23
Tom Megeath (HOPS PI; U.Toledo) Amy Stutz (MPIA) John Tobin (NRAO) Babar Ali (NHSC) Thomas Stanke (ESO) Mayra Osorio (IAA) Elise Furlan (NHSC/NOAO) Marina Kounkel (U.Michigan) Lori Allen (NOAO) Nuria Calvet (U.Michigan) Lee Hartman (U.Michigan) Charles Poteet (RPI) Joseph Booker (U.Toledo) James Muzerolle (STScI) Unraveling the Evolution of Protostars in Diverse Environments: The Herschel Orion Protostar Survey Will Fischer (U.Toledo) Dan Watson (U.Rochester) P. Manoj (TIFR) Beatriz Gonzalez (ESA) Roland Vavrek (ESA) David Neufeld (JHU) Ted Bergin (U.Michigan) Ruud Visser (U.Michigan) Melissa McClure (U.Michigan) Thomas Henning (MPIA) James DiFrancesco (NRC) Klaus Pontopiddan (STScI) Tom Wilson (NRL) Phil Myers (CfA)

Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Tom Megeath (HOPS PI; U.Toledo) Amy Stutz (MPIA) John Tobin (NRAO) Babar Ali (NHSC) Thomas Stanke (ESO) Mayra Osorio (IAA) Elise Furlan (NHSC/NOAO) Marina Kounkel (U.Michigan) Lori Allen (NOAO) Nuria Calvet (U.Michigan) Lee Hartman (U.Michigan) Charles Poteet (RPI) Joseph Booker (U.Toledo) James Muzerolle (STScI)

Unraveling the Evolution of Protostars in Diverse Environments: The Herschel Orion Protostar Survey Will Fischer (U.Toledo)

Dan Watson (U.Rochester) P. Manoj (TIFR)

Beatriz Gonzalez (ESA) Roland Vavrek (ESA) David Neufeld (JHU)

Ted Bergin (U.Michigan) Ruud Visser (U.Michigan)

Melissa McClure (U.Michigan) Thomas Henning (MPIA)

James DiFrancesco (NRC) Klaus Pontopiddan (STScI)

Tom Wilson (NRL) Phil Myers (CfA)

Page 2: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Goal: Study protostellar evolution with the large sample of protostars & diverse range of environments found in Orion

•  Orion: over half the YSOs within 500 pc

•  HOPS: PACS program to observe > 300 Orion protostars where their SEDs peak

•  Imaging -  110 square fields of 5′ to 8′ -  70 & 160 µm scans and cross-scans

•  Spectroscopy -  33 targets; mix of pointed and mapping -  Coverage from 55 to 200 µm

Page 3: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

The HOPS SED Brewery

Model SEDs with the Whitney et al. radiative transfer code (Ali et al. 2010, Furlan et al. in prep.)

Combine data from 2MASS, Spitzer, Herschel, APEX

+ Spitzer – Spitzer/IRS + Herschel + APEX – Model

Page 4: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

300+ Protostars Sample Evolutionary Progression

Class 0

Class I

Flat

Class II

+ 2MASS + Spitzer – Spitzer/IRS + Herschel + APEX – Model

Page 5: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Key HOPS Questions

•  How does Herschel contribute to our understanding of specific sources of interest?

•  How do protostellar envelopes evolve?

•  How does environment affect star formation?

Page 6: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Key HOPS Questions

•  How does Herschel contribute to our understanding of specific sources of interest?

•  How do protostellar envelopes evolve?

•  How does environment affect star formation?

Page 7: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

HOPS 223 (V2775 Ori): A New Orion Outburst

Wavelength (µm)

Flux

(erg

s-1

cm

-2)

10-9

10-10

10-11

10-12

10-13

1 10 100 1000

2MASS, November 1998

Pre-Outburst

IRAC, Feb-Oct 2004 MIPS, April 2005

Page 8: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

HOPS 223 (V2775 Ori): A New Orion Outburst

Wavelength (µm)

Flux

(erg

s-1

cm

-2)

10-9

10-10

10-11

10-12

10-13

1 10 100 1000

2MASS, November 1998

Pre-Outburst

IRAC, Feb-Oct 2004 MIPS, April 2005 IRS, March 2007

Page 9: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Post-Outburst

MIPS, November 2008

SpeX, Jan-Feb 2011

WISE, March 2010 PACS, September 2010

APEX, September 2011

HOPS 223 (V2775 Ori): A New Orion Outburst

Wavelength (µm)

Flux

(erg

s-1

cm

-2)

10-9

10-10

10-11

10-12

10-13

1 10 100 1000

2MASS, November 1998

Pre-Outburst

IRAC, Feb-Oct 2004 MIPS, April 2005 IRS, March 2007

Page 10: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

HOPS 223: A Low-Luminosity FU Ori Star with an Envelope

Lowest luminosity of any FU Ori star with an envelope (0.09 M)

(Fischer et al. 2012)

Luminosity: 2004: 4.5 L"2007: 51 L"

2008: 28 L

HOPS 223

FU Ori (with AK = 1.8)

NIR spectrum confirms FU Ori status "

Page 11: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

HOPS 108 (OMC 2 FIR 4): Brightest HOPS Line Source

•  32 CO lines; highest is J=46–45 •  Numerous H2O lines; several have

Eup/k > 1000 K. Highest excitation are the 56.7 µm ortho-para pair (Eup/k = 1320 K)

•  Almost all OH lines in range •  Strong [OI]; [OI] 63 µm & [CII] 158 µm

have extended components

(SED: Adams et al. 2012; Spectrum: Manoj et al. in prep.)

Luminosity ~ 50 L, vs. ~ 1000 L reported pre-Herschel

~IRAS beam

~PACS beam

+ Spitzer + SOFIA + Herschel + APEX – Model

Fit by M. Osorio

70 µm

Page 12: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

HST/NICMOS

Model

+ 2MASS + WISE + Spitzer/IRAC –– Spitzer/IRS + Spitzer/MIPS + Herschel/PACS ∇ APEX/LABOCA ∇ IRAM/MAMBO

•  Stellar mass mostly assembled (~ 0.5 M) •  Disk mass typical of TTS (0.002 M) •  But Herschel data point to an envelope with

25x the disk mass (0.05 M)

HOPS 136: The Late Stages of Envelope Evolution

(Fischer et al. in prep.)

(2.05 µm)

Disk radius = 450 AU!

Page 13: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Key HOPS Questions

•  How does Herschel contribute to our understanding of specific sources of interest?

•  How do protostellar envelopes evolve?

•  How does environment affect star formation?

Page 14: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

PBRS: PACS Bright Red Sources (Stutz et al. 2013)

The Youngest Orion Protostars

See poster 76 by Stutz et al.

Page 15: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Bolometric Luminosity and

Temperature (BLT)

Unprecedented evolutionary diagram of 315 HOPS protostars from a single star-forming region

(Fischer et al. in prep.)

Number Fraction Lifetime Median Lum.

Class 0 93 0.30 0.15 Myr 3.5 L Class I 222 0.70 0.35 Myr 1.0 L

Evolution?

Page 16: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

•  Luminosity mostly due to accretion early on

•  Median luminosities peak at Menv ~ 1 M

•  Possible explanations:

1) Protostars with ~ 1 M envelopes are forming more massive stars

2) Low-mass protostars have higher mass infall rates early in their evolution

Envelope Properties from SED Modeling (Fischer et al. in prep.)

Median luminosity per bin:

Evolution?

Page 17: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

L 1641 is unlikely to be forming massive stars and shows a similar trend – supports scenario 2:

Low-mass protostars have higher mass infall rates early in their evolution

L 1641 only

Envelope Properties from SED Modeling (Fischer et al. in prep.)

Median luminosity per bin:

Evolution? See poster 41 by

Fischer et al.

Page 18: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Trot curve for CO is independent of source luminosity and envelope density; most likely explanation is that emission is from shock-heated material in outflow.

More luminous sources have more CO luminosity; suggests momentum and mass flow rates of the outflows correlate with bolometric luminosity: sources with high Lbol have higher accretion and outflow rates

CO Emission from Accretion-Driven Outflows

0.1 1 10 100Lbol (LO •)

0

200

400

600

800

Tro

t (K

)

HOPS

DIGIT

PBRs

CO (Jup = 14 - 25)

Lbol (L )

L (CO)(

10⇤3

L)

0.1 1 10 100

0.01

110

100

HOPSDIGITPBRS

L(CO) ⌅ Lbol0.8

L(CO) ⌅ Lbol0.9

(Manoj et al. 2013; DIGIT data provided by J. Green & N. Evans)

Absolute line fluxes L(CO) scale with Lbol Line ratios (Trot) remain ~ constant

See poster 76 by Stutz et al.

Page 19: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Key HOPS Questions

•  How does Herschel contribute to our understanding of specific sources of interest?

•  How do protostellar envelopes evolve?

•  How does environment affect star formation?

Page 20: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

The Role of Environment

Herschel Gould Belt Survey 500 µm image (Polychroni et al. 2013; Roy et al. 2013)

3.6 µm / 24 µm / 870 µm

3.6 µm / 24 µm / 870 µm

<L> = 0.7 L <spacing> = 13000 AU

<L> = 7.6 L <spacing> = 8000 AU

Page 21: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

The Role of Environment

With increasing gas density •  Protostellar luminosity increases •  Projected separation decreases

(Megeath, Stanke, et al. in prep.) Derive column density from APEX and Herschel data

Slope = 2.3 Slope = – 0.9

Page 22: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Spatial D

istribution of PB

Rs

N

E

Orion B

Orion A

Enhanced PBRS Fraction in Orion B

Fraction of protostars that are PBRS: Orion A Orion B

0.01 0.17

More vigorous star formation in Orion B?

(Stutz et al. 2013)

L 1622

NGC 2068/2071

NGC 2024/2023

ONC

L 1641

Page 23: Unraveling the Evolution of Protostars in Diverse ...herschel.esac.esa.int/TheUniverseExploredByHerschel/presentations/… · M env ~ 1 M • Possible explanations: 1) Protostars

Summary •  HOPS is a comprehensive survey of the largest star-forming region

within 500 pc -  70 and 160 µm imaging of > 300 protostars -  Spectroscopy of 33 protostars

•  How does Herschel contribute to our understanding of specific sources of interest? -  Large sample allows the study of short-lived phenomena, including accretion

outbursts, unusually bright line sources, late-stage envelopes

•  How do protostellar envelopes evolve? -  PBRS: 5% of protostars are in a cold, very young stage not detected by Spitzer -  Class 0 lasts for 150,000 yrs, 30% of the protostellar lifetime -  Accretion rates peak near the Class 0 / Class I transition -  CO lines demonstrate correlation between accretion energy and total luminosity

•  How does environment affect star formation? -  Density and luminosity of protostars increase with increasing gas density -  PBRS fraction is 17% in Orion B; only 1% in Orion A