58
Date Theme: Webinar 6th May: Kitchen ventilation Webinar 13th May: Ventilation requirements, trends and thermal comfort Webinar 19th May: Moisture control 2 Urban Home Ventilation 1 2

Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Date Theme:Webinar 6th May: Kitchen ventilationWebinar 13th May: Ventilation requirements, trends and thermal comfortWebinar 19th May: Moisture control

2

Urban Home Ventilation

1

2

Page 2: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Webinar on May 6th,2020 (Urban Home Ventilation part 1: Kitchen Ventilation)• More than 230 people attended

• Recordings now available at: https://www.aivc.org/resources/collection-

publications/events-recordings

Webinar on May 13th,2020 (Urban Home Ventilation part 2: Ventilationrequirements, trends and thermal comfort )• More than 300 people attended

• Recordings now available at: https://www.aivc.org/resources/collection-

publications/events-recordings

webinar2020. 05.19

.

Urban Home Ventilation

Part 3: Moisture control

webinar2020. 05.19

Disclaimer: The sole responsibility for the content of presentations and information given orally during AIVC webinars lies with the authors. It does not necessarily reflect the opinion of AIVC.

Neither AIVC nor the authors are responsible for any use that may be made of information contained therein.

• 15:00 | Welcome, Kari Thunshelle, SINTEF• 15:05 | Strategies for avoiding too high or too low relative humidity in dwellings,

Sverre Holøs, SINTEF, Norway• 15:25 | Moisture buffering in modern timber constructions,

Dimitrios Kraniotis, OsloMet, Norway• 15:45 | Understanding moisture recovery in heat/energy recovery ventilation

as the basis for new market solutions, Peng Liu, SINTEF, Norway• 16:05 | Q&A poll & Workshop discussion, Peter Schild, OsloMet• 16:30 | End of webinar

3

4

Page 3: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Peter Schild

(OsloMet, NO)Kari Thunshelle

(SINEF, NO)

Sverre Holøs

(SINTEF, NO)

Peng Liu

(SINTEF, NO)Dimitrios Kraniotis

(OsloMet, NO)

Valérie Leprince

(INIVE, BE)

Maria Kapsalaki

(INIVE, BE)

Webinar management

webinar2020. 05.19

Urban Home Ventilation Part 3: Moisture control

Speakers

Moderators

Make sure that Audio Connection is

on by clicking on Communicate /

Audio Connection

If you can’t hear the webinar sound

If you still can’t hear, run a Speaker Audio

Test to make sure the correct output is

selected [To run the test, click on

Communicate / Speaker and Microphone]

webinar2020. 05.19

5

6

Page 4: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

How to ask questions during the webinar

Locate the Q&A box (NOT the Chat)

Select All Panelists | Type your question | Click on Send

webinar2020. 05.19

NOTES:

• The webinar presentations will be recorded and published at http://aivc.org/resources/collection-publications/events-recordingswithin a couple of weeks, along with the presentation slides.

• Short Q&A Poll before workshop discussion• After the end of the webinar you will be redirected to our post event survey.

Your feedback is valuable so please take some minutes of your time to fill it in.

www.aivc.org

www.sintef.no

www.oslomet.no/

Facilitated byOrganized by

Urban Home Ventilation

7

8

Page 5: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Technology for a better society

[email protected]

10

Urban Home Ventilation

The webinar presentations will be recorded and published at http://aivc.org/resources/collection-publications/events-recordings

9

10

Page 6: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Webinar on May 6th,2020 (Urban Home Ventilation part 1: Kitchen Ventilation)• More than 230 people attended

• Recordings now available at: https://www.aivc.org/resources/collection-

publications/events-recordings

Webinar on May 13th,2020 (Urban Home Ventilation part 2: Ventilationrequirements, trends and thermal comfort )• More than 300 people attended

• Recordings now available at: https://www.aivc.org/resources/collection-

publications/events-recordings

webinar2020. 05.19

Healthy Energy-efficient Urban Home Ventilation

12

https://www.sintef.no/projectweb/healthy-energy-efficient-urban-home-ventilation/

11

12

Page 7: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Technology for a better society

13

Page 8: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

STRATEGIES TO AVOID TOO HIGH OR TOO LOW HUMIDITY

Sverre Holøs, SINTEF

Summary. To avoid too low humidity consider:

Action Potential effect Limitations / challenges

Hygroscopic materials Limited Only short-term variation

Decreasing indoor temperature

Limited User comfort and preferences

Adding sources Limited Indoor air quality

Reducing ventilation Moderate Indoor air quality

Recovering moisture Moderate –large

Hygiene and technology, stay tuned...

Humidification Large Energy, hygiene

All above: Condensation risks!

2

1

2

Page 9: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

What do we mean by too high or too low indoor moisture?

3https://www.humiditydevices.co.uk/blogs/about-floors/15508913-health-risks-of-adverse-relative-humidity

Arundel & al. reexamined

4

Cases 35 %, controls 26 %(Solomon 1976)

Cases 50 %, controls 43 %(Korsgaard 1982)

??Humidified houses /non-humidified 703/197

(Arlian 1978)

Production?

13 refs on allergic reactions from humidification?

3

4

Page 10: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Relative and absolute moisture, moisture excess, dewpont

5

Absolute humidity: 7 g/kg

Moisture excess: 4 g/kg

Relative humidity 40 %

Tem

per

atu

re °

C

Dew point 9 °C

XXXX 48 %

Causes of building damage -Norway

6

Other causes24%

Rain and snow24%

Moist indoor air

15%

'Construction'6%

Ground water8%

Leakage5%

Several moisture sources

9%

Moisture and other

9%

Data source: SINTEF archives 1993-2002. Bias towards large buildings, non-trivial cases, costly repairs.Bias against single houshold dwellings, "water damage".

Liso, K. R., T. Kvande and J. V. Thue (2006). "Learning from experience - an analysis of process induced building defects in Norway." Research in Building Physics and Building Engineering 2006: 425-432

5

6

Page 11: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

7

Existing buildings are vulnerable to high humidity:

• Cold surfaces, including windows and thermal bridges

• Air leakages

• Cold area (crawl space, garage) ventilated by hot humid outdoor air

• Uncomfortably cold supply air -> low ventilation rates

Moist indoor air15%

8

Compact shape

Heat recoverymechanicalventilation

Efficientlightingand equipment

Demand-controlledventilationand lighting

Well insulated, airtight buildingenvelope with fewthermal bridges

Efficientsunscreen

Thermalstorage

Windows with smallheat loss

Limited windowarea

Newer buildings less vulnerable to high humidity:

7

8

Page 12: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

You are not a plant: Relative humidity is not the only important humidity for health and comfort

9

Kari at 23 °C, 25 % RH Kari at -6 °C, 80 % RH "Guri" at 23 °C, 25 % RH

What determines indoor humidity?

10

Supply air g/kg

Extract air g/kg

Unknown, CC BY-ND

Buffering

Indoor sources

recycling

Temperature and moisture content

determines RH

Unknown CC BY-SA-NC

Dehumidification

Unknown Author CC BY-SA

Ventilation Rate

9

10

Page 13: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture content of outdoor air – Oslo

11-0.001

0.001

0.003

0.005

0.007

0.009

0.011

0.013

0.015

-20 -15 -10 -5 0 5 10 15 20 25 30 35

kg/k

g

Outdoor temperature (°C)

Indoor Climate 21°C / 40 % RH

Indoor Climate 23°C / 60 % RH

Observations from Blindern, 2010. Data from The Norwegian Meteorological Institute

12

Moisture content of outdoor air

-0.001

0.001

0.003

0.005

0.007

0.009

0.011

0.013

0.015

-20 -15 -10 -5 0 5 10 15 20 25 30 35

kg/k

g

Outdoor temperature (°C)

Oslo

Indoor Climate 21°C / 40 % RH

Indoor Climate 23°C / 60 % RH

-0.001

0.001

0.003

0.005

0.007

0.009

0.011

0.013

0.015

-20 -15 -10 -5 0 5 10 15 20 25 30 35

kg/k

g

Outdoor temperature (°C)

Dublin

Indoor Climate 21°C / 40 % RH,

Indoor Climate 23°C / 60 % RH

-0.001

0.001

0.003

0.005

0.007

0.009

0.011

0.013

0.015

-20 -15 -10 -5 0 5 10 15 20 25 30 35

kg/k

g

Outdoor temperature (°C)

Minsk

Indoor Climate 21°C / 40 % RH

Indoor Climate 23°C / 60 % RH

-0.001

0.001

0.003

0.005

0.007

0.009

0.011

0.013

0.015

-20 -15 -10 -5 0 5 10 15 20 25 30 35

kg/k

g

Outdoor temperature (°C)

Porto

Indoor Climate 21°C / 40 % RH

Indoor Climate 23°C / 60 % RH

Dublin, Minsk and Port climate data from Energy Plus data (ASHRAE)

11

12

Page 14: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

What can we do about (too) low humidity

13

• Buffering

• Reduce temperature

• Reduce ventilation rates

• Add moisture

• Plants, drying clothes, showering, cooking…

• Room humidifier / airconditioner

• Supply air humidification

• Recover moisture

• Compensating actions

Increased absolute and relative humidity

Increases relative humidity only

Reduces variation only

Does not change humidity

Moisture buffering

14

Effect of materials on diurnal RH variation - laboratory

Photo CC0 Public domain via Piqsels.com

13

14

Page 15: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture buffering: field studies

15

Both figs from (Kalamees, et al. 2009)

Kalamees, T., M. Korpi, J. Vinha and J. Kurnitski (2009). "The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in Finnish detached houses." Building and Environment: 1643-1650.

16

-15

-10

-5

0

5

10

15

20

25

0

2

4

6

8

10

12

14

uke

20-2

007

uke

20-2

007

uke

21-2

007

uke

22-2

007

uke

23-2

007

uke

24-2

007

uke

25-2

007

uke

26-2

007

uke

27-2

007

uke

28-2

007

uke

29-2

007

uke

29-2

007

uke

30-2

007

uke

31-2

007

uke

32-2

007

uke

33-2

007

uke

34-2

007

uke

35-2

007

uke

36-2

007

uke

37-2

007

uke

38-2

007

uke

39-2

007

uke

39-2

007

uke

40-2

007

uke

41-2

007

uke

42-2

007

uke

43-2

007

uke

44-2

007

uke

45-2

007

uke

46-2

007

uke

47-2

007

uke

48-2

007

uke

48-2

007

uke

49-2

007

uke

50-2

007

uke

51-2

007

uke

52-2

007

uke

1-20

08u

ke2-

2008

uke

3-20

08u

ke4-

2008

uke

5-20

08u

ke6-

2008

uke

6-20

08u

ke7-

2008

uke

8-20

08u

ke9-

2008

uke

10-2

008

uke

11-2

008

uke

12-2

008

uke

13-2

008

uke

14-2

008

uke

15-2

008

uke

15-2

008

uke

16-2

008

uke

17-2

008

uke

18-2

008

uke

19-2

008

Tem

per

atu

re (°

C)

Ab

s. m

ois

ture

(g

wat

er /

kg

dry

air

)

TOOur raw material: outdoor temperature and moisture during one year in Oslo (Blindern)

g/kg 48 h avg moisture weekly avg moisture Weekly avg temp.

15

16

Page 16: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Reducing indoor temperature –low RH

17

Absolute humidity: 3,5 g/kg

Moisture excess: 1,5 g/kg

Relative humidity 20 %

Tem

per

atu

re °

C

Dew point -1 °C

XXXX 26 %

Reducing indoor temperatures?

• Generally controlled by inhabitants

• Energy-efficient homes: cheap and easy to heat

• Likely trend: increasing indoor temperatures

18Berge, M. and H. M. Mathisen (2016). "Perceived and measured indoor climate conditions in high-performance residential buildings." Energy and Buildings 127: 1057-1073.

17

18

Page 17: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Increasing moisture excess

19

Absolute humidity

Moisture excess: 1,5 g/kg

Relative humidity

Tem

per

atu

re °

C

Dew point °C

Increasing excess: reducing ventilation

Indoor RH lowest normally coincides with

• Highly polluted outdoor air

• Freezing risk in heat exchanger

• Peak energy demand

• Spending most of the time indoors

20

Energi i Norge – Wikipedia. Foto Prillen CC BY-SA via Wikimedia Commons

Foto Pixabay, merket fri bruk

19

20

Page 18: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Ventilation and respiration

21

• 40-60 g water / hour• 15 liters CO2 /hour• 1 olf

I adult at 23 °C, 1 met, 1 clo

Target 1000 ppm CO2 : 26 m³ / hour per personAdded moisture 1,5-2,3 g / m³

22

Ikke-hygroskopisk rotor

Moisture recovery

21

22

Page 19: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Increase excess: adding sources

23

0

50

100

150

200

250

300

Potted flower Larger plant Light activity Drying clothes Hard work

Gra

m /

tim

e

Shower 3kg /h Tree 2-4 kg /h

Pin

terest

Pin

terest

Add or remove indoor sources

• Drying of clothes

• Greenery

• Extract at source (shower, cooker, combustion)

• Humidifyer

• Dehumidifier / Air-conditioning

24

23

24

Page 20: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

"Compensating actions"

Against low humidity

• Remove irritant sources (volatiles

and particles)

• Drink

• Select appropriate materials

• Moisten eyes and airways?

25

Against high humidity

• Tighten envelope

• Remove thermal bridges

• (Use robust materials)

Summary:

Action Potential effect Limitations / challenges

Hygroscopic materials Limited Only short-term variation

Decreasing temperature Limited User comfort and preferences

Adding sources Limited Indoor air quality

Reducing ventilation Moderate Indoor air quality

Recovering moisture Moderate – large Stay tuned...

Humidification Large Energy, hygiene

All above: Condensation risks!

26

An integrated approach including Indoor humidity as one parameter of indoor environmental quality, combining elements below

25

26

Page 21: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Technology for a better society

28

Target Practical recommenation Significance

Bacteria Avoid growth and reduce dissemination of pathogens

Avoid condensation, keep humidifiers free of bacteria, low RH in heating season

Virus Reduce dissemination of pathogens Avoid extreme highs and lows. Some indications that medium RH may inactivate vira.

Fungi Avoid mould growth on materials -> RH < 85 % on organic materials

Avoid "high" moisture excess: Differs among buildings and climates

Higher in older buildings in cold or humid climates

Mites Reduce population < 40 % RH in bedroom in winter Hard to achieve in warm climates

Respiratory infections For influenza: avoid extreme drop in RH

? Uncertain

Allergic rhinitis & asthma Reduce symptoms Avoid extreme higs and lows Individually high

Chemical interactions ? ? Uncertain

Ozone production ? ? Uncertain

Flooring damage - Select suitable material, avoid extremes Flooring panels according to climatic zone

Dry eyes Reduce symptoms > 40 %, avoid extreme lows Individually high

Skin symptoms Reduce symptoms Avoid extreme lows

Clogged nose Reduce symptoms Avoid extreme lows

Energy demand Avoid unneccesary humidification

27

28

Page 22: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Questions

• Should humidity determine ventilation rate?

• When is it too high?

• When is it too low?

29

More questions

• How much of the day (week, year) are dwellings occupied?

• What is the distribution of ventilation rates, temperatures and

moisture supply? Can the profiles be predicted by dwelling

characteristics?

30

29

30

Page 23: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Asthma recommendationsOrg rec

National Asthma Council Australia

30-50 %

CDC 35-50 % In hot, humid climates, you may need to use an air conditioner or a dehumidifier or both. Fix water leaks, which allow mold to grow behind walls and under floors.

AAAAI 40-50 % https://www.aaaai.org/conditions-and-treatments/library/allergy-library/humidifiers-and-indoor-allergies

US Housing and Urban Development

30-50% https://www.hud.gov/sites/dfiles/HH/documents/Home%20Assessment%20Checklist%20English.pdf

British Lung Foundation Avoid condensation https://www.blf.org.uk/support-for-you/indoor-air-pollution/improving-air-quality

American Lung Association

To minimize the growth of dust mites, keep your home below 50 percent humidity.

https://www.lung.org/clean-air/at-home/indoor-air-pollutants/dust-mites

NAAF 20-40 % <60 %

Winter in heated roomsSummer

https://www.naaf.no/subsites/fersking---foreldre-og-barn/i-hjemmet/inneklima/luftfuktighet/

Astma allergi Danmark 35-60 %31

Indoor chemistry including ozone

• Catalytic degradation of ozone less efficient at high RH. (Namdari, Lee

et al. 2019)

• There is no certain conclusion about the impact of relative humidity

(RH) on ozone surface removal. According to the previous studies, the

impact of humidity on ozone surface removal generally depended on

the nature of the material surface. (Shen and Gao 2018)

33

31

33

Page 24: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

34

Influence of temperature and humidity on ozone-surface reactivity is moderate.(Rim, Gall et al. 2016)

39

0

10

20

30

40

50

60

70

uke

39-2

009

uke

40-2

009

uke

40-2

009

uke

41-2

009

uke

41-2

009

uke

42-2

009

uke

42-2

009

uke

43-2

009

uke

43-2

009

uke

44-2

009

uke

44-2

009

uke

45-2

009

uke

45-2

009

uke

46-2

009

uke

46-2

009

uke

47-2

009

uke

48-2

009

uke

48-2

009

uke

49-2

009

uke

49-2

009

uke

50-2

009

uke

50-2

009

uke

51-2

009

uke

51-2

009

uke

52-2

009

uke

52-2

009

uke

53-2

009

uke

53-2

009

uke

2-20

10u

ke2-

2010

uke

3-20

10u

ke3-

2010

uke

4-20

10u

ke4-

2010

uke

5-20

10u

ke5-

2010

uke

6-20

10u

ke6-

2010

uke

7-20

10u

ke7-

2010

uke

8-20

10u

ke8-

2010

uke

9-20

10u

ke9-

2010

uke

10-2

010

uke

10-2

010

uke

11-2

010

uke

11-2

010

uke

12-2

010

uke

12-2

010

uke

13-2

010

uke

13-2

010

uke

14-2

010

uke

14-2

010

uke

15-2

010

uke

15-2

010

uke

16-2

010

uke

16-2

010

uke

17-2

010

uke

18-2

010

uke

18-2

010

uke

19-2

010

uke

19-2

010

uke

20-2

010

uke

20-2

010

% R

F (g

itt

23 °

C in

ne)

Influensadata: FHI

34

39

Page 25: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Tiltak: befuktning

40

Fordampning

Forstøvning

Fig: Qviller klimaprodukter, Stadler Form

Befuktning

• "Uendelig" kapasitet

• Kontrollerbart

• Energikrevende i oppvarmingssituasjon (2,4 kJ/g)

• Hygieniske utfordringer

41

40

41

Page 26: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

0

1

2

3

4

5

6

7

8

9

10

-25 -15 -5 5 15 25

Fukt

tils

kud

d (g

/m³)

Utetemmperatur (°C)

Fukttilskudd iht NS_EN ISO 13788

Ubrukte bygninger (Hc1) Vanlig bruk (Hc2)

Ukjent bruk (Hc3) Kjøkken m.v. (HC 4)

Svømmehaller o.l. (HC 5)

0

10

20

30

40

50

60

70

-25 -15 -5 5 15 25

% R

F

Utetemperatur (°C)

Innendørs RF etter NS-EN 15026

Low Medium

Effekten av utetemperatur på RF og fukttilskudd

42

Begge figurer (Kalamees, Vinha et al. 2006)

Grunner til å være skeptisk (III)

• Hygieniske utfordringer ved befuktere og

gjenvinnere

• Bakterievekst – Legionella

• Sopp

• Urenheter i vann

• Desinfeksjonsmidler

43

"Bypass humidifier" http://www.eiowainspections.com

42

43

Page 27: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Grunner til å være skeptisk (IV):Opplevd luftkvalitet påvirkes av temperatur og RF

44

At 12:00

(Mean/median)

At 14:30

(Mean/median)

14 % RF

N=14

24 % RF

N=12

38 % RF

N=12

14 % RF

N=14

24 % RF

N=12

38 % RF

N=12

Dry air* 1.67/0.23 0.09/0 0.06/0 1.95/0.27 1.71/0 0.02/0

Stuffy air* 0.71/0 0.96/0 3.48/1.55 0.43/0 1.33/0 3.22/0.79

Unpleasant odor 0.07/0 1.40/0 1.43/0 0/0 1.72/0 2.34/0

Too cold 2.53/0 1.24/0 1.4/0 2.65/0.73 1.55/0 1.29/0

Too warm 0.34/0 0.61/0 3.32/2.12 0.56/0.08 0.94/0 1.47/0.03

Draught 1.54/0 0.64/0 0.07/0 1.86/0 1.44/0 0.17/0

Varying temperature 1.77/0 1.44/0 2.08/0 1.33/0 1.28/0 1.83/0

Heat from sun 0.18/0 0/0 0/0 0.11/0 0/0 0/0

Lind, Holøs & al. 2018

Foto Kjetil Ree (Own work) [CC BY-SA 3.0 ]

Kari i -6 °C, 80 % RF

Så – hva gjør vi?

• Reduser unødvendig ventilasjon

• Behovsstyring – tomme rom trenger lite luft

• Lavemitterende materialer, innredning og inventar. Fjern kilder heller enn å tynne ut!

• Fuktbufrende materialer i lett møblerte rom

• Unngå overtemperatur

• Styr (også) mot RF. Vurder og kontroller fuktgjenvinning

• Tilfør evt. ekstra fuktighet

• Reduser risiko for bygningsskader

• Bygg tett og velisolert, uten kuldebroer (trykktest og termografer eksisterende bygninger)

• Ha kontroll på trykkforhold

• Ta lav OG høy fuktighet på alvor

45

44

45

Page 28: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture buffering inmodern timber constructions

Dimitrios Kraniotis

Dep. of Civil Engineering & Energy Technology

Oslo Metropolitan University - OsloMet

[email protected]

AIVC – SINTEF Community – OsloMetWorkshop ‘Urban Home Ventilation’ | 19th May 2020

Part 3: Moisture Control

1

Norway: a country with long tradition in timber

2

Photo: Dagfinn Rasmussen, Riksantikvaren Photo: Own archive Photo: Own archive

Photo: Own archive

Page 29: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Increased interest in use of engineered timber products

3

• Tradition is not the only reason• Norway – Strict national framework for energy use in buildings →

dramatic reduction of energy use for heating since 1990 (-69%) (NEA, 2018)• Ensure high indoor environmental quality (IEQ)• Efforts to decrease the carbon footprint from building materials

3

Kathrina Simonen, Life Cycle Assessment

4

Typical light timber construction

SINTEF Community, Byggforskserien

• Interior wooden cladding (softwood)• Thin wooden boards, 12 – 14 mm• Almost always painted

Page 30: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

5

Typical light timber construction

SINTEF Community, Byggforskserien

Exterior cladding

Weather resistive barrier (air barrier)

Cavity

Insulating layer

Solid timber

• Solid timber, exposed or covered by gypsum boards• Thick wooden elements, 60 – 140 mm• When exposed, treated with diffusion-open Osmo oil

Modern timber constructionsCross Laminated Timber (CLT)Leading the ‘woodification’ of building industry

6

Asplan Viak, ‘The new Tøyen Swimming Hall’

Glulam from Swedish wood

Laftekompaniet AS

Photo: Own archive

CLTLog

Glulam

SINTEF Community, Byggforskserien

Page 31: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

711

Controlling the RH indoors

• DCV - Moisture control, e.g. max at 50%• Humidification / Dehumidification• Adjusting respectively the air temperature indoors• Moisture buffering in hygroscopic surfaces

indoors, building materials, furnitures etc.

8

Moisture buffering – What is it?

Buffer the maxima

Buffer the minima

Moisture buffering of building materials, Rode, Carsten; Peuhkuri, Ruut Hannele; Mortensen, Lone Hedegaard; Hansen, Kurt Kielsgaard; Time, Berit; Gustavsen, Arild; Ojanen, Tuomo; Ahonen, Jarkko; Svennberg, Kaisa; Arfvidsson, Jesperhttps://backend.orbit.dtu.dk/ws/portalfiles/portal/2415500/byg-r126.pdf

NordTest project

• Technical University of Denmark (DTU)• Norwegian Building Research Institute (earlier

NBI, nowadays SINTEF Community);• Technical Research Centre of Finland (VTT);• Lund University, Sweden (LTH);

Page 32: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

9

Moisture Buffer Value (MBV)

Moisture Buffer Value:

Moisture buffering of buildingmaterials, Rode, Carsten; Peuhkuri, Ruut Hannele; Mortensen, Lone Hedegaard; Hansen, Kurt Kielsgaard; Time, Berit; Gustavsen, Arild; Ojanen, Tuomo; Ahonen, Jarkko; Svennberg, Kaisa; Arfvidsson, Jesper https://backend.orbit.dtu.dk/ws/portalfiles/portal/2415500/byg-r126.pdf

Internal humidity loads according to ISO 13788

10

max Δv = 4 or 6 g/m3

vi = ve + Δv

Δv = G/V’G: moisture production indoors [g/h]V’: ventilation rate [m3/h]

Page 33: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

11

Moisture sources indoors

Branz.co.nz

Moisture buffering and ventilation strategies

12

Photo: thesslagreen.com

Photo: inhabitat.com

Page 34: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

What’s the behaviour of CLT under extreme moisture load?

13

Photo: Rumi BaumannDesign: Tron Meyer

Case study 1/4 - Field

14

Field test of moisture buffering capacity in CLT modules

Photo: Tormod Aurlien, NMBU

BioKlim field, Ås, NMBUWEEE project - Wood, Energy, Emissions, Experience• Norwegian Institute of Wood Technology• OsloMet (earlier HiOA)• NMBU• Norwegian Institute of Air Research

Test modules:• Volume V = 57 m3

• Exhaust ventilation V’ = 0.5 ACH• Moisture load G = 0.62 kg/h (in total 5.8 kg)

Very high load! (Δv > 20 g/m3)

Moisture buffering, energy potential, and volatile organic compound emissionsof wood exposed to indoor environmentsK. Nore, A.Q. Nyrud, D. Kraniotis, K.R. Skulberg, F. Englund, T. Aurlienhttps://www.tandfonline.com/doi/abs/10.1080/23744731.2017.1288503

outdoors

Page 35: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

15

Field test of moisture buffering in CLT modules

Moisture buffering, energy potential, and volatile organic compound emissions of wood exposed to indoor environmentsK. Nore, A.Q. Nyrud, D. Kraniotis, K.R. Skulberg, F. Englund, T. Aurlien https://www.tandfonline.com/doi/abs/10.1080/23744731.2017.1288503

Exposed CLTmax RHi ≈ 70%

non-hygroscopicmax RHi ≈ 95%

What is the moisture buffering performance of CLT under controlled operational conditions in the lab?

16

Photo: Rumi BaumannDesign: Tron Meyer

Case study 2/4 - Lab

Page 36: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

17

Moisture buffering capacity of a CLT element

• Step 1: determination of MBV = 1.1 g/(%RH*m2) – almost the same as reportedin NordTest for wooden sample (softwood)

• Step 2: investigation of moisture buffering capacity under ‘operational conditions’• V = 37 m3 | V’ = 57.5 m3/h (= 1.55 ACH = 3.82 m3/h*m2)

‘outdoors’θe ≈ -8.5 °CRHe ≈ 70%

ve = 1.7 g/m3

‘indoors’θe ≈ 21.5 °C

RHi,initial ≈ 20% Vi, initial = 3.5 g/m3

18

Moisture buffering capacity of a CLT element

Three different scenarios of moisture load:1. Moisture load,8h = 268.75 g/h

→ expected increase of humidity indoors = 268.75/57.5 = 4.7 g/m3 (RHi ≈ 45%)→ actual increase of humidity indoors = 3.54 g/m3 (RHi ≈ 40%)→ corresponding ‘ventilative’ effect of moisture buffering = 18.4 m3/h (total: 75.9 m3/h)

2. Moisture load,8h = 312.5 g/h→ expected increase of humidity indoors = 312.5/57.5 = 5.4 g/m3 (RHi ≈ 50%)→ actual increase of humidity indoors = 3.7 g/m3 (RHi ≈ 41%)→ corresponding ‘ventilative’ effect of moisture buffering = 27 m3/h (total: 84.5 m3/h)

3. Moisture load,8h = 343.75 g/h → expected increase of humidity indoors = 343.75/57.5 = 6 g/m3 (RHi ≈ 60%)→ actual increase of humidity indoors = 3.8 g/m3 (RHi ≈ 45%)→ corresponding ‘ventilative’ effect of moisture buffering = 33 m3/h (total: 90.5 m3/h)

Page 37: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

What is the moisture buffering performance of CLT under fully operational conditions in-situ?

19

Photo: Rumi BaumannDesign: Tron Meyer

Case study 3/4 - Field

20

Ulsholtveien 31, housing units in exposed CLT

Norwegian Architecture Prize 2017Wooden project of the year 2017

Photo: Are CarlsenDesign: Haugen/Zohar Arkitekter (HZA)

Page 38: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

21

Ulsholtveien 31, housing units in exposed CLT

• Floor area of the tested appartment, A = 56 m2

• Volume, V = 148 m3

• Decentralised ventilation, V’ = 38 m3/h, in each of the three rooms (2 units in the kitchen/living room (34.4 m2) and 1 unit in each of the two bedrooms (7.3 m2 and 9.7 m2)

• Exhaust ventilation in the bathroom, V’ = 50 m3/h when RHi,bath > 50% or for 15 minutes every 2 hours

Photo: own archive

Photo: own archive

Interior finishing: exposed CLT, treated with diffusion open Osmo oil

bathroom

kitchen/living room

Interior finishing: cement board at the shower

22

Ulsholtveien 31, housing units in exposed CLT

Bedroom: 9% < RHi < 54% (too high air temperature, i.e. θi,bed = 29 °C)

Bathroom: 18% < RHi < 66% | water content in wood u = 8.1% - 11.7% < 15.4%

Kitchen/living room: 17% < RHi < 55% | [CO2]: usually below 1150 ppm, max = 1550 ppm

Page 39: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

What is the RH indoors in case CLT is replaced by gypsum boards and tiles (bathroom)?

23

Photo: Rumi BaumannDesign: Tron Meyer

Case study 4/4 – Simulation

Numerical comparison between gypsum/tiles and CLT

24

BedroomCLT

BedroomGypsum board

BathroomCLT + cement board

BathroomTiles

Kitchen/livingroomCLT

Kitchen/livingroom

Gypsum board

RHi, min 9% 6% (-3%) 18% 9% (-9%) 17% 13% (-4%)RHi, max 53% 58% (+5%) 66% 98%

(+32%) 55% 63% (+8%)

Page 40: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Synopsis

25

• Under normal moisture loads, the corresponding ventilation effect (maxima of RH) of exposed wooden surfaces in residential buildings can be expected between 20% and 35% (lab investigation).

• In these conditions, the moisture content in CLT is not critical for mould growth, even when CLT exposed in bathrooms (affected by water vapour but not water) and being supported by low-level moisture control (field investigation).

• CLT manages contributes to keep maxima of RH indoors within accepted limits,i.e. < 60% (Category II) (field investigation).

• Overheating has negative consequences not only for the thermal environment but for moisture buffering capacity (minima of RH indoors) as well (field investigation).

• An equivalent apartment in gypsum boards and tiles, instead of CLT, would result to both lower and higher values of RH indoors (field investigation and simulation).

Thank you for your attention!

26

Page 41: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

UNDERSTANDING MOISTURE RECOVERY IN HEAT/ENERGY RECOVERY VENTILATION AS THE BASIS FOR NEW MARKET SOLUTIONS

Peng Liu, Researcher, SINTEF

Urban Home Ventilation Webinar, 19 May 2020

Three questions

• When does moisture recovery occur?

• What amount of moisture is recovered?

• Is moisture recovery needed?

2

1

2

Page 42: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

About/Not about

• Cold period (heating season)

• Air-to-air heat/energy recovery

• Balanced mechanical ventilation

• Well-insulated and air-tight residential buildings

3

Moisture recovery

Moisture recovery rate = internal moisture excess ×moisture recovery efficiency

4

3

4

Page 43: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture recovery

Moisture recovery rate = internal moisture excess ×moisture recovery efficiency

5

Internal moisture excess

Difference between indoor and outdoor humidity ratio

• Indoor moisture profile

• Occupants, pets, plants

• Bathing or showering, cooking, dish washing, laundry, drying, cleaning

• Ventilation, building characteristics

• Outdoor moisture

• Weather conditions

6

5

6

Page 44: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Internal moisture excess

7

Moisture recovery

Moisture recovery rate = internal moisture excess ×moisture recovery efficiency

8

7

8

Page 45: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

• Two types of air-to-air heat recovery

• Regenerators

• Heat wheel (HRV)

• Enthalpy wheel (ERV)

• Recuperators

• Plate heat exchanger (HRV)

• Membrane energy exchanger (ERV)

9

Extract air

Supply air

Exhaust air

Outdoor air

Supply air Outdoor air

Two types of heat/energy recovery ventilator (HRV/ERV) usually applied in residential buildings

Moisture transfer in heat and enthalpy wheels

10

Extract air

Supply air

Exhaust air

Outdoor air

9

10

Page 46: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture transfer in heat wheel

Heat wheel surface

11

Moisture transfer in heat wheel

Heat wheel surface

12

11

12

Page 47: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture transfer in heat wheel

Heat wheel surface

13

Heat wheel moisture transfer process for cold climate

14

Wet Dry

12

1 2 3

Extract air

Supply air

Exhaust air

Outdoor air

3

3' 3'

Recovered moistureRecovered

moisture

13

14

Page 48: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Sorption wheel surface

Moisture transfer in enthalpy wheel

15

Enthalpy wheel surface

Sorption wheel surface

Moisture transfer in enthalpy wheel

16

Enthalpy wheel surface

15

16

Page 49: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Sorption wheel surface

Moisture transfer in enthalpy wheel

17

Enthalpy wheel surface

Enthalpy wheel moisture transfer process for cold climate

18

Dry

13

1 3

Extract air

Supply air

Exhaust air

Outdoor air

3' 3'

Recovered moisture

Recovered moisture

17

18

Page 50: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture transfer in oxidized or fouled heat wheel

Oxidized or fouled surface

19

Moisture transfer in oxidized or fouled heat wheel

Heat wheel surface

20

19

20

Page 51: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture transfer in oxidized or fouled heat wheel

Heat wheel surface

21

Oxidized or fouled heat wheel moisture transfer process for cold climate

22

Wet Dry

12

1 2 3

Extract air

Supply air

Exhaust air

Outdoor air

3

21

22

Page 52: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture transfer in plate and membrane exchangers

23

Supply air Outdoor air

Moisture transfer in plate heat exchanger

24

Extract airExhaust air

Outdoor airSupply air

Plate (Impermeable to water)

23

24

Page 53: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture transfer in plate heat exchanger

25

Extract airExhaust air

Outdoor airSupply air

Plate (Impermeable to water)

2

Plate heat exchanger moisture transfer process in HRV/ERV

26

Wet Dry

Extract air

Supply airExhaust air

Outdoor air 1

3

1

3

25

26

Page 54: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture transfer in membrane energy exchangers

27

Extract airExhaust air

Outdoor airSupply air

Membrane (permeable to water)

Moisture transfer in membrane energy exchangers

28

Extract airExhaust air

Outdoor airSupply air

Membrane (permeable to water)

27

28

Page 55: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

2

Membrane energy exchanger moisture transfer process

29

Wet Dry

Extract air

Supply airExhaust air

Outdoor air

3' 3'

Recovered moisture

Recovered moisture

1

3

1

3

Performance of a quasi-counter flow membrane exchanger

29

30

Page 56: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Impacts of membrane vs. plate heat exchanger on indoor RH

31

RH increase by 7 % with using MEE compared to plate exchanger

RH in range of 30-60 % Plate heat exchanger: 3876 h, 44 % time of the yearMembrane exchanger: 5695 h, 65 % time of the year

0 2000 4000 6000 8000

20

40

60

80

Time (hour)

Ind

oo

r R

H f

or

livin

g ro

om

(%

)

Membrane (heat eff = 80 %, moisture eff = 60 %)

Plate (heat eff = 80 %, moisture eff = 0 %)

A single-family house (two adults and one child) in Oslo

Three questions

• When does moisture recovery occur?

• What amount of moisture is recovered?

• Is moisture recovery needed?

32

31

32

Page 57: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Moisture recovery

Moisture recovery rate = internal moisture excess ×moisture recovery efficiency

33

References

• K. M. Smith and S. Svendsen, “The effect of a rotary heat exchanger in room-based ventilation on indoor humidity in existing apartments in

temperate climates,” Energy Build., vol. 116, pp. 349–361, 2016.

• J. Vinha, M. Salminen, K. Salminen, T. Kalamees, J. Kurnitski, and M. Kiviste, “Internal moisture excess of residential buildings in Finland,” J.

Build. Phys., vol. 42, no. 3, pp. 239–258, Nov. 2018.

• S. Geving and J. Holme, “Mean and diurnal indoor air humidity loads in residential buildings,” J. Build. Phys., vol. 35, no. 4, pp. 392–421,

Apr. 2012.

• T. Kalamees, J. Vinha, and J. Kurnitski, “Indoor humidity loads and moisture production in lightweight timber-frame detached houses,” J.

Build. Phys., vol. 29, no. 3, pp. 219–246, 2006.

• T. Kalamees and J. Vinha, “Estonian Climate Analysis for Selecting Moisture Reference Years for Hygrothermal Calculations,” J. Therm. Envel.

Build. Sci., vol. 27, no. 3, pp. 199–220, Jan. 2004.

• P. Liu et al., “A theoretical model to predict frosting limits in cross-flow air-to-air flat plate heat/energy exchangers,” Energy Build., vol. 110,

2016.

• P. Liu, M. Justo Alonso, H. M. Mathisen, and C. Simonson, “Performance of a quasi-counter-flow air-to-air membrane energy exchanger in

cold climates,” Energy Build., vol. 119, 2016.

34

33

34

Page 58: Urban Home Ventilation · 2020-06-24 · Peter Schild (OsloMet, NO) Kari Thunshelle (SINEF, NO) Sverre Holøs (SINTEF, NO) Peng Liu (SINTEF, NO) Dimitrios Kraniotis (OsloMet, NO)

Peng Liu

[email protected]

SINTEF Community, Trondheim, Norway

Acknowledgements

Hans Martin Mathisen, NTNU

Anneli Halfvardsson, Flexit

Daniel Nielsen, Flexit

Maria Justo Alonso, NTNU, SINTEF

Projects: EnergiBolig, Defreeze MEE Now, Healthy and Energy

Efficient Urban Home Ventilation

35