25
UNIVERSITI PUTRA MALAYSIA NUTRITIVE EVALUATION OF SAGO FIBRE AS FEEDSTUFF FOR SHEEP DEVENDRA PRASAD YADAV FPV 1990 1

UNIVERSITI PUTRA MALAYSIA NUTRITIVE EVALUATION OF …psasir.upm.edu.my/id/eprint/12289/1/FPV_1990_1_A.pdf · ADL Acid Detergent Lignin 00 DIy Matter o:::M Digestible Organic Matter

  • Upload
    ngonhan

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

   

UNIVERSITI PUTRA MALAYSIA

NUTRITIVE EVALUATION OF SAGO FIBRE AS FEEDSTUFF FOR SHEEP

DEVENDRA PRASAD YADAV

FPV 1990 1

= EVAWATICN OF S1\ID FIBRE AS F':e:&Ob""'ltlFF RE SHEEP

By

n..sis SUJ:m1tted in Ful£i1ment of the RequixalEnts for the Degree of M3.ster of Science in

the Faculty of Veterinary Medicine an:l Animal Science

Uni versiti Pertanian Malaysia

August 1990

nlis thesis is de::1icated to:

my parents am frien:ls

I am ext:rarely grateful to my supeIVisor Prof. Dr. �

M3hyuddin r:ahan for his continuous guidance, eru:x:lllragement,

supervision, ccmnents arrl suggestion throughout the perioo of

study. I wish to thank Dr. Zainal Aznam, Dep;rrtment of Aninal

Science for providing animals am laboratory facilities to

rorrluct my research, Assoc. Prof. Dr. M.K. Vidyadaran, Assoc.

Prof. Dr. Ali Raj ion, Dr. Razak Alirnoo., Mr. A.A. Tuen of

Universiti Pertanian Malaysia, for their valuable ccmnents.

I also wish to thank Dr. Nadzri for his help in the

statistical analysis of the data, Mr. Zul, Mr. Krishnan, Mr.

Palliapan, Miss Norizah for their assistance in collection of

samples and. analysis, am Mr. P. Siva Nathan for his devotion and

patience in typing the thesis.

I am ext:rarely grateful to Wim=k International for

financial support during my stay at Universiti Pertanian

Malaysia. I am also grateful to the Dep;rrtment of Aninal

Sciences, Universiti Pertanian M3.laysia for funding the research,

and the Ceparbnent of Livestock Developnent and. Animal Health,

Nepal for granting study leave.

last but not least, my family arx1 frierrls, whose constant

eno:::uragement has been a source of inspiration.

iii

Page

� •••.••••••••••..•.••••.•••••••..•••••.••. iii

LIST OF TABLES ............................................................................... .. .. .. .. vi

LIST OF FIGURES .................................................................................. viii

LIST OF � ........................................................................................ ix

LISI' OF ABBREVIATIOOS ............ ................................................................ x

ABS'rnACl' ...................................................................... ........ .. .. .. .. ............. xi

ABS'IRAK ................................................................................................. xiii

I GENERAL INTRODUCTION ••••••••••••••••••••••••••••• 1

II REVIEW OF � ••••••••••••••••••••••••••••• 6

History an:! General Descriptioo of Sago Palm ................................. ........................................ 6

Varieties, GrCJWt:h Habit and Cultivation ........ 6 Harvesting and Prooessing ••••••••••••••••••• 9 Utilizatioo of Sago Starch an:! Sago Fibre .................................................................. 1 1

Availability of Sago Fibre ••••••••••••••.••••••• 13

Nutritive Value of Sago Fibre ••••. . . . .•....•.... 14

Improvement of Nutritive Value of sago Fibre .•••.••••••••••..•.•...•..•..•••••. 17

Pretreatment with Chemicals ••••••• • . • •••••• 18 Physical Pretreatment •••••••••••••••••••••• 23

Supplenenta lion ....••.•........•.......•.....••. 24

iv

III NUTRIENT EVALUATION OF SAGO FIBRE •••••••••••••••••••• 27

Intrcxluction ................................................................................ 27

Materials and l1etlxxls .............................................................. 28

Sago Fibre ............ .. ................................................ ........ ..... 28 Chemical Pretreatment ••••••••••••••••••••••••••• 28 Analytical Methois ................. e' ................. ..................... 29 Biological Methods •••••••••••••••••••••••••••••• 34 �tal Design .................................................. 38 Statistical Analysis •••••••••••••••••••••••••••• 38

Results ............................................................................... ........... 39

Olanical Q:Jnposition . ................................................ ..... 39 in sa= Digestibility (Nyloo Bag) ••••••••••••• 48 in vivo Digestibility ••••••••••••••••••••••••••• 59

Discussion ..................................................................................... 60

N mE E:FFEX:r OF FISJlloIEAL SUPPUMENrATICN ON mE PEm"CIRMANCE OF SHEEP FED UREA = SND FIBRE BASEl) DIE!' ............................................................... 6 5

IntrOOuction ••••••••••••••••••••••••••••••••••••••••• 65

Materials arrl Methcd.s •••••••••••••••••••••••••••••••• 66

�tal Animal ••••••••••••••••••••••••••••• 66 Diet arrl Measurements ••••••••••••••••••••••••••• 67 Analytical Methcrls •••••••••••••••••••••••••••••• 69 Statistical Analysis •••••••••••••••••••••••••••• 69

Results ••••••••••••••• 0 • 0 •••••••••••••••••••••••••••• 70

Discussion ••••••••••••••••••••••••••••••••••••••••••• 78

V GENERAL DISCUSSION AND OONCLUSIONS ••••••••••••••••••• 81

� ••••••••••••••••••••• o •••••••••••••• 0 •••••• 85

APPnIDICES •••••••••••••••••••••• 0 •••••••••••••••••••• 99

vrrA •••••••••••••••••••••••••••••••••••••••••••••••• 1 07

v

= OF TABLES

Table Page

1 'lhe Chemical Ca1p>si tion of Untreated Sago Fibre •••••••••••••••••••••••••••••••••••••••••• 39

2 Effect of Ensiling Periexl en NOr Content (g/100 g I:M) of Untreated, Urea arrl So:li\ml Hydroxide Treated Sago Fibre •••.••••••••••••.••••••• 42

3 Effect of Ensiling Periexl on CP Content (g/100 g I:M) of Untreated, Urea arrl So:li\ml Hydroxide Treated Sago Fibre •••••.•••.••••••••••••.• 46

4 Effect of Ensiling Pericd on r:M Dissappearance (g/100 g I:M) of Untreated, Urea arrl So:li\ml Hydroxide Treated Sago Fibre •••••••••••••••••••••••• 49

5 Effect of Ensiling Per1crl on a.1 Disappearance (g/100 g CM) of Untreated, Urea arrl So:li\ml Hydroxide Treated Sago Fibre . • . . . . • . . •••. . . . . • • . . . . . 52

6 Intake arrl Digestibility of 2% Urea Treated Sago Fibre Ensiled for 2 Weeks by Sheep . • • • . . • . . ••.•••.•.•. . . • . • . . • . . . . • . . • . . 60

7 Oamposition of Basal Diet ••••••.•••••••••••••••••••• 67

8 ExperiJrental Diet arrl Treatment Groups •••••••••••••••••••••••••••••••••••••••••••••• 68

9 Ca1p>sition of the Dietary Ingre:lients (% 00) •••••••••••••••••••••••••••••••••• 70

10 Liveweight Gain, Feed Intake arrl Feed Conversion Rate of Urea Treated Sago Fibre Based Diet Fed to Growing Fattening Lambs With Various Levels of Fish Meal •.••••••••••••••• • . • ?1

1 1 Concentration of R-NH3, TVFA ani pH of Rllrninal. Fluid of Sheep Fed Various Experimental Diets Bef� Feeding ••••••••••••••••••• 77

12 Estination of Cbst of Feeding of Lambs on Various EXperimental Diets ••.•••••••••••••••••••• 78

13 Ana.lysis of Variance Tables of Sana of the Parameters Measure:! For Urea arrl So:li\ml Hydroxide Treated Fibre in Chapter In . . • • . . . • . •••••••••••. •••.•••••. . . . •••••. 1 00

vi

14 ihe Effect of Level of Olemical an:! Incubation Pericd of Untreated, Urea an:! Scdiun Hydroxide Treate1 Sago Fibre 00 lheir Olemical Cl:mpositicn (9/100 9 OM) in Chapter III •••••••••••••••••••••••• 103

15 Analysis of Variance Tables of I:M an:! CM Disappearance of Urea am. Scxliurn Hydroxide Treate1 Fibre fran Nylen Bag in Olapter III ••••••••••••••••••••••••••••••••• 1 04

16 Analysis of Variance Tables of Initial Li""""ight (kg) as Covariate by Diet on the Measured P.arameters ••••••••••••••••••••••••• 10S

17 Nutrient Requirements of Early Weane:i LamlJ •••••••••••••••••••••••••••••••• •••••••• 1 06

vii

LIST OF FIGORJ:ll

Figure

1 Effect of Different Ccncentraticn of Urea an:! So:lium Hydroxide on NDF Content

Page

of Sago Fibre ..................................................................... 43

2 Effect of Ensiling Pericrl an NDF Content of Untreated an:! Urea Treated Fibre ••••••••••••• 44

3 Effect of Different Q:moentratian of Urea an:! So:liurn Hydroxide on CP Content of Sago Fibre .................................................................... 47

4 Effect of Different Concentration of Urea arrl Scdium Hydroxide on I:M Disappearance of Sago Fibre from Nylon Bag •••••••••••••••••••• 50

5 Effect of Ensiling Pericrl on rM Disappearance of Sago Fibre fran Nylon Bag ............................................................................ 51

6 Effect of Different Ccncentration of Urea an:! So:liurn Hydroxide on CM Disappearanoe of Sago Fibre from Nylon Bag •••••••••••••••••••• 54

7 Effect of Ensiling Pericrl en CM Disappearance of Sago Fibre fran Ny Ion Bag .............................................................................. 55

8 Ru!ren Anm:mia Level in Rumen of Sheep Fed 2% Urea an:! So:liurn Hydroxide Treated Fibre . .. .. .................................................... ........................... 56

9 Total VFA Level in Ru!ren of Sheep Fed 2% Urea an:! So:liurn Hydroxide Treated Fibre ••••••••• 57

10 pH of Ru!ren Liquor of Sheep Fed 2% Urea an:! So:liurn Hydroxide Treated Fibre over: 24 hours ............... ................. . .......... .. .... ........ .. .......... .. ... 58

11 The Relationship between Livel'eight OJange and Feed Intake in Diet A ••••••••••••••••••••••• 73

12 The Relationship between Li vel'eight 0Jange and Feed Intake in Diet B ••.•••• ••••.••.••••.••• 74

13 The Relationship between Livel'eight OJange and Feed Intake in Diet C ••••••••••••••••••••••• 75

14 'll1e Relationship between Li vel'eight OJange and Feed Intake in Diet 0 •.••••••••••••••••••••• 76

viii

LIST OF PLJm:S

Plate Page

1 View of Me�lan Sago ••••••••••••••••••••••••• 7

2 Fresh Sago Fibre (AI am 2% Urea Treated Sago Fibre IncuJ::ated for 2 Weeks (B) ••••••••••••••••• . • ••••••••••••••••• 40

ix

NDF Neutral Detezqent Fibre

ADF Acid Detezqent Fibre

ADL Acid Detergent Lignin

00 DIy Matter

o:::M Digestible Organic Matter

MJ Megajoules

= Live Weight Gain

L Litres

OM Organic Matter

OMD Organic �latter Digestibility

OML Organic Matter loss/Disappearance (g/100 g OM)

R-NH Rumen Amn::lnia 3

LW Live Weight

CP Crude Protein

MR Malaysian Ringgit

TVFA TOtal Volatile Fatty Acids

GE Gross Energy

x

Abstract of thesis sutmitterl to the Senate of Universiti Pertanian Mliaysia in ful£il.rnent of the requi:caTEnts for the degree of Master of Science.

By

August 1990

Supervisor : Prof. Dr. l>bhame1 Mahyuddin Dahan Faculty : Veterinary Me::licine and Animal Sciences

Nutrient evaluation of sago fibre shc:Mej that the fibre

has sane �tential arrl rould be utilized. as fee:1 for

ruminants. IicMever, as a source of nutrients, it has

1:iroitations arising fran 1", intake, digestibility, crude

protein and. essential minerals oontent.

The present stilly shcMed that sago fibre was lo,q in crude

protein (CP) (3.3%) am high in neutral detergent fibre

(NDF) (72.5%) am acid detergent lignin (ADL) (25.8%) ron

tent. Treabnent of sago fibre with 0, 2, 4 and 6% urea

increased the cP content of the fibre fran 3.3 to 10.4, 13.4

am 16.7% am decreased the NDF =ntent (%) fran 72.5 to 63.2,

62.3 am 60.8, respectively. Sodium hydroxide treatment

of sago fibre decreased the NDF oontent, and also resulterl in

red.uce::l cP oontent (2.9%) I nay be due to chemical degradation

xi

of the protein into volatile CCITlpOW'lds. Both urea and sodium

hydroxide treatment had no effect on other cell wall cx:mponent.

Runen degradation of sago fibre determined by nylon bag

technique shc>;e:i that both urea and sodium hydroxide treatments

increased J:>1 and OM disappearanoe of sago fibre

significantly. Increasing the strength of cheticel used

also increased. I:M and. CM disappearance.

disappearance of 2% urea treate::I fibre ensiled for 2 weeks

increased fran 51.4% (oontrol) to 59.4% and fran 54.7%

(oontrol) to 61 .8% resp;!Ctively.

G:l:'cMi.ng lambs fed urea treated sago fibre mi.xe:::l with oorn

at 1.5:1 ratio (sago fibre + corn) and. supplemented with

fishmeal at 0, 50, 100 and 150 g DM, gained 68.6, 139.6,

156.6 and 166.3 g/d, respectively. A simple oost analysis

indicated that supplementary fishcreal at 50 g J:>1/d oould be

an efficient and eoonanic diet for sheep. The result shcMed

that energy arrl protein supplements are necessary for

reasonable perfo:rrrance of the sheep fOO on sago fibre diet.

xii

Abstrak tesis yang dik€mukakan kepada Senat Universiti Pertanian Malaysia bag! memenuhi syarat k.eperluan penganugerahan ijazah Master Sains.

Oleh

Ogos 1990

Penyelia : Prof. Dr. Mohamed Mahyuddin tehan Fakulti : KErloktoran Veterinar dan Sains Peternakan

Penilaian nutrien terha.dap gentian sagu te1ah rrenunjukkan

bahawa gentian ini rnernpunyai \Xltensi Imtuk digunakan sebagai

makanan J:\lIlIlllan. Walaubagaimanal'lIl, sebagai satu _ makanan

ianya terhad dari segi pengambilan makanan, dayacerna dan

kaIrlungan protein ka.sar dan mineral.

Kaj ian ini telah menunjukkan bahawa gentian sagu ITlE'!rpI.lIlyai

nilai protein kasar yang reOOah (CP) (3.3%) II\3.n3kala nilai

gentian neutral detergen (NDF) (72.5%) dan gentian asid detergen

(ADL) (25.8%).adalah tinggi. Gentian sagu yang dirawat dengan 0,

2, 4 dan 6% urea telah meningkatkan karrlungan protein kasar dari

3.3 kepada 10.4, 1 3.4 dan 1 6.7% dan telah !l'engurangkan kandungan

gentian neutral detergen daripada 72.5 kepada 63.2, 62.3 dan

60 .8. Gentian sagu yang dirawat dengan natrium hidroxida telah

!l'engurangkan kandungan gentian neutral detergen dan kandungan

xiii

protein kasar (2.9%) juga telah menurun dan ini nnmgkin kurang

t:enguraian protein kepada sebatian meruap. Ra'iolatan dengan urea

dan natrium hidroxida tidak rnernbawa kesan ke atas k�

dinding sel yang lain.

Penguraian gentian sagu dal.am rumen dengan rrenggunakan

kaedah beg nilon telah mem.mj ukkan bahawa rawatan dengan urea dan

natrium hidroxida telah rreningkatkan kehilangan h3han kering (eN)

dan h3han organik (01) secara ketara. Peningkatan kepekatan

h3han kimia yang digunal<an telah menunj ukkan kenaikan nilai

kehilangan h3han kering (00) dan h3han organik (01). Nilai

kehilangan h3han kering (00) dan h3han organik (01) gentian sagu

yang dirawat dengan 2% urea dan dieram selama 2 minggu telah

Ireningkat dari 51 .4% (kawalan) kepada 59.4% untuk h3han kering

dan 54.7% (kawalan) kepada 61.8% untuk h3han organik.

Biri-biri I1BlIbesar yang telah diberi mekanan camp.JraIl

gentian sagu yang telah dirawat dan jagung pada nisbah 1.5:1

(gentian sagu + jagung) dan ditarnbah dengan tepung ikan pada 0,

50, 100 dan 150 9 bahan kering telah menambahkan berat b3dan

sebanyak 68.6, 158.6 dan 166 g/sehari. Satu analisis kos ringkas

telah menunjukkan bahawa penambahan tepung ikan pada kadar 50 9

lli/ sehari adalah ransum yang el<onani dan cekap untuk biri -biri.

Keputusan ini telah menunjukkan bahawa penambahan tenaga dan

protein adalah perlu untuk prestasi biri-biri yang diberi makan

gentian sagu.

xiv

0ll\PIl:R I

Fibrous by-pro:lucts fran agricultural crops am

agn>-industries serve as the rrai.n ingredient of the diet of

ruminant animals in Asia for at least p3rt of the year.

These by-pro:lucts are inevitably produced during the

production of the rrein cxmn::::rlities. It is also inevitable

that this will oontinue in the future since cereals an:l

other crops will be needed for human CXl<lSUITption.

In recent years, there has been an increased interest

in maximizing the use of lCM quality by-prcducts as fee:j for

ruminants. "nle reasons for this increase:1 interest vary

frc:m location to location arrl range fran problems of

disposal am pollutioo to realization of the potential

nutritive value of. the resources. Feeding systems

utilizing agro-industrial by-products will also reduce

the cost of animal prcduction.

Malaysia continues to import most of the

cx:nrentrates used. in an.iIra.l rations except for small

am:::unts available locally. 'll1e annmt of animal fee1

required is expected to increase with the increasing

rate of pop.llation growth am consequently increasing

deman:ls in livestock prcrlucts. 'lhere is no natural pasture

lard in Malaysia other than small arrl scattere::i areas of

1

2

mixed grasses and weeds on wastelarrl, road shoulders, fringes

of rubber, cx:xxmut and oil palm estates and al:arrloned

padi lands (Mustaffa Babjee, 1987) • Furthenrore, the

prospect for increasing areas SCMl1 to improve:i pastures is

rather limitErl l::Jecause of the high invest:nent cost and slOtV'

returns. Clearly, inadequate supply of gcxxl quality fee:'! is

one of the rrai.n constraints to ruminant prcrluction in Malaysia.

Several altenJatives are available to Malaysia in her

efforts to overccrne this constraint. One is to utilise the

urrlergrawth that are present under tree crops such as

rubber, oil palm and coconut, of which Malaysia has an

estimated 2.8 million ha Experiences at Rt.lbh:!r Research

Institute (Tan and Abraham, 1981; Arope et aL, 1985), Sirne

Darby Plantations (Pillai et al., 1985) am Guthrie Plantations

(Wan Mohamed et al., 1987) have shcMn this to be a pranising

enterprise. '!his system of integrating tree crops with

livestock rearing can be extende:i to orchards (Raj ion et al.,

1988).

'!be other alternative is to utilise the fibrous by prcrlucts

fran agricultural crops and agro-irrlustries as animal feeds.

It has teen estimate1 that rrcre than 5.0 million

agro-industrial �-products is available in

tames of

Peninsular

Malaysia (Mllstaffa B3bjee, 1987).

ccmnercially wall-utilize:l (eg.

Sane of these are already

Palm Kernel cake) although

the majority (eg .. Sago fibre, palm oil mill effluent, pineapple

3

waste) has yet to be developed as useful feeds. It is I<ncMn

that thousands of tonnes of agro-iIrlustrial by-products are

being burnt or durrp:rl into the river am p::>n:is causing

IX>llution to the envirornnent.. Effective utilization of these

by-products ;oould serve two useful PJrPOSes, e.g. reducing the

rate of p:>llution arrl providing new sources of feedingstuffs

for livestock.

E}nphasis on focrl and. industrial crops in Malaysia results

in a number of by-prcducts being produced such as sago fibre,

an errl by-pra:iuct of the extraction of sago starch fran sago

palm. Sago fibre has not been given much attention as a

feErlstuff for ruminants arrl hence little is k:ru::Mn of the

p:>tential of this fibre as an ingrErlient of diets for

ruminants. M:)re than 47,000 tonnes of sago fibre per year

is prcrluce::l in Malaysia. 'Ihis arrount is calculate::3. on the basis

of starch extraction rate 9i ven by Colon (1 958) ; Sarawak

Ministry of Agriculture an:! Camlunity Developrent (1974)

an:! Vegter et al., (1983). --

As a source of nutrient, however, sago fibre has

limitations because of its low cnrle protein, essential minerals

an:j high lignifie:i fibre content (Jalaludin, et aL, 1 970 i

fuller, 1977). Concentrate feed may alleviate sane of

these nutritional inadequancies but they are expensive ..

Increasing the contril:::ution of fibre to the total nutrient intake

of t.l)e animal rray opthnize the usage of rrore exp=>...nsi ve

concentrates. '!his nay be approached by:

4

a) improving the fee::ling value through chemical,

physical or bio!cqical rnethcrls.

b) providing supplementary nutrients through the use

of concentrate feeds.

Little inforrration an the chemical and nutritive value of

sago fibre is available in the literablre. In order to utilize

the sago fibre, it is necessary to have sane kncMledge of its

chemical o:::mpJsition and nutritive value.

'!he prirrary objective of this study is to evaluate the sago

fibre for its nutritive value and nutrient bioavailability as

irrlices of their feeding value and develop methcrls for

enhancing the fee:iing value of sago fibre through chemical

pretreabnent. '!he objective of chenical pretreabnent of sago

fibre is to improve the feeding value by increasing its

digestibility and intake through solubilization of same of

the cell wall =nponents.

Olemical pretreatment of fibrous by-prcducts fran

agricultural crops rray improve nutritive value of these fibrous

naterials (eg. straw and other fibrous by-prcducts) to

meet the naintenance requiranents of ruminants rut it may

te insufficient for prcrluctive function such as for meat,

milk or reprcrluction (Doyle, 1982). Initial study shcMe:l thet

the sago fibre has a 100 potential rnetab::>lisable energy, protein

5

am mineral content (Muller, 1977; Hutagalung, 1978; t::everrlra,

'979). It is p:>Ssible that sago fibre oould l::e used as a basal

diet which therefore nee1s to be supplied with energy and

protein sources. 'Ihe resp:ll1Se of different level of fish meal

as supplements to a sago fibre diet mixed with com will be

investigate::l on the performance of grcMing fattening lambs.

History an:! General Des=1ptioo of sago Palm

The sago palm was probably one of the first plants

used for focxl by nan in South-East Asia an:! Oceania

(Ave, 1977). sago has teen _ in trade in South-East

Asia for at least 700 years arxl also k:ncMn to exist for 400

years in Sa.rawak, Malaysia (Burkill, 1966; Sim, 1 986).

'IWo millioo ha exist as wild sago while only 0.2

million ha is cultivated in the »<>rid (Flach, 1984) . Of

the estim:l'ted. 130,000 ha of swamp larrl in Malaysia, only

30,000 ha is urrler sago. 'Iherefore, there is still a

big p:>tential for an increase in sago praiuction fran the

swampy areas (Jalaiudin, 1987).

Varieties, G:rowth Habit and. Cultivation

At least 14 species of sago palm are exploited for

stern starch producti= but of these Metr9xyion (Plate 1) is

by far the rrost �t genus (R1rl:ll.e et al., 1 978).

Pe:cari (1918) was of the opinion that Metroxylon

had its centre or origin in the t-bluccas Islarrls.

6

Plate 1. view of M:!tr'oxylon Sago

7

8

'!he origin of �troxy 100 oould also inclooe the nearby

sub-o::>ntinent of New Guinea, where huge natural forests, of

Metraxylon are found (Barrau, 1959). There are = :imp:>rtant

species of sago palm, present in Malaysia namely, Metroxylon

sagus Rottb., the sn:::oth sheatherl variety am M. rumphii

Mart. , the spiny sheathed variety (FaiIweather and Yap, 1937).

During its vegetative phase the sago

accumulates a vast quantity of starch in its stem; it

saturates the pith with starch, probably fran the base of the

stem upwards. It is only at rraturity that the stem is fully

saturate:l with starch aJ..m::)st to the cra..m. The highest starch

content was found to be at 1 .5 m fran the grourrl up to 4 - 6 m

(Siro and. Ahme:l, 1978). Many workers (Johnson am Raym::mrl,

1956;

and

Barrau, 1959; Corner, 1966; Rijatmo, 1972; Sastrapradja

M:<jea, 1977; Ave, 1977; Satari, 1979; 8oerjono, 1980)

repJrted that it takes 6 - 20 years for the sago palm to mature,

but 9 -- 10 years are cited in Malaysia (Fairweather arrl Yap,

1937; Kueh, 1977; Morris, 1977; Siro and Ahmed, 1977).

Sago palms, in their semi-wild and. cultivated. forms,

are usually fOLlI'Xl along river banks and in low-lying areas in

the vicinity of rivers. 'lhe sago·palm is a perennial crop and

once established, does not need to be replanted because when a

palm is felled, a sucker arrong several in a clump will grcM

up to form a new palm. Traditionally, a sago st:arrl is

semi-wild an::l farmers only do occasional slashing of the

9

weeds an:! urrlergruwth to maintain them. sago palm prcx1uces suckers quite freely arrl no strict planting distance,

fertilization arrl drainage are practiced at present in Sarawak,

Malaysia. '!hey are nonrelly given an armual round of wee:iing,

then thinning an:! pruning (Sim, 1986).

Arourrl Ba.tu Pahat, Johore, West Malaysia, there are still

well-ten:led sago palm plantings which have been described by

Nicholson (1921) an:! again by Flach (1977b). TIle sago

palm is propagatErl by planting suckers at 6 m x 6 m or 277

plants per ha. After the trunk begins to tonn, one sucker is

left to develop into a trunk every secon:l year. About 4.5

years after the start of trunk. fonna.tion, flCMe!' initiation

occurs. The trunk is harvested just before this time. In this

way, each of the 277 clumps of palm prcduces one trunk every two

years, resulting in an average prOOuction of 138 - 139 trunks

per year (Flach, 1984).

Hazvesting an:! Processing

TIle age at which the palm has the highest starch content

for harvest is still a subject of research (Fairweather am

Yap, 1937; Flach, 1977b; Sim and Ahmed, 1977; 1978; Sim, 1986).

However, according to Johnson an:! Raynorxl (1956) an:! a

preliminary study by Sim an:! Ahmed (1978), the probable time for

harvesting is sex:>n after flCMering and before fruit developnent.

10

It is the time when the pUn should be felled for sago

pro:1uction since it is at this stage that the resenre of starch

in the pith is maximun. Flach (1977b) reported that in Batu

Pahat, Peninsular Malaysia. 'lbe p3lms were harvested

before the flCMer developrent eight years after planting

when the starch prcduction was highest.

When _ pUn is judged to be ready for haJ:vesting it is

felle:] by rutting as close to the ground as possible, using

a chain saw. In Malaysia, the trunk is left on the grourrl if

there is suitable wateroourse very close at hand, it is cut into

logs of 1 m length (Cecil et al., 1982) am towed d� stream

to the factory. Water transp::>rt is preferred. to road

haulage, as it is rrore econanica1 and easier to harrlle on

the soggy terrain. Excess prcduction of the logs can be left

in water up to 3 rronths for slack. pericds (Wee, 1977).

The first stage in the extraction of starch is to separate

the bark fran the pith. In carrnercial operations rasping

(grating) is use:i exclusively (Tan, 1981). The rasped pith is

calle:l rep:Js. starch is washeCl out of the repos using large

quantities of water. 'Ihe fibrous residue remaining after the

extraction of starch is calle:i "harnpas" or sago fibre. 'Ihe

starch slurry in water is screene,j to rem::;:)ve finely divided.

"hampas" , arrl is then allCMErl to starrl so that the starch

settles out. '!he su�tant water is then draine::l. off,

and the wet starch (called lanantak) is either sold for