrestrial 17/119 9,522 ± 38,463

(2 – 158,771)

Cycloramphidae 103 Aquatic 38/103 79 ± 392

(1 – 2,424)

Eleutherodactylidae 1 Terrestrial 0/1 0.0

Hemiphractidae 14 Terrestrial 6/14 30 ± 32

(6 – 91)

Hylidae 1,361 Aquatic 312/1361 131 ± 400

(1 – 2,428)

Hylodidae 183 Aquatic 122/183 494 ± 1,321

(1 – 6,633)

Leptodactylidae 284 Aquatic and

Terrestrial

43/284 82 ± 216

(1 – 1,225)

Microhylidae 5 Aquatic 1/5 11

Odontophrynidae 24 Aquatic 7/24 13 ± 12

(3 – 39)

Phyllomedusidae 45 Aquatic 6/45 57 ± 73

(2 – 158)

Ranidae 67 Aquatic 12/67 165 ± 511

(2 – 3)

Page 73: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

73

Table 2. Sampling localities and Batrachochytrium dendrobatidis detection along the

Atlantic Forest latitudinal transect.

State Municipality Bd detection

Rio Grande do Norte Mata Estrela +

Paraíba João Pessoa +

Pernambuco Paulista +

Alagoas Murici +

Sergipe Areia Branca +

Bahia Mata de São João –

Bahia Camacan +

Espírito Santo Linhares +

Espírito Santo Santa Tereza +

Espírito Santo Vargem Alta +

Rio de Janeiro Sana +

São Paulo Bertioga +

São Paulo Biritiba-Mirim +

São Paulo Iporanga +

São Paulo Pedro de Toledo +

São Paulo São Luiz do Paraitinga +

Paraná Morretes +

Santa Catarina Pomerode +

Santa Catarina Rancho Queimado +

Page 74: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

74

Table 3. Best model for Batrachochytrium dendrobatidis infection prevalence.

Term Estimate dF X2

P

Intercept -7.151 1 117.719 <0.0001

Elevation (m) < 0.001 1 27.380 <0.0001

Bio 2 0.0238806 1 10.897 0.0001

Bio 4 0.0006103 1 45.974 <0.0001

Bio 12 0.0011922 1 108.086 <0.0001

Bio 2 = Mean Diurnal Range; Bio 4 = Temperature Seasonality; Bio 12 = Annual

Precipitation.

Page 75: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

75

Figure 1

Page 76: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

76

Figure 2

Page 77: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

77

Table S2. Five best models for prevalence and infection load. Bio 1 = Annual Mean

Temperature; Bio 2 = Mean Diurnal Range; Bio 4 = Temperature Seasonality; Bio 5 =

Max Temperature of Warmest Month; Bio 12 = Annual Precipitation; Bio 18 =

Precipitation of Warmest Quarter.

Term AIC Δ AIC # Variables

Prevalence

Elevation (m), Bio 2, Bio 4, Bio 12 259.161 0 4

Vegetation density, Bio 1, Bio 2, Bio 12 263.875 4.714 4

Elevation (m), Bio 4, Bio 12 266.558 7.397 3

Vegetation density, Elevation (m), Bio 4, Bio 12 266.871 7.710 4

Elevation (m), Bio 1, Bio 5, Bio 12 267.231 8.070 4

Infection load

Bio 1 521.619 0 1

Elevation (m) 527.208 5.590 1

Bio 5 547.512 25.893 1

Species richness 569.260 47.641 1

Bio 18 597.242 75.623 1

Page 78: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

78

SÍNTESE GERAL

Florestas tropicais representam um ecossistema que abriga parte relevante

da biodiversidade terrestre mundial. Dentre as principais, a Floresta Amazônica

apresenta a maior riqueza de espécies do mundo, e a Mata Atlântica representa um

bioma com ampla diversidade de espécies e alto grau de endemismo, sendo considerado

um dos mais importantes hotspots de biodiversidade do mundo. Das mais de 1000

espécies de anfíbios que compõem a biodiversidade brasileira, pelo menos 600 espécies

são encontradas na Mata Atlântica. Levando em consideração o grande e preocupante

impacto da quitridiomicose sobre a diversidade mundial de anfíbios, estudos que

buscam um melhor entendimento sobre os padrões de ocorrência do patógeno

Batrachochytrium dendrobatidis (Bd) em ambos os biomas se tornam essenciais.

No presente trabalho, apresentamos dados inéditos em relação aos padrões

de ocorrência do Bd em ambos os biomas. Realizamos na Mata Atlântica a amostragem

de maior extensão em transecto já desenvolvida, abrangendo mais de 2500 indivíduos

pertencentes a 148 espécies de anfíbios anuros. De acordo com nosso transecto

latitudinal, o Bd está amplamente distribuído ao longo da Mata Atlântica, com as taxas

de prevalência e carga de infecção positivamente associadas com a latitude. Este padrão

era esperado já que, basicamente, as condições ambientais para o desenvolvimento do

patógeno se tornam menos favoráveis com a diminuição da latitude. Além disso,

detectamos e descrevemos associações entre fatores abióticos e bióticos e taxas de

infecção por Bd em nossa amostragem em larga escala.

Elevação e variáveis bioclimáticas de temperatura e precipitação explicaram

as taxas de infecção encontradas ao longo do transecto, o que era esperado já que

amostragens em larga escala refletem variação ambiental normalmente associada à

variação de infecção por Bd. Propomos aqui que exista um limiar no qual a elevação

está associada às taxas de infecção, já que quanto maior a variação de elevação, maior a

variação de temperatura que pode prover condições mais favoráveis para o

desenvolvimento do Bd. Além disso, detectamos um efeito de amplificação da riqueza

de espécies nas taxas de prevalência e carga de infecção por Bd ao longo do transecto,

que representa o oposto já detectado em estudos experimentais. Sabe-se atualmente que

tanto o efeito de diluição quanto de amplificação podem ocorrer concomitantemente na

natureza, através de diferentes mecanismos. Sendo assim, o papel da diversidade de

espécies nos padrões de infecção por Bd deve ser melhor explorado.

Page 79: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

79

Diversos estudos realizaram a detecção do Bd na Mata Atlântica. Porém, a

maioria dos trabalhos está concentrada na porção sul do bioma, que já foi classificada

como uma região de alta adequabilidade ambiental para o estabelecimento e

desenvolvimento do patógeno, através de modelagens de nicho climático. O presente

trabalho é o primeiro em larga escala a ser realizado no bioma e, corroboramos

resultados de modelagem de nicho climático, já que encontramos cargas de infecção

mais altas na porção sul, que diminuem conforme diminuição da latitude.

Por outro lado, as amostragens realizadas na Floresta Amazônica não

corroboram previsões de modelagens de nicho climático, já que encontramos altas taxas

de infeção em localidades consideradas de baixa adequabilidade para o estabelecimento

de desenvolvimento do Bd. As únicas variáveis em comum que foram associadas às

taxas de infecção encontradas em ambos os biomas são temperatura média anual e tipo

de habitat dos hospedeiros. Variáveis como elevação, complexidade topográfica, outras

variáveis bioclimáticas e até footprint humano não explicaram as taxas de infecção

encontradas no presente trabalho (Capítulo 2), mas foram associadas previamente às

taxas encontradas ao longo do transecto latitudinal realizado na Mata Atlântica, também

no presente trabalho (Capítulo 1), e em outros dois estudos retrospectivos de larga

escala desenvolvidos na região Amazônica. Propomos então, que outros fatores que não

ambientais estão influenciando a variação nas taxas de infecção, como a emergência

recente de cepas do Bd, ou até a chegada de cepas virulentas na região, através da

disseminação tanto por vias antropogênicas quanto naturais.

Demostramos experimentalmente os riscos do fluxo de diferentes cepas de

Bd em hospedeiros da espécie Atelopus hoogmoedi, cujos congêneres de outras regiões

são considerados altamente susceptíveis à infecção por Bd e já sofreram declínios

severos de populações. Evidenciamos a variação em virulência de cepas pertencentes à

mesma linhagem genética do patógeno – Global Pandemic Lineage (Bd-GPL), porém

de regiões geográficas que variam em similaridade climática em comparação com a

distribuição geográfica dos hospedeiros.

Apresentamos também o primeiro registro de infecção por Bd em

membros da ordem Caudata no Brasil (Capítulo 2), e o primeiro estudo que analisa os

padrões de ocorrência de Bd em espécies da ordem Gymnophiona no mundo (Capítulo

3), sugerindo que espécies dessa ordem podem agir como reservatórios do Bd, devido

aos hábitos completamente fossoriais ou aquáticos, pelos quais os indivíduos são menos

expostos a variações ambientais.

Page 80: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

80

O presente trabalho apresenta diferentes padrões de ocorrência do fungo Bd

na Mata Atlântica e Amazônia brasileiras, e abre portas para o desenvolvimento de

diversos estudos como: um melhor entendimento da influência da diversidade de

espécies nas taxas de infecção por Bd na natureza; o papel da escala de amostragem nos

fatores bióticos e abióticos que influenciam padrões de ocorrência de Bd; maior

amplitude de amostragem de populações naturais de anfíbios na região Amazônica,

focando tanto em anuros quanto em salamandras e cecílias; verificar se espécies de

gênero Atelopus da Amazônia brasileira são de fato mais susceptíveis à infecção por Bd;

quais genótipos de Bd podem estar distribuídos na região Amazônica e nos membros

das ordens Caudata e Gymnophiona. Quanto maior a compreensão dos padrões de

ocorrência do Bd, maiores as possibilidades de desenvolvimento de ações de

conservação direcionadas às espécies de anfíbios no Brasil e no mundo.

Page 81: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

81

REFERÊNCIAS

Alford RA (2001) Testing the novel pathogen hypothesis. Developing management

strategies to control amphibian diseases: decreasing the risks due to

communicable diseases. School of Public Health and Tropical Medicine, James

Cook University, Townsville, Australia, p.20

Allender MC, Hileman ET, Moore J, Tetzlaff S (2016). Detection of Ophidiomyces, the

causative agent of snake fungal disease, in the Eastern Massasauga (Sistrurus

catenatus) in Michigan, USA, 2014. Journal of Wildlife Diseases 52:694–698

Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality

and the dynamics of infectious diseases. Ecology Letters 9:467–48

Andre SE, Parker J, Briggs CJ (2008) Effect of temperature on host response to

Batrachochytrium dendrobatidis infection in the mountain yellow-legged frog

(Rana muscosa). Journal of Wildlife Diseases 44:716–720

Ávila-Pires TCS; Hoogmoed MS; Rocha, WA (2010) Notes on Vertebrates of Northern

Pará, Brazil: a forgotten part of the Guianan Region, I. Herpetofauna. Boletim do

Museu Paraense Emílio Goeldi Ciências Naturais 5:13–112

Bacigalupe LD, Soto‐Azat C, García‐Vera C, Barría‐Oyarzo I, Rezende EL (2017)

Effects of amphibian phylogeny, climate and human impact on the occurrence of

the amphibian‐killing chytrid fungus. Global Change Biology 23:3543–3553

Bataille A, Fong JJ, Cha M, Wogan GO and others (2013) Genetic evidence for a high

diversity and wide distribution of endemic strains of the pathogenic chytrid fungus

Batrachochytrium dendrobatidis in wild Asian amphibians. Molecular Ecology

22:4196–4209

Becker, C. G., Fonseca, C. R., Haddad, C. F. B., Batista, R. F. & Prado, P. I. 2007.

Habitat split and the global decline of amphibians. Science 318:1775–1777

Becker CG, Zamudio KR (2011) Tropical amphibian populations experience higher

disease risk in natural habitats. Proceedings of the National Academy of Sciences

108:9893–9898

Becker CG, Rodriguez D, Longo AV, Talaba AL, Zamudio KR (2012) Disease risk in

temperate amphibian populations is higher at closed-canopy sites. PLoS ONE

7:e48205

Becker CG, Rodriguez D, Toledo LF, Longo AV, Lambertini C, Corrêa DT, Leite DS,

Haddad CFB, Zamudio KR (2014) Partitioning the net effect of host diversity on an

emerging amphibian pathogen. Proceedings of the Royal Society B 281:20141796

Page 82: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

82

Becker CG, Rodriguez D, Lambertini C, Toledo LF, Haddad CFB (2016) Historical

dynamics of Batrachochytrium dendrobatidis in Amazonia. Ecography 39:954–960

Berger L, Marantelli G, Skerratt LF Speare R (2005) Virulence of the amphibian chytrid

fungus Batrachochytrium dendrobatidis varies with the strain. Diseases of

Aquatic Organisms 68:47–50

Berger L, Speare R, Daszak P, Green DE, and others (1998) Chytridiomycosis causes

amphibian mortality associated with population declines in the rain forests of

Australia and Central America. Proceedings of the National Academy of Science

95:9031–9036

Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R,

Ragan AM, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H

(1998). Chytridiomycosis causes amphibian mortality associated with population

declines in the rain forests of Australia and Central America. Proceedings of the

National Academy of Sciences 95:9031–9036

Berger L, Roberts AA, Voyles J, Longcore JE, Murray KA, Skerratt LF (2016) History

and recent progress on chytridiomycosis in amphibians. Fungal Ecology 19:89–99

Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL,

Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd J, Stone

WB (2009) Bat white-nose syndrome: an emerging fungal

pathogen? Science 323:227–227

Bloom-Feshbach K, Alonso WJ, Charu V, Tamerius J, Simonsen L, Miller MA, Viboud

C (2013) Latitudinal variations in seasonal activity of influenza and respiratory

syncytial virus (RSV): a global comparative review. PloS ONE 8:e54445

Bovero S, Sotgiu G, Angelini C, Doglio S, Gazzaniga E, Cunningham AA, Garner

TWJ. (2008) Detection of chytridiomycosis caused by Batrachochytrium

dendrobatidis in the endangered Sardinian newt (Euproctus platycephalus) in

southern Sardinia, Italy. Journal of Wildlife Diseases 44:712–715

Bower DS, Lips KR, Schwarzkopf L, Georges A, Clulow S (2017) Amphibians on the

brink. Science 357:454–455

Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative

detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian

samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms 60:141–

148

Page 83: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

83

Boyles JG, Willis CK (2010) Could localized warm areas inside cold caves reduce

mortality of hibernating bats affected by white‐nose syndrome? Frontiers in

Ecology and the Environment 8:92–98

Brem FM, Lips KR (2008) Batrachochytrium dendrobatidis infection patterns among

Panamanian amphibian species, habitats and elevations during epizootic and

enzootic stages. Diseases of Aquatic Organisms 81:189–202

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A,

Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB,

Larigauderie A, Srivastata DS, Naeem S (2012) Biodiversity loss and its impact on

humanity. Nature 486:59–67

Carvalho T, Becker CG, Toledo LF (2017) Historical amphibian declines and

extinctions in Brazil linked to chytridiomycosis. Proceedings of the Royal Society B

284:20162254

Catenazzi A, Lehr E, Rodriguez LO, Vredenburg VT (2011) Batrachochytrium

dendrobatidis and the collapse of anuran species richness and abundance in the upper

Manu National Park, southeastern Peru. Conservation Biology 25:382–391

Catenazzi A, von May R, Vredenburg VT (2013) High prevalence of infection in

tadpoles increases vulnerability to fungal pathogen in high-Andean amphibians.

Biological Conservation 159:413–421

Cheng TL, Rovito SM, Wake DB, Vredenburg VT (2011) Coincident mass extirpation

of neotropical amphibians with the emergence of the infectious fungal pathogen

Batrachochytrium dendrobatidis. Proceedings of the National Academy of Science

108:9502–9507

Churgin SM, Raphael BL, Pramuk JB, Trupkiewicz JG, West G (2013)

Batrachochytrium dendrobatidis in aquatic caecilians (Typhlonectes natans): a

series of cases from two institutions. Journal of Zoo and Wildlife Medicine

44:1002–1009

Cohen JM, Civitello DJ, Brace AJ, Feichtinger EM, Ortega CN, Richardson JC, Sauer

EL, Liu X, Rohr JR (2016) Spatial scale modulates the strength of ecological

processes driving disease distributions. Proceedings of the National Academy of

Sciences 113:3359–3364

Courtois EA, Gaucher P, Chave J, Schmeller DS. (2015) Widespread occurrence of Bd

in French Guiana, South America. PLoS ONE 10: e0125128

Page 84: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

84

Cunningham AA, Daszak P, Wood JL (2017) One Health, emerging infectious diseases

and wildlife: two decades of progress? Philosophical Transactions of the Royal

Society B 372:20160167

Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE Speare R (1999) Emerging

infectious diseases and amphibian population declines. Emerging Infectious

Diseases 5: 735–748

Daszak P, Cunningham AA, Hyatt AD (2000). Emerging infectious diseases of wildlife-

-threats to biodiversity and human health. Science 287:443–449

Daszak P, Cunningham AA, Hyatt AD (2001) Anthropogenic environmental change

and the emergence of infectious diseases in wildlife. Acta Tropica 78:103–116

Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian

population declines. Diversity and Distributions 9:141–150

Davidson EW, Parris M, Collins JP, Longcore JE, Pessier AP, Brunner J (2003)

Pathogenicity and transmission of chytridiomycosis in tiger salamanders

(Ambystoma tigrinum). Copeia 2003:601–607

Dobson A, Foufopoulos J (2001) Emerging infectious pathogens of

wildlife. Philosophical Transactions of the Royal Society of London B 356:1001–

1012

Doherty-Bone TM, Gonwouo NL, Hirschfeld M, Ohst T, Weldon C (2013)

Batrachochytrium dendrobatidis in amphibians of Cameroon, including first

records for caecilians. Diseases of Aquatic Organisms 102:187–194

Eisenberg JN, Desai MA, Levy K, Bates SJ, Liang S, Naumoff K, Scott JC (2007)

Environmental determinants of infectious disease: a framework for tracking

causal links and guiding public health research. Environmental Health

Perspectives 115:1216–1223

Elith J and Leathwick JR (2009) Species distribution models: ecological explanation

and prediction across space and time. Annual review of ecology, evolution, and

systematics 40:667–697

Engering A, Hogerwerf L, Singenbergh J (2013) Pathogen-host-environment interplay

and disease emergence. Emerging Microbes and Infections 2:1–7

ESRI (2012) Arcview 10.1. – Redlands, CA

FAO (2010) Global Forest Resources Assessment 2010, Main Report. Food and

Agriculture Organization of the United Nations, Rome, 1997

Page 85: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

85

Farrer RA, Weinert LA, Bielby J, Garner TW, Balloux F, Clare F, Bosch J,

Cunningtham AA, Weldon C, Preez AH, Anderson L, Pond SLK, Shahar-Golan

R, Henk DA, Fisher MC. 2011. Multiple emergences of genetically diverse

amphibian-infecting chytrids include a globalized hypervirulent recombinant

lineage. Proceedings of the National Academy of Sciences 108:18732–18736

Fisher MC, Garner TWJ (2007) The relationship between the emergence of

Batrachochytrium dendrobatidis, the international trade in amphibians and

introduced species. Fungal Biological Reviews 21:2–9

Fisher MC, Bosch J, Yin Z, Stead DA, Walker J, Selway L, Brown AJP, Walker LA,

Gow NAR, Stajich JE, Garner TW (2009) Proteomic and phenotypic profiling of the

amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked

to virulence. Molecular Ecology 18:415–429

Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ

(2012) Emerging fungal threats to animal, plant and ecosystem health. Nature

484:186–194

Fites JS, Ramsey JP, Holden WM, Collier SP, Sutherland DM, Reinert LK, Rollins-

Smith LA (2013) The invasive chytrid fungus of amphibians paralyzes

lymphocyte responses. Science 342:366–369

Flechas SV, Paz A, Crawford AJ, Sarmiento C, Acevedo AA, Arboleda A, Bolívar-

Garcia W, Echevery-Sandoval CL, Franco R, Mojica C, Muñoz A, Palacios-

Rodriguez P, Posso-Terranova AM, Quintero-Marin P, Rueda-Solano L, Castro-

Herrera F, Amézquita A (2017) Current and predicted distribution of the pathogenic

fungus Batrachochytrium dendrobatidis in Colombia, a hotspot of amphibian

biodiversity. Biotropica 49:685–694

Flory AR, Kumar S, Stohlgren TJ, Cryan PM (2012) Environmental conditions

associated with bat white‐nose syndrome mortality in the north‐eastern United

States. Journal of Applied Ecology 49:680–689

Frost D R (2016) Amphibian Species of the World: an Online Reference. Version 6.0

(accessed 23 Aug 2016). Electronic Database accessible at

http://research.amnh.org/herpetology/amphibia/index.html. American Museum of

Natural History, New York, USA

Gaertner JP, Forstner MR, O’Donnell L, Hahn D. 2009. Detection of Batrachochytrium

dendrobatidis in endemic salamander species from Central Texas. EcoHealth

6:20–26

Page 86: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

86

Gahl MK, Longcore JE, Houlahan JE (2012). Varying responses of northeastern North

American amphibians to the chytrid pathogen Batrachochytrium dendrobatidis.

Conservation Biology 26:135–141

Garmyn A, Van Rooij P, Pasmans F, Hellebuyck T, Van Den Broeck W, Haesebrouck

F, Martel A (2012) Waterfowl: potential environmental reservoirs of the chytrid

fungus Batrachochytrium dendrobatidis. PLoS One 7:e35038

Gervasi S, Gondhalekar C, Olson DH, Blaustein AR (2013) Host identity matters in the

amphibian-Batrachochytrium dendrobatidis system: fine-scale patterns of

variation in responses to a multi-host pathogen. PLoS One 8:e54490

Gower DJ, Wilkinson M (2005) Conservation biology of caecilian amphibians.

Conservation Biology 19:45–55

Gower DJ, Doherty-Bone T, Loader SP, Wilkinson M, Kouete MT, Tapley B, Orton F,

Daniel OZ, Wynne F, Flach E, Müller H, Menegon M, Stephen I, Browne RK,

Fisher MC, Cunningham AA, Garner TWJ (2013) Batrachochytrium

dendrobatidis infection and lethal chytridiomycosis in caecilian amphibians

(Gymnophiona). EcoHealth 10:173–183

Gower DJ, Doherty-Bone TM, Loader SP, Wilkinson M and others (2013)

Batrachochytrium dendrobatidis infection and lethal chytridiomycosis in caecilian

amphibians (Gymnophiona). EcoHealth 10:173–183

Greenberg DA, Palen WJ, Mooers AØ (2017) Amphibian species traits, evolutionary

history and environment predict Batrachochytrium dendrobatidis infection

patterns, but not extinction risk. Evolutionary applications 10:1130–1145

Greenspan SE, Longcore JE Calhoun AJ (2012) Host invasion by Batrachochytrium

dendrobatidis: fungal and epidermal ultrastructure in model anurans. Diseases of

Aquatic Organisms 100:201–210

Greenspan SE, Lambertini C, Carvalho T, James TY, Toledo LF, Haddad CFB, Becker

CG (2018) Hybrids of amphibian chytrid show high virulence in native hosts.

Scientific Reports 8:1–10

Gründler MC, Toledo LF, Parra-Olea G, Haddad CF, Giasson LO, Sawaya RJ, Prado,

CPA, Araujo OGS, Zara FJ, Centeno FC, Zamudio KR (2012) Interaction

between breeding habitat and elevation affects prevalence but not infection

intensity of Batrachochytrium dendrobatidis in Brazilian anuran assemblages.

Diseases of Aquatic Organisms 97:173–184

Page 87: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

87

Haddad CFB, Toledo LF, Prado CPA, Loebmann D, Gasparini JL, Sazima I (2013).

Guia dos anfíbios da Mata Atlântica: diversidade e biologia. Anolis Books

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution

interpolated climate surfaces for global land areas. International Journal of

Climatology 25:1965–1978

Hyatt, A.D., Boyle, D.G., Olsen, V., Boyle, D.B., Berger, L., Obendorf, D.,Colling, A.,

(2007) Diagnostic assays and sampling protocols for the detection of

Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms 73:175–192

Hydeman ME, Bell RC, Drewes RC, Zamudio KR (2013) Amphibian chytrid fungus

confirmed in endemic frogs and caecilians on the island of São Tomé, Africa.

Herpetological Review 44:254–257

James TY, Toledo LF, Rödder D, Leite DS and others (2015) Disentangling host,

pathogen, and environmental determinants of a recently emerged wildlife disease:

lessons from the first 15 years of amphibian chytridiomycosis research. Ecology

and Evolution 5:4079–4097

Jenkinson TS, Bettancourt-Román CM, Lambertini C, Valencia‐Aguilar A, Rodriguez

D, Nunes‐de‐Almeida CHL, Ruggeri J, Belasen AM, Leite DS, Zamudio KR,

Longcore JE, Toledo LF, James TY (2016) Amphibian‐killing chytrid in Brazil

comprises both locally endemic and globally expanding populations. Molecular

Ecology 25:2978–2996

Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008)

Global trends in emerging infectious diseases. Nature 451:990–994

Keane P, Kerr A (1997) Factors affecting disease development. Plant Pathogens and

Plant Diseases, 287–298

Keesing F, Holt RD, Ostfeld RS (2006) Effects of species diversity on disease risk.

Ecology Letters 9:485–498

Kilburn VL, Ibáñez R, Green DM (2011) Reptiles as potential vectors and hosts of the

amphibian pathogen Batrachochytrium dendrobatidis in Panama. Diseases of

Aquatic Organisms 97:127–134

Kilpatrick AM, Briggs CJ, Daszak P (2009) The ecology and impact of

chytridiomycosis: an emerging disease of amphibians. Trends in Ecology and

Evolution 25:109–118

Kim K, Harvell CD (2004). The rise and fall of a six-year coral-fungal epizootic. The

American Naturalist 164:S52–S63

Page 88: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

88

Kriger KM, Ashton KJ, Hines HB, Hero JM (2007) On the biological relevance of a

single Batrachochytrium dendrobatidis zoospore: a reply to Smith (2007).

Diseases of Aquatic Organisms 73:257–260

Kriger KM, Hero JM (2008) Altitudinal distribution of chytrid (Batrachochytrium

dendrobatidis) infection in subtropical Australian frogs. Austral Ecology

33:1022–1032

La Marca E, Lips KR, Lötters S, Puschendorf R, Ibáñez R, Rueda‐Almonacid JV,

Schulte R, Marty C, Castro F, Manzanilla-Puppo J, García-Pérez JE, Bolanõs F,

Chaves G, Pounds JA, Toral E, Young BE (2005) Catastrophic population

declines and extinctions in Neotropical harlequin frogs (Bufonidae: Atelopus).

Biotropica 37:190–201

LaMarca E, Lötters S (1997) Monitoring of declines in Venezuelan Atelopus

(Amphibia: Anura: Bufonidae). Herpetologia Bonnensis 1997:207–213

LaMarca E, Lips KR, Lötters S, Puschendorf R, Ibáñez R, Rueda‐Almonacid JV,

Schulte R, Marty C, Castro F, Manzanilla-Puppo J, García-Pérez JE, Bolanõs F,

Chaves G, Pounds JA, Toral E, Young BE (2005) Catastrophic population declines

and extinctions in Neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica

37:190–201

Labisko J, Maddock ST, Taylor ML, Chong-Seng L and others (2015) Chytrid fungus

(Batrachochytrium dendrobatidis) undetected in the Two Orders of Seychelles

Amphibians. Herpetological Review 46:41–45

Lambertini C, Rodriguez D, Brito FB, Leite DS, Toledo LF (2013) Diagnóstico do

fungo Quitrídio: Batrachochytrium dendrobatidis. Herpetologia Brasileira 2:12–17

Lambertini C, Becker CG, Jenkinson TS, Rodriguez D, Leite DS, James TY, Zamudio

KR, Toledo LF (2016) Local phenotypic variation in amphibian-killing fungus

predicts infection dynamics. Fungal Ecology 20:15–21

Lambertini C, Becker CG, Bardier C, Leite DS, Toledo LF (2017) Spatial distribution

of Batrachochytrium dendrobatidis in South American caecilians. Diseases of

Aquatic Organisms 124:109–116

Lampo M, Barrio-Amorós C, Han B (2006) Batrachochytrium dendrobatidis infection

in the recently rediscovered Atelopus mucubajiensis (Anura, Bufonidae), a

critically endangered frog from the Venezuelan Andes. EcoHealth 3:299–302

Laurance WF, McDonald KR, Speare R (1996) Epidemic disease and the catastrophic

decline of Australian rain forest frogs. Conservation Biology 10:406–413

Page 89: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

89

Levin SA (1992) The Problem of Pattern and Scale in Ecology. Ecology 73:1943–1967

Lips KR, Burrowes PA, Mendelson III JR, Parra‐Olea G (2005) Amphibian Population

Declines in Latin America: A Synthesis 1. Biotropica: The Journal of Biology and

Conservation 37:222–226

Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier

AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a

Neotropical amphibian community. Proceedings of The National Academy of

Sciences 103:3165–3170

Lips KR, Diffendorfer J, Mendelson III JR, Sears MW (2008) Riding the wave:

reconciling the roles of disease and climate change in amphibian declines. PLoS

Biology 6:e72

Lisboa BS, Neves JMM, Nascimento FAC, Tavares-Bastos L, Mott T (2013) New

records of Batrachochytrium dendrobatidis in the Atlantic forest of Northeastern

Brazil. North-Western Journal of Zoology 9:210–213

Liu X, Rohr JR, Li Y (2013) Climate, vegetation, introduced hosts and trade shape a

global wildlife pandemic. Proceedings of the Royal Society B 280:20122506

Longcore JE, Pessier AP, Nichols DK (1999) Batrachochytrium dendrobatidis gen. et

sp. nov., a chytrid pathogenic to amphibians. Mycologia 91:219–227

Longo AV, Burrowes PA, Joglar RL (2010) Seasonality of Batrachochytrium

dendrobatidis infection in direct-developing frogs suggests a mechanism for

persistence. Diseases of Aquatic Organisms 92:253–260

Lorch JM, Knowles S, Lankton JS, Michell K, Edwards JL, Kapfer JM, Staffen RA,

Wild ER, Schmidt KZ, Ballman AE, Blodgett D, Farrel TM, Glorioso BM, Last

LA, Price SJ, Schuler KL, Smith CE, Wellehan JFX, Blehert DS (2016). Snake

fungal disease: an emerging threat to wild snakes. Philosophical Transactions of

the Royal Society B 371:20150457

Lötters S, Wagner N, Kerres A, Vences M, Steinfartz S, Sabino-Pinto J, Seufer L,

Preissler K, Schulz V, Veith M (2018) First report of host co-infection of parasitic

amphibian chytrid fungi. Salamandra 54:287–290

Luis AD, Kuenzi AJ, Mills JN (2018) Species diversity concurrently dilutes and

amplifies transmission in a zoonotic host–pathogen system through competing

mechanisms. Proceedings of the National Academy of Sciences 115:7979–7984

Page 90: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

90

Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural

chemicals: review of the risks in a complex environment. Environmental

Pollution 157: 2903–2927

Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes

A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium

salamandrivorans sp. nov. causes lethal chytridiomycosis in

amphibians. Proceedings of the National Academy of Sciences 38:15325–15329

Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA,

Schmidt BR, Tobler U, Goka K, Lips K, Muletz C, Zamudio KR, Bosh J, Lötters

S, Wombwell E, Garner TWJ, Cunningham AA, Spitzen-van der Sluijs A,

Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT, Kolby JE, Bocxlaer IV,

Bossuyt F, Pasmans F (2014) Recent introduction of a chytrid fungus endangers

Western Palearctic salamanders. Science 346:630–631

McCoy CM, Lind CM, Farrell TM (2017) Environmental and physiological correlates

of the severity of clinical signs of snake fungal disease in a population of pigmy

rattlesnakes, Sistrurus miliarius. Conservation physiology 5:1–10

McMenamin SK, Hadly EA, Wright CK (2008) Climate change and wetland dissecation

cause amphibian decline in Yellowstone National Park. Proceedings of the

National Academy of Sciences 105:16988–16993

McMichael AJ (2004) Environmental and social influences on emerging infectious

diseases: past, present and future. Philosophical Transactions of the Royal Society

of London B 359:1049–1058

McNew GL (1960) The nature, origin, and evolution of parasitism. In Plant Pathology:

An Advanced Treatise (eds Horsfall JG, Dimond AE) 19–69 (Academic Press,

New York)

Mesquita AF, Lambertini C, Lyra M, Malagoli LR, James TY, Toledo LF, Haddad

CFB, Becker CG (2017) Low resistance to chytridiomycosis in direct-developing

amphibians. Scientific Reports 7:1–7

Morse SS (1995) Factors in the emergence of infectious diseases. Emerging Infectious

Diseases 1:7–15

Muletz‐Wolz CR, Barnett SE, DiRenzo GV, Zamudio KR, Toledo LF, James TY, Lips

KR (2019) Diverse genotypes of the amphibian killing fungus produce distinct

phenotypes through plastic responses to temperature. Journal of Evolutionary

Biology 32:287–298

Page 91: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

91

Murray KA, Retallick RW, Puschendorf R, Skerratt LF, Rosauer D, McCallum HI,

Berger L, Speare R, VanDerWal J (2011) Assessing spatial patterns of disease risk

to biodiversity: implications for the management of the amphibian pathogen,

Batrachochytrium dendrobatidis. Journal of Applied Ecology, 48(1), 163-173.

O’Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, Kosch TA,

Murray KA, Brankovics B, Fumagalli M, Martin MD, Wales N, Alvarado-Rybak

M, Bates KA, Berger L, Böll S, Brookes L, Clare F, Courtois EA, Cunningham

AA, Doherty-Bone TM, Ghosh P, Gower DJ, Hintz WE, Höglund J, Jenkinson

TS, Lin CF, Laurilla A, Loyal A, Martel A, Meurling S, Miaud C, Minting P,

Pasmans F, Schmeller DS, Schmidt BR, Shelton JMG, Skerrat LF, Smith F, Soto-

Azat C, Spagnoletti M, Tessa G, Toledo LF, Valenzuela-Sanches A, Verster R,

Vörös J, Webb RJ, Wierzbicki C, Wombwell E, Zamudio KR, Aanensen, James

TY, Gilbert MTP, Weldon C, Bosch J, Balloux F, Garner TWJ, Fisher MC (2018)

Recent Asian origin of chytrid fungi causing global amphibian declines. Science

360:621–627

Ochoa AV, Carmona PB, Salcedo LDP Correa MF (2013) Detección y cuantificación

de Batrachochytrium dendrobatidis en anfibios de las regiones andina central,

oriental, Orinoquia y Amazonia de Colombia. Herpetotropicos 8:13–21

Olson DH, Ronnenberg KL (2014) Global Bd Mapping Project: 2014 update. FrogLog

22:17–21

Ouellet M, Mikaelian I, Pauli BD, Rodrigue J, Green DM (2005) Historical evidence of

widespread chytrid infection in North American amphibian populations.

Conservation Biology 19:1431–1440

Padgett-Flohr GE, Longcore JE (2007) Taricha torosa (California newt), fungal

infection. Herpetological Review 78:176–177

Parto P, Vaissi S, Farasat H, Sharifi M (2013) First report of chytridiomycosis

(Batrachochytrium dendrobatidis) in endangered Neurergus microspilotus

(Caudata: Salamandridae) in western Iran. Global Veterinary 11:547–551

Penner J, Adum GB, McElroy MT, Doherty-Bone T, Hirschfeld M, Sandberger L,

Weldon C, Cunningham AA, Ohst T, Wombwell E, Portik DM, Reid D, Hillers

A, Ofori-Boateng C, Oduro W, Plötner J, Ohler A, Leaché AD, Rödel MO (2013).

West Africa-A safe haven for frogs? A sub-continental assessment of the chytrid

fungus (Batrachochytrium dendrobatidis). PLoS One 8:e56236

Page 92: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

92

Peterson JD, Steffen JE, Reinert LK, Cobine PA, Appel A, Rollins-Smith L, Mendonça

MT (2013) Host stress response is important for the pathogenesis of the deadly

amphibian disease, chytridiomycosis, in Litoria caerulea. PLoS One 8:e62146

Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium

dendrobatidis, a chytrid pathogen of amphibians. Mycologia 96:9–15

Piovia-Scott J, Pope KL, Lawler SP, Cole EM, Foley JE (2011) Factors related to the

distribution and prevalence of the fungal pathogen Batrachochytrium dendrobatidis

in Rana cascadae and other amphibians in the Klamath Mountains. Biological

Conservation 144:2913–2921

Pontes MR, Augusto-Alves G, Lambertini C, Toledo LF (2018) A lizard acting as

carrier of the amphibian-killing chytrid Batrachochytrium dendrobatidis in

southern Brazil. Acta Herpetologica 13:201–205

Pounds JA, Bustamante M R, Coloma LA, Consuegra JA and others (2006) Widespread

amphibian extinctions from epidemic disease driven by global warming. Nature

439:161–167

Preuss JF, Lambertini C, Leite DS, Toledo, LF, Lucas EM (2015) Batrachochytrium

dendrobatidis in near threatened and endangered amphibians in the southern

Brazilian Atlantic Forest. North-Western Journal of Zoology 11:360–362

Puschendorf R, Carnaval AC, VanDerWal J, Zumbado‐Ulate H, Chaves G, Bolaños F,

Alford RA (2009) Distribution models for the amphibian chytrid Batrachochytrium

dendrobatidis in Costa Rica: proposing climatic refuges as a conservation tool.

Diversity and Distributions 15:401–408

Rachowicz LJ, Hero JM, Alford RA, Taylor JW, Morgan JA, Vredenburg VT, Briggs

CJ (2005) The novel and endemic pathogen hypotheses: competing explanations

for the origin of emerging infectious diseases of wildlife. Conservation

Biology 19:1441–1448

Raffel TR, Michel PJ, Sites EW, Rohr JR (2010) What drives chytrid infections in newt

populations? Associations with substrate, temperature, and shade. EcoHealth

7:526–536

Raffel TR, Romansic JM, Halstead NT, McMahon TA and others (2013) Disease and

thermal acclimation in a more variable and unpredictable climate. Nature Climate

Change 3:146–151

Page 93: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

93

Raffel TR, Halstead NT, McMahon TA, Davis AK, Rohr JR (2015) Temperature

variability and moisture synergistically interact to exacerbate an epizootic disease.

Proceedings of the Royal Society B 282:20142039

Rangel TF, Diniz‐Filho JAF, Bini LM (2010) SAM: a comprehensive application for

spatial analysis in macroecology. Ecography 33:46–50

Raphael BL, Pramuk J (2007) Treatment of chytrid infection in Typhlonectes spp. using

elevated water temperatures. Proceedings of Amphibian Declines and

Chytridiomycosis, Tempe, AZ, abstracts

Rendle M, Tapley B, Perkins M, Bittencourt-Silva G and others (2015) Itraconazole

treatment of Batrachochytrium dendrobatidis (Bd) infection in captive caecilians

(Amphibia: Gymnophiona) and the first case of Bd infection in a wild neotropical

caecilian. Journal of Zoo and Aquarium Research 3:137–140

Rendle M, Tapley B, Perkins M, Bittencourt-Silva G, Gower DJ, Wilkinson M (2015)

Itraconazole treatment of Batrachochytrium dendrobatidis (Bd) infection in

captive caecilians (Amphibia: Gymnophiona) and the first case of Bd infection in

a wild neotropical caecilian. Journal of Zoo and Aquarium Research 3:137−140

Rödder D, Kielgast J, Bielby J, Schmidtlein S and others (2009) Global amphibian

extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–66

Rödder D, Kielgast J, Lötters S (2010) Future potential distribution of the emerging

amphibian chytrid fungus under anthropogenic climate change. Diseases of Aquatic

Organisms 92:201–207

Rodriguez D, Becker CG, Pupin NC, Haddad CFB, Zamudio KR (2014) Long‐term

endemism of two highly divergent lineages of the amphibian‐killing fungus in the

Atlantic Forest of Brazil. Molecular Ecology 23:774–787

Rodríguez-Contreras A, Señaris JC, Lampo M, Rivero R (2008) Rediscovery of

Atelopus cruciger (Anura: Bufonidae): current status in the Cordillera de la Costa,

Venezuela. Oryx 42:301–304

Ron SR, Duellman WE, Coloma LA, Bustamante MR (2003) Population decline of the

Jambato toad Atelopus ignescens (Anura: Bufonidae) in the Andes of Ecuador.

Journal of Herpetology 37:116–126

Ron SR (2005) Predicting the distribution of the amphibian pathogen Batrachochytrium

dendrobatidis in the New World 1. Biotropica 37:209–221

Rosenblum EB, James TY, Zamudio KR, Poorten TJ, Ilut D, Rodriguez D, Eastman

JM, Richards-Hrdlicka KR, Joneson S, Jenkinson TS, Longcore JE, Parra Olea G,

Page 94: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

94

Toledo LF, Arellano ML, Medina EM, Restrepo S, Flechas SV, Berger L, Briggs

CJ, Stajich JE (2013) Complex history of the amphibian-killing chytrid fungus

revealed with genome resequencing data. Proceedings of the National Academy of

Sciences 110:9385–9390

Ruggeri J, Longo AV, Gaiarsa MP, Alencar LR, Lambertini C, Leite DS, Carvalho-e-

Silva SP, Zamudio KR, Toledo LF, Martins M (2015) Seasonal variation in

population abundance and chytrid infection in stream-dwelling frogs of the Brazilian

Atlantic forest. PloS ONE 10:e0130554

Ruggeri J, Carvalho-e-Silva SP, James TY, Toledo LF (2018) Amphibian chytrid

infection is influenced by rainfall seasonality and water availability. Diseases of

Aquatic Organisms 127:107–115

SAS. 2010. JMP, Version 10. SAS Institute Inc. (Cary, NC)

Savage AE, Grismer LL, Anuar S, Onn CK, Grismer JL, Quah E, Muin MA, Ahmad N,

Lenker M, Zamudio KR (2011) First record of Batrachochytrium dendrobatidis

infecting four frog families from Peninsular Malaysia. EcoHealth 8:121–128

Scheele BC, Pasmans F, Berger L, Skerratt LF, Martel A, Beukema W, Acevedo AA,

Burrowes PA, Carvalho T, Catenazzi A, de la Riva I, Fisher MC, Flechas SV,

Foster CN, Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM,

Hirschfeld M, Kolby JE, Kosch TA, La Marca E, Lindenmayer DB, Lips KR,

Longo AV, Maneyro R, McDonald CA, Mendelson III J, Palacios-Rodriguez P,

Parra-Olea G, Richards-Zawacki CL, Rödel MO, Rovito SM, Soto-Azat C,

Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M, Zamudio KR,

Canessa S (2019) Amphibian fungal panzootic causes catastrophic and ongoing

loss of biodiversity. Science in press

Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, Lee M. Zhao S,

Wangen C, Ferreira CM, Hipolito M, Daves AJ, Cuomo CA, Daszak P, James TY.

(2012) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis

associated with the bullfrog trade. Molecular Ecology 21:5162–5177

Scholthof KBG (2007) The disease triangle: pathogens, the environment and society.

Nature Reviews Microbiology 5:152

Searle CL, Biga LM, Spatafora JW, Blaustein AR (2011) A dilution effect in the

emerging amphibian pathogen Batrachochytrium dendrobatidis. Proceedings of

the National Academy of Sciences 108:16322–16326

Page 95: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

95

Seimon TA, Seimon A, Daszak P, Halloy SR and others (2007) Upward range

extension of Andean anurans and chytridiomycosis to extreme elevations in

response to tropical deglaciation. Global Change Biology 13:288–299

Semlitsch, R. D. Amphibian Conservation (2003) Smithsonian Instituition. Unites

States of America.

Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB,

Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and

extinction of frogs. EcoHealth 4:125–134

Snieszko SF (1974) The effects of environmental stress on outbreaks of infectious

diseases of fishes. Journal of Fish Biology 6:197–208

Soto‐Azat C, Clarke BT, Poynton JC, Cunningham AA (2010) Widespread historical

presence of Batrachochytrium dendrobatidis in African pipid frogs. Diversity and

Distributions 16:126–131

Stegen G, Pasmans F, Schmidt BR, Rouffaer LO, Van Praet S, Schaub M, Canessa S,

Laudelout A, Kinet T, Adriaensen C, Haesebrouck F, Bert W, Bossuit F, Martel A

(2017) Drivers of salamander extirpation mediated by Batrachochytrium

salamandrivorans. Nature 544:353–363

Stevenson LA, Alford RA, Bell SC, Roznik EA, Berger L, Pike DA (2013) Variation in

thermal performance of a widespread pathogen, the amphibian chytrid fungus

Batrachochytrium dendrobatidis. PloS One 8:e73830

Stuart S N, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW.

(2004) Status and trends of amphibian declines and extinctions worldwide. Science

306:1783–1786

Swei A, Rowley JJ, Rödder D, Diesmos ML, Diesmos AC, Briggs CJ, Brown R, Cao

TT, Cheng TL, Choing RA, Han B, Hero JM, Hoang HD, Kusrini MD, Le DTT,

McGuire JÁ, Meegaskumbura M, Min MS, Mulcahy DG, Neang T, Phimmachak S,

Rao DQ, Reeder NM, Schoville SD, Sivongxay N, Srei N, Stöck M, Stuart BL,

Torres LS, Tran DTA, Tusntall TS, Vieites D, Vredenburg VT (2011) Is

chytridiomycosis an emerging infectious disease in Asia? PloS One, 6:e23179

Talley BL, Muletz CR, Vredenburg,VT, Fleischer RC, Lips KR (2015) A century of

Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biological

Conservation 182:254–261

Taylor EH (1968) The caecilians of the world: a taxonomic review. Lawrence:

University of Kansas Press

Page 96: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

96

Therneau T (2012) A Package for Survival Analysis in S. R package version 2.37–2,

URL: http://CRAN.R-project.org/package = survival.

Toledo LF, Haddad CFB, Carnaval ACOQ, Britto FB (2006a) A Brazilian anuran

(Hylodes magalhaesi: Leptodactylidae) infected by Batrachochytrium

dendrobatidis: a conservation concern. Amphibian and Reptile Conservation

4:17–21

Toledo LF, Britto FB, Araújo OGS, Giasson LMO, Haddad CFB (2006b) The

occurrence of Batrachochytrium dendrobatidis in Brazil and inclusion of 17 new

cases. South American Journal of Herpetology 1:185–191

Toledo, L. F. 2017. Comment on “amphibians on the brink”. Sci. Signal. (E-Letter, 22

August 2017)

Tompkins DM, Dunn AM, Smith MJ, Telfer S (2011). Wildlife diseases: from

individuals to ecosystems. Journal of Animal Ecology 80:19–38

Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF (2015) Emerging

infectious diseases of wildlife: a critical perspective. Trends in

Parasitology 31:149–159

Tuite AR, Greer AL, Fisman DN (2013) Effect of latitude on the rate of change in

incidence of Lyme disease in the United States. CMAJ open 1:E43

Valencia-Aguilar A, Ruano-Fajardo G, Lambertini C, Leite DS, Toledo LF, Mott T

(2015) Chytrid fungus acts as a generalist pathogen infecting species-rich

amphibian families in Brazilian rainforests. Diseases of Aquatic Organisms

114:61–67

Van Rooij P, Martel A, Nerz J, Voitel S, Van Immerseel F, Haesebrouck F, Pasmans F

(2011) Detection of Batrachochytrium dendrobatidis in Mexican bolitoglossine

salamanders using an optimal sampling protocol. EcoHealth 8:237–243

Vasquez-Ochoa AV, Carmona PB, Salcedo LDP, Correa MF (2013) Detección y

cuantificación de Batrachochytrium dendrobatidis en anfibios de las regiones

andina central, oriental, Orinoquia y Amazonia de Colombia. Herpetotropicos

8:13–21

Venesky MD, Kerby JL, Storfer A, Parris MJ (2011). Can differences in host behavior

drive patterns of disease prevalence in tadpoles? PLoS One 6:e24991

Verant ML, Boyles JG, Waldrep Jr W, Wibbelt G, Blehert DS (2012) Temperature-

dependent growth of Geomyces destructans, the fungus that causes bat white-nose

syndrome. PloS One 7:e46280

Page 97: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

97

Vieira CA, Almeida CHLN, Lambertini C, Leite DS, Toledo LF (2012) First record of

chytridiomycosis (Batrachochytrium dendrobatidis; Rhizophydiales;

Chytridiaceae) in the state of Paraná, southern Brazil. Herpetological Review

43:93–94

Vieira CA, Toledo, LF, Longcore JE, Longcore JR (2013) Body length of Hylodes cf.

ornatus and Lithobates catesbeianus tadpoles, depigmentation of mouthparts, and

presence of Batrachochytrium dendrobatidis are related. Brazilian Journal of

Biology 731:195–199

Vitt LJ, Caldwell JP (2014) Herpetology. An introductory biology of amphibians and

reptiles (4th

ed.). Oklahoma: Academic Press

Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Speare R (2009)

Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian

declines. Science 326:582–585

Voyles J, Johnson LR, Briggs CJ, Cashins SD, Alford RA, Berger L, Skerratt LF,

Speare R, Rosenblum EB (2012) Temperature alters reproductive life history

patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the

global loss of amphibians. Ecology and Evolution 2:2241–2249

Voyles J, Johnson LR, Rohr J, Kelly R, Barron C, Miller D, Minster J, Rosenblum EB

(2017) Diversity in growth patterns among strains of the lethal fungal pathogen

Batrachochytrium dendrobatidis across extended thermal optima. Oecologia

184:363–373

Vredenburg V T, Knapp R A, Tunstall T S, Briggs CJ (2010) Dynamics of an emerging

disease drive large-scale amphibian population extinctions. Proceedings of the

National Academy of Science 107:9689–9694

Walker SF, Bosch J, Gomez V, Garner TW, Cunningham AA, Schmeller DS, Nynierola

M, Henk DA, Ginestet C, Arthur CP, Fisher, MC (2010) Factors driving

pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia.

Ecology Letters 13:372–382

Warnecke L, Turner JM, Bollinger TK, Lorch JM, Misra V, Cryan PM, Wibbelt G,

Blehert D, Willis CK (2012) Inoculation of bats with European Geomyces

destructans supports the novel pathogen hypothesis for the origin of white-nose

syndrome. Proceedings of the National Academy of Sciences 109:6999–7003

Weldon C, Du Preez LH, Hyatt AD, Muller R, Speare R (2004) Origin of amphibian

chytrid fungus. Emerging Infectious Diseases 10:2100–2105

Page 98: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

98

Wells KD (2007) The ecology and behavior of amphibians. Chicago, IL: The University

of Chicago Press

Wilkinson M, San Mauro D, Sherratt E, Gower DJ (2011) A nine-family classification

of caecilians (Amphibia: Gymnophiona). Zootaxa 2874:41–64

Williams ES, Yuill T, Artois M, Fischer J, Haigh SA (2002) Emerging infectious

diseases in wildlife. Revue scientifique et technique-Office international des

Epizooties 21:139–158

Page 99: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

99

ANEXOS

1. Licença de coleta de anfíbios para a região amazônica

Page 100: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

100

Page 101: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

101

Page 102: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

102

2. Licença de coleta de anfíbios para a região da Mata Atlântica

Page 103: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

103

Page 104: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

104

Page 105: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

105

Page 106: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

106

3. Comitê de ética para amostragem e realização de experimentação em

laboratório

Page 107: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

107

4. Cadastro no Conselho de Gestão do Patrimônio Genético – SISGen

Page 108: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

108

Page 109: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

109

Page 110: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

110

Page 111: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

111

Page 112: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

112

Page 113: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

113

Page 114: UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE …repositorio.unicamp.br/bitstream/REPOSIP/352444/1/Lambertini_Carolina_D.pdfLambertini, Pedro Campos Lambertini, Fernanda Lambertini

114

5. Declaração