74
SI-1 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides in Catalytic and Enantioselective [4+2] Cycloaddition under Iminium Activation. Straightforward Access to the trans- Decaline Framework and to Densely Functionalized Cyclohexanes Iker Riaño, Uxue Uria, Efraim Reyes, Luisa Carrillo, and Jose L. Vicario* Deparment of Organic Chemistry II University of the Basque Country (UPV/EHU) P.O. Box 644, 48080 Bilbao (Spain) Phone: (+) 34 601 5454 Fax: (+) 34 601 2748 E-mail: [email protected] Contents General Methods page SI-1 Materials page SI-1 Synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides 1a-c page SI-3 Synthesis of Cycloadducts 4a-i page SI-5 Synthesis of Cycloadducts 5a-o page SI-10 Synthesis of Cyclic sulfamidate amine 6 page SI-18 Synthesis of β-aminoalcohol 7 page SI-19 NMR Spectra page SI-20 HPLC Chromatograms page SI-50 Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2015

)URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-1

4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides in Catalytic and Enantioselective [4+2]

Cycloaddition under Iminium Activation. Straightforward Access to the trans-

Decaline Framework and to Densely Functionalized Cyclohexanes

Iker Riaño, Uxue Uria, Efraim Reyes, Luisa Carrillo, and Jose L. Vicario*

Deparment of Organic Chemistry II

University of the Basque Country (UPV/EHU)

P.O. Box 644, 48080 Bilbao (Spain)

Phone: (+) 34 601 5454

Fax: (+) 34 601 2748

E-mail: [email protected]

Contents

General Methods page SI-1

Materials page SI-1

Synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides 1a-c page SI-3

Synthesis of Cycloadducts 4a-i page SI-5

Synthesis of Cycloadducts 5a-o page SI-10

Synthesis of Cyclic sulfamidate amine 6 page SI-18

Synthesis of β-aminoalcohol 7 page SI-19

NMR Spectra page SI-20

HPLC Chromatograms page SI-50

Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers.This journal is © the Partner Organisations 2015

Page 2: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-2

General Methods.1 NMR spectra were acquired on a 300 spectrometer, running at 300 or 500 MHz and 75.4 MHz for 1H and 13C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CHCl3, 7.26 ppm for 1H NMR; CDCl3, 77.0 ppm for 13C NMR). The following abbreviations are used to indicate the multiplicity in 1H NMR spectra: s, singlet; d, doublet; t, triplet; m, multiplet; bs, broad signal. 13C NMR spectra were acquired on a broad band decoupled mode. For infrared (IR) spectra only characteristic bands are given in cm-1. Mass spectra (MS) were recorded on a GC-MS spectrometer using electronic impact (EI) techniques (70 eV). High resolution mass spectrometry (HRMS) were recorded under chemical ionization (CI) TOF conditions using GC when necesary. Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates and visualized by ultraviolet irradiation, phosphomolybdic acid or potassium permanganate reagent. Melting points (M.p.) are given in ºC. Optical rotations (α value) were measured in the specified solvent at given concentration in g/100 mL. The enantiomeric excess (e.e.) of the products were determined by chiral stationary phase HPLC using photodiode array detector and using the indicated chiral column in each case.

Materials. Analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel was used.

1 SGIker technical support (MEC, GV/EJ and European Social Fund) is gratefully acknowledged (NMR, Elementary

analysis, HRMS analysis and allocation of computational resources).

Page 3: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-3

General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c).

To a solution of trifluoroacetic acid (2.00 mmol) in a mixture of CH3CN/H2O (5:1 mL), the corresponding α,β-unsaturated ketone (1.00 mmol) was added. Then [bis(trifluoroacetoxy)iodo]benzene (2.00 mmol) was added and the reaction was stirred under reflux for the corresponding time in each case and then allowed to reach room temperature. The solvent was removed under reduced pressure and H2O (5 mL) was added to the obtained crude product. The mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with saturated solution of NaHCO3 (3 × 30 mL) and then were dry over anhydrous Na2SO4, filtered and the solvent was removed under reduced pressure obtaining the corresponding α-hydroxy ketone, which was employed in the following step without further purification.

Chlorosulfonyl amine (2.00 mmol), previously released from chlorosulfonyl isocyanate with formic acid following representative procedure,2 was added portionwise to a solution of α-hydroxy ketone (1.00 mmol) in dry DMA (3 mL) under Ar atmosphere. After stirring at room temperature for 2 h, the reaction mixture was diluted with EtOAc (10 mL) and washed with brine (10 mL). The solvent was removed under reduced pressure and then p-toluensulfonic acid (0.10 mmol) and toluene (3 mL) were added, and the reaction was stirred under reflux for 1 h with a Dean-Stark receiver. The mixture was diluted with EtOAc (10 mL) and washed with NaHCO3 (10 mL). The organic layer was dry over anhydrous Na2SO4 and the solvent was evaporated. The crude was purified by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1) to give the corresponding sulfamidate.

4-(Cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide (1a).

Following the general procedure, cyclohex-1-en-1-yl methyl ketone (0.51 mL, 4.00 mmol), [bis(trifluoroacetoxy)iodo]benzene (3.44 g, 8.00 mmol) and trifluoroacetic acid (0.61 mL, 8.00 mmol) in a mixture of CH3CN/H2O (20:4 mL) afforded the α-hydroxy ketone after 5 hours. Then to a solution of α-hydroxy ketone in DMA (12 mL), chlorosulfonyl amine (924 mg, 8.00

mmol) was added, and then p-toluensulfonic acid (76 mg, 0.40 mmol) and toluene (12 mL) was added, affording the sulfamidate 1a (283 mg, 1.41 mmol, 35%) as a yellow solid. 1H-NMR (CDCl3, 300 MHz) δ 6.80-6.77 (m, 1H), 5.31 (s, 2H), 2.40-2.35 (m, 4H), 1.81-1.61 (m, 4H). 13C-NMR (CDCl3, 75 MHz) δ 175.7, 146.8, 131.3, 74.0, 26.9, 24.2, 21.3, 21.1. FTIR (ATR, cm-1): 1632 (C=N st), 1570 (C=C st), 1354 (SO2 st as), 1186 (SO2 st sym). MS (70 eV) m/z (%): 201 (87), 186 (13), 172 (5), 160 (1), 144 (2), 136 (5), 120 (33), 106 (100), 92 (56), 79 (88), 66 (26), 52 (33). HRMS: calculated for [C8H12NO3S]+: 202.0538 [(M+H)+]; found: 202.0525. M.p.: 151-153ºC (hexanes/EtOAc).

2 H.-K. Lee, S. Kang, E. B. Choi, J. Org. Chem. 2012, 77, 5454.

NO

SO

O

Page 4: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-4

4-(1-Methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide (1b).

Following the general procedure, 3-methylpent-3-en-2-one (2.34 mL, 20.00 mmol), [bis(trifluoroacetoxy)iodo]benzene (17.73 g, 40.00 mmol) and trifluoroacetic acid (3.06 mL, 40.00 mmol) in a mixture of CH3CN/H2O (100:20 mL) afforded the α-hydroxy ketone after 4 hours. Then to a solution of α-hydroxy ketone in DMA (60 mL), chlorosulfonyl amine (4.62 g, 40.00 mmol) was added, and then p-toluensulfonic acid (380 mg, 2.00 mmol) and

toluene (60 mL) was added, affording the sulfamidate 1b (544 mg, 3.11 mmol, 16%) as a yellow solid. 1H-NMR (CDCl3, 300 MHz) δ 6.59-6.52 (m, 1H), 5.32 (s, 2H), 2.01-1.99 (m, 6H). 13C-NMR (CDCl3, 75 MHz) δ 176.6, 144.2, 130.2, 74.1, 15.6, 12.5. FTIR (ATR, cm-1): 1638 (C=N st), 1561 (C=C st), 1351 (SO2 st as), 1181 (SO2 st sym). MS (70 eV) m/z (%): 175 (39), 160 (1), 135 (1), 110 (4), 94 (14), 81 (100), 75 (1), 66 (21), 54 (46). HRMS: calculated for [C6H10NO3S]+:176.0381 [(M+H)+]; found: 176.0376. M.p.: 122-124ºC (hexanes/EtOAc).

4-(1-Methylbut-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide (1c).

Following the general procedure, 3-methylhex-3-en-2-one (1.14 g, 10.16 mmol), [bis(trifluoroacetoxy)iodo]benzene (9.01 g, 20.32 mmol) and trifluoroacetic acid (1.56 mL, 20.32 mmol) in a mixture of CH3CN/H2O (50:10 mL) afforded the α-hydroxy ketone after 2 hours. Then to a solution of α-hydroxy ketone in DMA (30 mL), chlorosulfonyl amine (2.34 g, 20.32

mmol) was added, and then p-toluensulfonic acid (194 mg, 1.02 mmol) and toluene (30 mL) was added, affording the sulfamidate 1c (305 mg, 1.61 mmol, 16%) as a orange solid . 1H-NMR (CDCl3, 300 MHz) δ 6.46-6.40 (m, 1H), 5.33 (s, 2H), 2.42-2.32 (m, 2H), 2.00 (s, 3H), 1.10 (t, J = 7.6 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 176.9, 150.8, 128.7, 74.2, 23.0, 12.6, 12.6. FTIR (ATR, cm-1): 1631 (C=N st), 1563 (C=C st), 1346 (SO2 st as), 1190 (SO2 st sym). MS (70 eV) m/z (%): 189 (15), 174 (16), 162 (1), 149 (3), 135 (1), 124 (7), 110 (33), 94 (100), 80 (29), 68 (48), 53 (39). HRMS: calculated for [C7H12NO3S]+: 190.0538 [(M+H)+]; found: 190.0523. M.p.: 56-58ºC (hexanes/EtOAc).

NO

SO

O

NO

SO

O

Page 5: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-5

General procedure for the synthesis of Cycloadducts (4a-i).

The α,β-unsaturated aldehyde 2 (1.50 or 2.00 mmol) was added to a solution of diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (0.20 mmol), DABCO (0.20 mmol) and the 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (1.00 mmol) in dry CHCl3 (2 mL). The reaction was stirred at the indicated temperature in each case, following its evolution by 1H-NMR. After consumption of the starting material, the product was purified by flash column chromatography with the indicated eluent, yielding the cycloadducts 4a-i.

(3aS,4R,5S,5aR,9aR)-4-Methyl-4,5,5a,6,7,8,9,9a-octahydro-3aH-naphtho[1,2-d][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4a).

The cycloadduct 4a (27 mg, 0.10 mmol, 66%, dr: >20:1) was obtained after 48 hours at -30ºC as a white solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and crotonaldehyde 2a (19 µL, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.49 (d, J = 4.2 Hz, 1H), 4.81 (d, J = 10.6 Hz, 1H), 2.39-2.28 (m, 1H), 2.25-2.17 (m, 3H), 1.97-1.87 (m, 1H), 1.86-1.76 (m, 3H), 1.68-1.54 (m, 1H), 1.36-1.22 (m, 3H), 1.19 (d, J = 6.0 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 200.4, 185.5, 89.9, 58.5, 44.5, 43.6, 40.7, 31.3, 26.2, 25.0, 24.4, 17.0. FTIR (ATR, cm-1): 1725 (C=O st), 1630 (C=N st), 1368 (SO2 st as), 1194 (SO2 st sym). MS (70 eV) m/z (%): 271 (5), 243 (12), 227 (46), 214 (3), 201 (25), 192 (15), 178 (58), 162 (31), 150 (29), 134 (9), 122 (16), 108 (36), 91 (19), 81 (49), 71 (100), 55 (37). HRMS: calculated for [C12H18NO4S]+: 272.0957 [(M+H)+]; found: 272.0946. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 22.19 min, τminor = 35.50 min (96% ee). [α]D

20 = +1.2 (c = 0.69, CH2Cl2). M.p.: 137-139 (n-hexane/i-PrOH).

(3aS,4R,5S,5aR,9aR)-4-Ethyl-4,5,5a,6,7,8,9,9a-octahydro-3aH-naphtho[1,2-d][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4b).

The cycloadduct 4b (28 mg, 0.10 mmol, 66%, dr: >20:1) was obtained after 60 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and (E)-pent-2-enal 2b (29 µL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.47 (d, J = 4.5 Hz, 1H), 5.01 (d, J = 10.7 Hz, 1H), 2.40-2.16 (m, 4H), 1.96-1.87 (m, 1H), 1.83-1.76 (m, 3H), 1.74-1.66 (m, 1H), 1.62-1.49 (m, 2H), 1.35-1.21 (m, 3H), 0.97 (t, J = 7.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 200.4, 186.2, 87.2, 55.6, 45.6, 44.4, 43.4, 31.4, 26.3, 25.0, 24.4, 23.1, 8.7. FTIR (ATR, cm-1):

OSN

OO

CHOH

Me

H

OSN

OO

CHOH

Et

H

Page 6: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-6

1725 (C=O st), 1631 (C=N st), 1369 (SO2 st as), 1194 (SO2 st sym). MS (70 eV) m/z (%): 285 (6), 256 (11), 241 (24), 228 (16), 216 (5), 205 (78), 192 (93), 176 (100), 164 (36), 148 (27), 136 (35), 125 (34), 108 (55), 95 (40), 81 (97), 67 (69), 55 (63). The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 17.93 min, τminor = 25.57 min (95% ee). [α]D

20 = +1.9 (c = 1.00, CH2Cl2).

(3aS,4R,5S,5aR,9aR)-4-Propyl-4,5,5a,6,7,8,9,9a-octahydro-3aH-naphtho[1,2-d][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4c).

The cycloadduct 4c (32 mg, 0.11 mmol, 71%, dr: >20:1) was obtained after 60 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and (E)-hex-2-enal 2c (35 µL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.47 (d, J = 4.4 Hz, 1H), 4.97 (d, J = 10.4 Hz, 1H), 2.37-2.24 (m, 3H), 2.22-2.15 (m, 1H), 1.96-1.88 (m, 1H), 1.86-1.75 (m, 3H), 1.61-1.22 (m, 8H), 0.91 (t, J = 7.0 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 200.4, 185.9, 88.1, 56.6, 44.8, 44.4, 43.5, 33.3, 31.4, 26.3, 25.0, 24.4, 18.3, 14.1. FTIR (ATR, cm-1): 1725 (C=O st), 1631 (C=N st), 1369 (SO2 st as), 1194 (SO2 st sym). MS (70 eV) m/z (%): 299 (5), 270 (11), 255 (16), 235 (13), 219 (76), 206 (45), 190 (100), 176 (24), 164 (37), 150 (30), 136 (25), 125 (32), 108 (45), 95 (47), 81 (67), 67 (58), 55 (64). HRMS: calculated for [C14H22NO4S]+: 300.1270 [(M+H)+]; found: 300.1258. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (95:5)]; flow rate 1.0 mL/min; τmajor = 30.42 min, τminor = 43.34 min (96% ee). [α]D

20 = +2.8 (c = 1.00, CH2Cl2).

(3aS,4R,5S,5aR,9aR)-4-Butyl-4,5,5a,6,7,8,9,9a-octahydro-3aH-naphtho[1,2-d][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4d).

The cycloadduct 4d (32 mg, 0.11 mmol, 67%, dr: >20:1) was obtained after 72 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and (E)-hept-2-enal 2d (39 µL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol),

diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.47 (d, J = 4.4 Hz, 1H), 4.99 (d, J = 10.5 Hz, 1H), 2.38-2.24 (m, 3H), 2.21-2.16 (m, 1H), 1.91-1.88 (m, 1H), 1.85-1.76 (m, 3H), 1.65-1.48 (m, 4H), 1.35-1.24 (m, 6H), 0.88 (t, J = 7.0 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 200.5, 186.1, 88.0, 56.4, 44.8, 44.4, 43.5, 31.4, 30.6, 26.8, 26.3, 25.0, 24.4, 22.7, 13.8. FTIR (ATR, cm-1): 1724 (C=O st), 1632 (C=N st), 1371 (SO2 st as), 1195 (SO2 st sym). MS (70 eV) m/z (%): 313 (3), 233 (45), 220 (28), 204 (100), 190 (16), 176 (15), 164 (25), 148 (17), 125 (23), 109 (22), 95 (29), 81 (43), 67 (39), 55 (45). HRMS: calculated for [C15H24NO4S]+: 314.1426 [(M+H)+]; found: 314.1420. The ee was determined by HPLC

OSN

OO

CHOH

nPr

H

OSN

OO

CHOH

nBu

H

Page 7: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-7

using a Chiralpak IA column [n-hexane/i-PrOH (95:5)]; flow rate 1.0 mL/min; τmajor = 27.02 min, τminor = 36.08 min (95% ee). [α]D

20 = +2.3 (c = 1.00, CH2Cl2).

(3aS,4R,5S,5aR,9aR)-4-Isobutyl-4,5,5a,6,7,8,9,9a-octahydro-3aH-naphtho[1,2-d][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4e).

The cycloadduct 4e (30 mg, 0.10 mmol, 65%, dr: >20:1) was obtained after 60 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and (E)-5-methylhex-2-enal 2e (34 mg, 0.30 mmol) in the presence of DABCO (3

mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.46 (d, J = 4.4 Hz, 1H), 4.89 (d, J = 10.1 Hz, 1H), 2.35-2.16 (m, 4H), 1.94-1.89 (m, 1H), 1.84-1.75 (m, 3H), 1.63-1.46 (m, 3H), 1.34-1.22 (m, 4H), 0.91-0.87 (m, 6H). 13C-NMR (CDCl3, 75 MHz) δ 200.4, 185.4, 90.0, 58.4, 44.4, 43.3, 43.0, 42.9, 31.4, 26.3, 25.6, 25.0, 24.4, 23.3, 21.9. FTIR (ATR, cm-1): 1725 (C=O st), 1632 (C=N st), 1368 (SO2 st as), 1194 (SO2 st sym). MS (70 eV) m/z (%): 233 (82), 204 (46), 176 (61), 162 (11), 146 (95), 120 (100), 106 (40), 91 (32), 77 (30), 64 (19). HRMS: calculated for [C15H24NO4S]+: 314.1426 [(M+H)+]; found: 314.1421. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (95:5)]; flow rate 1.0 mL/min; τmajor = 26.32 min, τminor = 32.17 min (97% ee). [α]D

20 = +5.3 (c = 0.69, CH2Cl2).

(3aS,4R,5S,5aR,9aR)-4-Pentyl-4,5,5a,6,7,8,9,9a-octahydro-3aH-naphtho[1,2-d][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4f).

The cycloadduct 4f (30 mg, 0.09 mmol, 61%, dr: >20:1) was obtained after 72 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 9:1 to 8:2) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and (E)-oct-2-enal 2f (45 µL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03

mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.47 (d, J = 4.4 Hz, 1H), 4.99 (d, J = 10.4 Hz, 1H), 2.38-2.24 (m, 3H), 2.22-2.16 (m, 1H), 1.93-1.88 (m, 1H), 1.85-1.74 (m, 3H), 1.66-1.43 (m, 4H), 1.34-1.22 (m, 8H), 0.87 (t, J = 6.9 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 200.4, 186.0, 88.0, 56.4, 44.9, 44.4, 43.5, 31.7, 31.4, 30.8, 26.3, 25.0, 24.4, 24.3, 22.3, 13.9. FTIR (ATR, cm-1): 1724 (C=O st), 1632 (C=N st), 1372 (SO2 st as), 1195 (SO2 st sym). MS (70 eV) m/z (%): 327 (6), 281 (38), 234 (89), 207 (100), 164 (33), 136 (49), 108 (34), 81 (68), 55 (90). HRMS: calculated for [C16H26NO4S]+: 328.1583 [(M+H)+]; found: 328.1585. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (95:5)]; flow rate 1.0 mL/min; τmajor = 25.69 min, τminor = 34.01 min (95% ee). [α]D

20 = +3.4 (c = 1.00, CH2Cl2).

OSN

OO

CHOH

iBu

H

OSN

OO

CHOH

nC5H11

H

Page 8: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-8

(3aS,4R,5S,5aR,9aR)-4-Hexyl-4,5,5a,6,7,8,9,9a-octahydro-3aH-naphtho[1,2-d][1,2,3]oxathiazole-5-carbaldehyde 2,2-dioxide, (4g).

The cycloadduct 4g (29 mg, 0.08 mmol, 57%, dr: >20:1) was obtained after 72 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 9:1 to 8:2) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and (E)-non-2-enal 2g (50 µL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03

mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.47 (d, J = 4.3 Hz, 1H), 4.99 (d, J = 10.4 Hz, 1H), 2.39-2.23 (m, 3H), 2.21-2.14 (m, 1H), 1.95-1.87 (m, 1H), 1.84-1.75 (m, 3H), 1.66-1.43 (m, 4H), 1.35-1.20 (m, 10H), 0.87 (t, J = 6.4 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 200.4, 186.0, 88.0, 56.4, 44.9, 44.4, 43.5, 31.5, 31.4, 30.9, 29.2, 26.3, 25.0, 24.7, 24.4, 22.5, 14.0. FTIR (ATR, cm-1): 1725 (C=O st), 1632 (C=N st), 1371 (SO2 st as), 1197 (SO2 st sym). MS (70 eV) m/z (%): 341 (2), 281 (12), 261 (54), 232 (5), 207 (28), 146 (13), 96 (20), 79 (18), 55 (24). HRMS: calculated for [C17H28NO4S]+: 342.1739 [(M+H)+]; found: 342.1725. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (95:5)]; flow rate 1.0 mL/min; τmajor = 26.36 min, τminor = 34.75 min (95% ee). [α]D

20 = +2.3 (c = 1.01, CH2Cl2).

(3aS,3bR,7S,7aS,7bR,11aR)-Benzyl 7-hydroxy-4,5,7,7a,7b,8,9,10,11,11a-decahydro-3aH-benzo[h][1,2,3]oxathiazolo[5,4-f]isoquinoline-6(3bH)-carboxylate 2,2-dioxide, (4h).

The cycloadduct 4h (39 mg, 0.09 mmol, 61%, dr: >20:1) was obtained after 48 hours at room temperature as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and (E)-benzyl (5-oxopent-3-en-1-yl)carbamate 2h (70 µL, 0.30 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3,

300 MHz) δ 7.40-7.32 (m, 5H), 5.98-5.92 (m, 1H), 5.15 (s, 2H), 4.73 (d, J = 10.8 Hz, 1H), 4.05-3.97 (m, 1H), 3.23-3.17 (m, 1H), 2.46 (bs, 1H), 2.26-2.11 (m, 4H), 1.92-1.83 (m, 2H), 1.72-1.59 (m, 2H), 1.48-1.40 (m, 2H), 1.32-1.24 (m, 3H), 1.18-1.10 (m, 1H). 13C-NMR (CDCl3, 75 MHz) δ 186.1, 156.1, 136.0, 128.7, 128.4, 128.0, 89.9, 73.6, 67.7, 45.2, 45.1, 44.3, 41.7, 37.5, 29.8, 29.4, 26.2, 25.1, 24.7. FTIR (ATR, cm-1): 3408 (O-H st), 1682 (C=O st), 1629 (C=N st), 1369 (SO2 st as), 1197 (SO2 st sym). MS (70 eV) m/z (%): 207 (13), 218 (4), 147 (18), 129 (100), 112 (24), 83 (17), 70 (31), 57 (38). The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 32.52 min, τminor = 63.03 min (94% ee). [α]D

20 = +7.1 (c = 1.00, CH2Cl2).

OSN

OO

CHOH

nC6H13

H

OSN

OO

H

N

HH

H

HO

Cbz

Page 9: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-9

(3aS,4S,5S,5aR,9aR,9bR)-5-(Hydroxymethyl)-4-phenyldecahydro-1H-naphtho[1,2-d][1,2,3]oxathiazole 2,2-dioxide (4i).

The cycloadduct 4i (15 mg, 0.05 mmol, 30%, dr: >20:1) was obtained after 48 hours at room temperature as a white solid, according to the general procedure using 4-(cyclohex-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1a (30 mg, 0.15 mmol) and cinnamaldehyde 2i (28 µL, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent, following by reduction with NaBH4 (7 mg,

0.18 mmol) in MeOH (2 mL) at 0ºC and then purified by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1). 1H-NMR (MeOD, 300 MHz) δ 7.35-7.23 (m, 5H), 4.92-4.88 (m, 1H), 4.10-4.04 (m, 1H), 3.62 (dd, J = 11.2, 2.3 Hz, 1H), 3.40-3.29 (m, 3H), 3.05 (dd, J = 11.3, 2.0 Hz, 1H), 2.19-2.10 (m, 1H), 1.87-1.66 (m, 5H), 1.44-1.29 (m, 4H), 1.00-0.86 (m, 1H). 13C-NMR (MeOD, 75 MHz) δ 142.0, 130.2, 129.7, 128.1, 92.0, 61.9, 58.7, 47.9, 47.2, 43.2, 35.8, 31.8, 31.1, 27.6, 27.3. FTIR (ATR, cm-1): 3551 (O-H st), 1339 (SO2 st as), 1185 (SO2 st sym). MS (70 eV) m/z (%): 281 (38), 239 (13), 207 (100), 179 (13), 148 (60), 117 (24), 91 (44), 64 (26). HRMS: calculated for [C17H24NO4S]+: 338.1426 [(M+H)+]; found: 338.1431. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 26.01 min, τminor = 17.56 min (94% ee). [α]D

20 = -92.5 (c = 0.44, MeOH). M.p.: 177-179ºC (hexanes/EtOAc).

OSHN

OO

HPh

H

OH

Page 10: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-10

General procedure for the synthesis of Cycloadducts (5a-o).

The α,β-unsaturated aldehyde 2 (1.50 mmol) was added to a solution of diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (0.20 mmol), DABCO (0.20 mmol) and the corresponding 4-alkenyl-5H-1,2,3-oxathiazole 2,2-dioxide 1b-c (1.00 mmol) in dry CHCl3 (2 mL). The reaction was stirred at -30ºC, following its evolution by 1H-NMR. After consumption of the starting material, the product was purified by flash column chromatography with the indicated eluent, yielding the cycloadducts 5a-o.

(4R,5R,6S,7S,7aS)-4,5-Dimethyl-7-phenyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5a).

The cycloadduct 5a (30 mg, 0.10 mmol, 66%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and cinnamaldehyde 2i (28 µL, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol),

diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.34 (d, J = 3.8 Hz, 1H), 7.40-7.20 (m, 5H), 5.28 (d, J = 11.5 Hz, 1H), 3.23 (dd, J = 11.7, 11.7 Hz, 1H), 2.95-2.82 (m, 1H), 2.60 (dq, J = 12.6, 6.3 Hz, 1H), 2.08-1.93 (m, 1H), 1.43 (d, J = 6.4 Hz, 3H), 1.18 (d, J = 6.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.7, 186.2, 135.0, 129.5, 128.8, 127.8, 89.1, 57.9, 51.5, 41.7, 40.2, 17.6, 13.0. FTIR (ATR, cm-1): 1727 (C=O st), 1631 (C=N st), 1369 (SO2 st as), 1198 (SO2 st sym). MS (70 eV) m/z (%): 307 (7), 278 (21), 198 (100), 182 (31), 145 (13), 131 (64), 117 (15), 104 (31), 91 (58), 77 (32), 64 (11), 51 (12). HRMS: calculated for [C15H18NO4S]+: 308.0957 [(M+H)+]; found: 308.0954. The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 50.49 min, τminor = 39.03 min (98% ee). [α]D

20 = -50.3 (c = 1.00, CH2Cl2).

(4R,5R,6S,7S,7aS)-4,5-Dimethyl-7-(p-tolyl)-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5b).

The cycloadduct 5b (28 mg, 0.09 mmol, 59%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and (E)-4-methylcinnamaldehyde 2j (33 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.34 (d, J = 3.9 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.2 Hz, 2H), 5.25 (d, J = 11.3 Hz, 1H), 3.20 (dd, J = 11.7, 11.7 Hz 1H), 2.91-2.79 (m, 1H), 2.59 (dq, J = 12.6, 6.3 Hz, 1H), 2.33 (s, 3H), 2.06-1.92 (m, 1H), 1.43 (d, J = 6.4 Hz, 3H), 1.18 (d, J = 6.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.7, 186.1, 138.8,

OSN

OO

CHO

OSN

OO

CHOMe

Page 11: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-11

132.0, 130.2, 127.6, 89.2, 58.0, 51.2, 41.7, 40.1, 21.1, 17.7, 13.0. FTIR (ATR, cm-1): 1727 (C=O st), 1626 (C=N st), 1368 (SO2 st as), 1198 (SO2 st sym). MS (70 eV) m/z (%): 321 (12), 292 (16), 212 (100), 196 (33), 145 (39), 128 (17), 115 (30), 91 (27), 77 (11). HRMS: calculated for [C16H20NO4S]+: 322.1113 [(M+H)+]; found: 322.1115. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 20.88 min, τminor = - (>99% ee). [α]D

20 = -71.8 (c = 1.03, CH2Cl2).

(4R,5R,6S,7S,7aS)-7-(4-Methoxyphenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5c).

The cycloadduct 5c (33 mg, 0.10 mmol, 65%, dr: >20:1) was obtained after 48 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and (E)-4-methoxycinnamaldehyde 2k (37 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.33 (d, J = 3.9 Hz, 1H), 7.14 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 5.22 (d, J = 11.3 Hz, 1H), 3.78 (s, 3H), 3.19 (dd, J = 11.7, 11.7 Hz), 1H), 2.90-2.78 (m, 1H), 2.58 (dq, J = 12.6, 6.3 Hz, 1H), 2.07-1.89 (m, 1H), 1.42 (d, J = 6.3 Hz, 3H), 1.17 (d, J = 6.4 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.8, 186.2, 159.8, 128.9, 126.9, 114.8, 89.3, 58.1, 55.3, 50.8, 41.7, 40.1, 17.6, 13.0. FTIR (ATR, cm-1): 1726 (C=O st), 1625 (C=N st), 1368 (SO2 st as), 1197 (SO2 st sym). MS (70 eV) m/z (%): 337 (32), 281 (15), 256 (17), 228 (93), 207 (40), 160 (56), 134 (100), 108 (57), 91 (28), 64 (28). HRMS: calculated for [C16H20NO5S]+: 338.1062 [(M+H)+]; found: 338.1053. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 21.73 min, τminor = - (>99% ee). [α]D

20 = -60.5 (c = 1.00, CH2Cl2).

(4R,5R,6S,7S,7aS)-7-(4-Acetoxy-3-methoxyphenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5d).

The cycloadduct 5d (43 mg, 0.11 mmol, 72%, dr: >20:1) was obtained after 48 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and (E)-4-acetoxy-3-methoxycinnamaldehyde 2l (52 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.36 (d, J = 3.7 Hz, 1H), 7.02 (d, J = 8.1 Hz, 1H), 6.85-6.76 (m, 2H), 5.23 (d, J = 11.2 Hz, 1H), 3.81 (s, 3H), 3.20 (dd, J = 11.7, 11.7 Hz, 1H), 2.95-2.86 (m, 1H), 2.59 (dq, J = 12.6, 6.3 Hz, 1H), 2.30 (s, 3H), 2.04-1.89 (m, 1H), 1.41 (d, J = 6.4 Hz, 3H), 1.17 (d, J = 6.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.6, 185.9, 168.7, 151.7, 140.0, 133.8, 123.7, 119.4, 112.3, 88.9, 57.6, 56.1, 51.3, 41.7, 40.3,

OSN

OO

CHOOMe

OSN

OO

CHOOAc

OMe

Page 12: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-12

20.7, 17.6, 13.0. FTIR (ATR, cm-1): 1762 (OC=O st), 1727 (C=O st), 1629 (C=N st), 1367 (SO2 st as), 1196 (SO2 st sym). MS (70 eV) m/z (%): 281 (46), 253 (10), 207 (100), 177 (12), 129 (59), 96 (17), 64 (33). The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 85.52 min, τminor = - (>99% ee). [α]D

20 = -46.1 (c = 1.00, CH2Cl2).

(4R,5R,6S,7S,7aS)-7-(3,5-Dimethoxyphenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5e).

The cycloadduct 5e (39 mg, 0.11 mmol, 71%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and (E)-3,5-dimethoxycinnamaldehyde 2m (43 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.38 (d, J = 3.6 Hz, 1H), 6.39 (t, J = 2.2 Hz, 1H), 6.35 (d, J = 2.2 Hz, 2H), 5.27 (d, J = 11.3 Hz, 1H), 3.77 (s, 6H), 3.13 (dd, J = 11.7, 11.7 Hz, 1H), 2.90-2.77 (m, 1H), 2.57 (dq, J = 12.6, 6.3 Hz, 1H), 2.03-1.91 (m, 1H), 1.42 (d, J = 6.4 Hz, 3H), 1.18 (d, J = 6.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.5, 186.0, 161.5, 137.3, 105.9, 100.1, 88.8, 57.8, 55.4, 51.8, 41.7, 40.2, 17.6, 13.0. FTIR (ATR, cm-1): 1726 (C=O st), 1629 (C=N st), 1367 (SO2 st as), 1197 (SO2 st sym). MS (70 eV) m/z (%): 348 (5), 277 (23), 217 (13), 191 (15), 164 (100), 113 (21), 71 (33). HRMS: calculated for [C17H22NO6S]+: 368.1168 [(M+H)+]; found: 368.1167. The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (80:20)]; flow rate 1.0 mL/min; τmajor = 56.28 min, τminor = 42.95 min (99% ee). [α]D

20 = -38.8 (c = 0.90, CH2Cl2).

(4R,5R,6S,7S,7aS)-7-(4-Bromophenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5f).

The cycloadduct 5f (39 mg, 0.10 mmol, 67%, dr: >20:1) was obtained after 60 hours as a orange solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and (E)-4-bromocinnamaldehyde 2n (49 mg, 0.23 mmol) in the presence of

DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.35 (d, J = 3.8 Hz, 1H), 7.50 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 5.23 (d, J = 11.3 Hz, 1H), 3.21 (dd, J = 11.7, 11.7 Hz, 1H), 2.93-2.81 (m, 1H), 2.60 (dq, J = 12.6, 6.3 Hz, 1H), 2.06-1.92 (m, 1H), 1.42 (d, J = 6.4 Hz, 3H), 1.19 (d, J = 6.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.4, 185.9, 134.1, 132.6, 129.5, 122.9, 88.7, 57.7, 50.8, 41.7, 40.3, 17.6, 13.0. FTIR (ATR, cm-1): 1726 (C=O st), 1630 (C=N st), 1369 (SO2 st as), 1198 (SO2 st sym). MS (70 eV) m/z (%): 305 (53), 281 (36), 207 (89), 180 (29), 147 (59), 119 (3), 84 (100), 51 (41).

OSN

OO

CHO

OMe

OMe

OSN

OO

CHOBr

Page 13: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-13

HRMS: calculated for [C15H17NO4SBr]+: 386.0062 [(M+H)+]; found: 386.0072. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 29.41 min, τminor = 22.99 min (96% ee). [α]D

20 = -62.3 (c = 1.00, CH2Cl2). M.p.: 110-112ºC (hexanes/EtOAc).

(4R,5R,6S,7S,7aS)-4,5-Dimethyl-7-(4-nitrophenyl)-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5g).

The cycloadduct 5g (39 mg, 0.11 mmol, 73%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and (E)-4-nitrocinnamaldehyde 2o (41 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.42 (d, J = 3.7 Hz, 1H), 8.22 (d, J = 8.7 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 5.28 (d, J = 11.3 Hz, 1H), 3.40 (dd, J = 11.7, 11.7 Hz, 1H), 3.02-2.93 (m, 1H), 2.67 (dq, J = 12.7, 6.3 Hz, 1H), 2.10-1.97 (m, 1H), 1.45 (d, J = 6.4 Hz, 3H), 1.24 (d, J = 6.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 198.9, 185.5, 148.0, 142.4, 129.0, 124.6, 88.1, 57.5, 50.8, 41.8, 40.6, 17.6, 12.9. FTIR (ATR, cm-1): 1726 (C=O st), 1629 (C=N st), 1521 (NO2 st as), 1372 (SO2 st as), 1347 (NO2 st sym), 1199 (SO2 st sym). MS (70 eV) m/z (%): 281 (34), 245 (40), 207 (100), 170 (41), 142 (69), 115 (57), 91 (25), 64 (33). HRMS: calculated for [C15H17N2O6S]+: 353.0807 [(M+H)+]; found: 353.0815. The ee was determined by HPLC using a Chiralpak ADH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 41.51 min, τminor = 49.45 min (97% ee). [α]D

20 = -54.8 (c = 1.00, CH2Cl2).

(4R,5R,6S,7S,7aS)-7-(4-Cianophenyl)-4,5-dimethyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5h).

The cycloadduct 5h (37 mg, 0.11 mmol, 73%, dr: >20:1) was obtained after 48 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and (E)-4-cianocinnamaldehyde 2p (35 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.39 (d, J = 3.7 Hz, 1H), 7.67 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.3 Hz, 2H), 5.24 (d, J = 11.3 Hz, 1H), 3.32 (dd, J = 11.7, 11.7 Hz, 1H), 2.98-2.86 (m, 1H), 2.64 (dq, J = 12.6, 6.4 Hz, 1H), 2.08-1.95 (m, 1H), 1.44 (d, J = 6.4 Hz, 3H), 1.23 (d, J = 6.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 198.9, 185.5, 140.5, 133.1, 128.8, 118.0, 112.9, 88.2, 57.4, 51.1, 41.7, 40.5, 17.6, 12.9. FTIR (ATR, cm-1): 1725 (C=O st), 1627 (C=N st), 1372 (SO2 st as), 1198 (SO2 st sym). MS (70 eV) m/z (%): 281 (10),

OSN

OO

CHONO2

OSN

OO

CHOCN

Page 14: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-14

253 (31), 225 (32), 197 (62), 180 (14), 154 (100), 116 (31), 77 (19), 51 (15). HRMS: calculated for [C16H17N2O4S]+: 333.0909 [(M+H)+]; found: 333.0917. The ee was determined by HPLC using a Chiralpak ADH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 35.29 min, τminor = 44.40 min (98% ee). [α]D

20 = -59.9 (c = 0.83, CH2Cl2).

(4R,5R,6S,7S,7aS)-4,5-Dimethyl-7-(4-(trifluoromethyl)phenyl)-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5i).

The cycloadduct 5I (38 mg, 0.10 mmol, 67%, dr: >20:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and (E)-4-(trifluoromethyl)cinnamaldehyde 2p (45 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.39 (d, J = 3.7 Hz, 1H), 7.64 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 7.9 Hz, 2H), 5.26 (d, J = 11.3 Hz, 1H), 3.33 (dd, J = 11.7, 11.7 Hz, 1H), 3.01-2.87 (m, 1H), 2.70-2.56 (m, 1H), 2.09-1.95 (m, 1H), 1.44 (d, J = 6.3 Hz, 3H), 1.22 (d, J = 6.4 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.1, 185.6, 139.2, 131.1 (q, 2JCF = 32.9 Hz), 128.4, 126.4 (q, 3JCF = 3.5 Hz), 123.7 (q, 1JCF = 272.1 Hz), 88.5, 57.6, 51.0, 41.8, 40.5, 17.6, 12.9. FTIR (ATR, cm-1): 1727 (C=O st), 1622 (C=N st), 1369 (SO2 st as), 1199 (SO2 st sym). MS (70 eV) m/z (%): 266 (14), 239 (11), 215 (36), 199 (38), 172 (18), 155 (32), 127 (10), 113 (52), 100 (50), 85 (14), 71 (100), 58 (23). HRMS: calculated for [C16H17NO4SF3]

+: 376.0830 [(M+H)+]; found: 376.0829. The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor =

27.65 min, τminor = 22.09 min (98% ee). : -33.4 (c = 1.00, CH2Cl2).

(4R,5R,6S,7R,7aS)-4,5,7-Trimethyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5j).

The cycloadduct 5j (14 mg, 0.10 mmol, 36%, dr: >20:1) was obtained after 48 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(1-methylprop-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1b (26 mg, 0.15 mmol) and crotonaldehyde 2a (19 µL, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.48 (d, J = 4.1 Hz, 1H), 4.82 (d, J = 10.8 Hz, 1H), 2.45 (dq, J = 12.7, 6.4 Hz, 1H), 2.23-2.13 (m, 2H), 1.94-1.85 (m, 1H), 1.40 (d, J = 6.4 Hz, 3H), 1.19 (d, J = 6.0 Hz, 3H), 1.14 (d, J = 6.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 200.2, 186.4, 89.8, 59.3, 41.5, 40.1, 39.7, 17.7, 16.9, 13.0. FTIR (ATR, cm-1): 1725 (C=O st), 1629 (C=N st), 1367 (SO2 st as), 1196 (SO2 st sym). MS (70 eV) m/z (%): 217 (22), 202 (32), 188 (13), 175 (16), 152 (86), 136 (51), 124 (28), 110 (25), 96 (23), 69 (100), 55

OSN

OO

CHOCF3

OSN

OO

CHO

Page 15: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-15

(68). HRMS: calculated for [C10H16NO4S]+: 246.0800 [(M+H)+]; found: 246.0789. The ee was determined by HPLC using a Chiralpak IA column [n-hexane/i-PrOH (90:10)]; flow rate 1.0 mL/min; τmajor = 18.02 min, τminor = 20.46 min (91% ee). [α]D

20 = -19.5 (c = 0.67, CH2Cl2).

(4R,5R,6S,7S,7aS)-5-Ethyl-4-methyl-7-phenyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5k).

The cycloadduct 5k (28 mg, 0.09 mmol, 57%, dr: >20:1) was obtained after 60 hours as a yellow solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 8:2 to 7:3) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1c (28 mg, 0.15 mmol) and cinnamaldehyde 2i (28 µL, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol),

diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.34 (d, J = 4.1 Hz, 1H), 7.40-7.21 (m, 5H), 5.23 (d, J = 11.1 Hz, 1H), 3.25 (dd, J = 11.5, 11.5 Hz, 1H), 3.12-3.03 (m, J = 11.5, 4.1 Hz, 1H), 2.81 (dq, J = 12.5, 6.3 Hz, 1H), 2.14-2.05 (m, 1H), 1.82-1.71 (m, 1H), 1.61-1.51 (m, 1H), 1.40 (d, J = 6.4 Hz, 3H), 0.97 (t, J = 7.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.3, 186.8, 135.1, 129.5, 128.9, 127.8, 88.9, 53.9, 51.7, 44.9, 37.8, 21.4, 12.6, 7.2. FTIR (ATR, cm-1): 1726 (C=O st), 1626 (C=N st), 1368 (SO2 st as), 1196 (SO2 st sym). MS (70 eV) m/z (%): 238 (24), 207 (28), 147 (19), 129 (10), 112 (23), 83 (20), 57 (38). HRMS: calculated for [C16H20NO4S]+: 322.1113 [(M+H)+]; found: 322.1123. The ee was determined by HPLC using a Chiralpak ASH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 51.80 min, τminor = 60.44 min (96% ee). [α]D

20 = -64.1 (c = 0.44, CH2Cl2). M.p.: 167-169ºC (hexanes/EtOAc).

(4R,5R,6S,7S,7aS)-5-Ethyl-7-(4-methoxyphenyl)-4-methyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5l).

The cycloadduct 5l (35 mg, 0.10 mmol, 66%, dr: 10:1) was obtained after 60 hours as a yellow solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1c (28 mg, 0.15 mmol) and (E)-4-methoxycinnamaldehyde 2k (37 mg, 0.23 mmol) in the

presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.32 (d, J = 4.1 Hz, 1H), 7.14 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 5.19 (d, J = 11.1 Hz, 1H), 3.78 (s, 3H), 3.20 (dd, J = 11.5, 11.5 Hz, 1H), 3.08-2.99 (m, 1H), 2.84-2.74 (m, 1H), 2.10-2.00 (m, 1H), 1.80-1.70 (m, 1H), 1.58-1.48 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.6, 187.0, 159.8, 128.9, 127.0, 114.8, 89.2, 55.3, 54.1, 51.0, 44.7, 37.8, 21.4, 12.6, 7.2. FTIR (ATR, cm-1): 1726 (C=O st), 1626 (C=N st), 1370 (SO2 st as), 1197 (SO2 st sym). MS (70 eV) m/z (%): 244 (12), 215 (100), 187 (12), 175 (26), 134 (28), 121 (25), 91 (13), 77 (8). HRMS: calculated

OSN

OO

CHO

OSN

OO

CHOOMe

Page 16: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-16

for [C17H22NO5S]+: 352.1219 [(M+H)+]; found: 352.1236. The ee was determined by HPLC using a Chiralcel OZ3 column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 30.50 min, τminor = 23.85 min (99% ee). [α]D

20 = -68.6 (c = 1.00, CH2Cl2). M.p.: 68-70ºC (hexanes/EtOAc).

(4R,5R,6S,7S,7aS)-7-(3,5-Dimethoxyphenyl)-5-ethyl-4-methyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5m).

The cycloadduct 5m (35 mg, 0.09 mmol, 61%, dr: 8:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1c (28 mg, 0.15 mmol) and (E)-3,5-dimethoxycinnamaldehyde 2m (43 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and

using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) δ 9.37 (d, J = 3.8 Hz, 1H), 6.40-6.34 (m, 3H), 5.26 (d, J = 11.0 Hz, 1H), 3.77 (s, 6H), 3.20-3.07 (m, 1H), 3.07-2.97 (m, 1H), 2.85-2.75 (m, 1H), 2.08-1.99 (m, 1H), 1.76-1.68 (m, 1H), 1.59-1.49 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 199.4, 187.0, 161.5, 137.5, 106.0, 100.0, 88.8, 55.4, 53.8, 51.9, 44.9, 37.8, 21.3, 12.6, 7.2. FTIR (ATR, cm-1): 1725 (C=O st), 1627 (C=N st), 1368 (SO2 st as), 1196 (SO2 st sym). MS (70 eV) m/z (%): 348 (8), 263 (29), 231 (12), 189 (27), 164 (100), 113 (33), 91 (9), 77 (6). HRMS: calculated for [C18H24NO6S]+: 382.1324 [(M+H)+]; found: 382.1323. The ee was determined by HPLC using a Chiralcel OZ3 column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 17.84 min, τminor = 32.09 min (99% ee). [α]D

20 = -34.4 (c = 1.00, CH2Cl2).

(4R,5R,6S,7S,7aS)-7-(4-Bromophenyl)-5-ethyl-4-methyl-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5n).

The cycloadduct 5n (37 mg, 0.09 mmol, 62%, dr: 8:1) was obtained after 60 hours as a yellow oil, after isolation by flash column chromatography (hexanes/EtOAc gradient from 7:3 to 6:4) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1c (28 mg, 0.15 mmol) and (E)-4-bromocinnamaldehyde 2n (49 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) (*denotes minor diastereoisomer signals), δ 9.34 (d, J = 4.1 Hz, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 5.37* (d, J = 11.1 Hz, 1H), 5.18 (d, J = 11.2 Hz, 1H), 3.49-3.36* (m, 1H), 3.23 (dd, J = 11.5, 11.5 Hz, 1H), 3.10-2.98 (m, 1H), 2.81 (dq, J = 12.5, 6.3 Hz, 1H), 2.26-2.16* (m, 1H), 2.13-2.01 (m, 1H), 1.84-1.70 (m, 1H), 1.58-1.48 (m, 1H), 1.38 (d, J = 6.3 Hz, 3H), 1.31* (d, J = 7.3 Hz, 3H), 1.12* (t, J = 7.4 Hz, 3H), 0.96 (t, J = 7.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) (*denotes minor diastereoisomer signals), δ 199.6*, 199.1, 195.6*, 186.8, 134.3*, 134.2,

OSN

OO

CHO

OMe

OMe

OSN

OO

CHOBr

Page 17: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-17

132.6, 132.3*, 130.5*, 129.5, 122.9, 122.3*, 88.7, 86.6*, 53.7, 52.8*, 51.0, 48.4*, 45.3*, 44.9, 37.8, 35.4*, 23.1*, 21.4, 12.6, 11.2*, 10.9*, 7.2. FTIR (ATR, cm-1): 1724 (C=O st), 1626 (C=N st), 1371 (SO2 st as), 1198 (SO2 st sym). MS (70 eV) m/z (%): 293 (57), 265 (54), 251 (14), 186 (29), 171 (56), 157 (100), 143 (32), 129 (71), 115 (57), 102 (31), 77 (22), 63 (16). HRMS: calculated for [C16H19NO4SBr]+: 400.0218 [(M+H)+]; found: 400.0234. The ee was determined by HPLC using a Chiralcel OZ3 column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 21.40 min, τminor = 14.66 min (97% ee). [α]D

20 = -53.5 (c = 1.07, CH2Cl2).

(4R,5R,6S,7S,7aS)-5-Ethyl-4-methyl-7-(4-nitrophenyl)-5,6,7,7a-tetrahydro-4H-benzo[d][1,2,3]oxathiazole-6-carbaldehyde 2,2-dioxide, (5o).

The cycloadduct 5o (27 mg, 0.07 mmol, 50%, dr: 13:1) was obtained after 60 hours as a yellow solid, after isolation by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1) according to the general procedure using 4-(1-methylbut-1-en-1-yl)-5H-1,2,3-oxathiazole 2,2-dioxide 1c (28 mg, 0.15 mmol) and (E)-4-nitrocinnamaldehyde 2o (41 mg, 0.23 mmol) in the presence of DABCO (3 mg, 0.03 mmol), diphenyl-2-

pyrrolidinemethanoltrimethylsilyl ether 3a (10 mg, 0.03 mmol) and using dry CHCl3 (0.3 mL) as solvent. 1H-NMR (CDCl3, 300 MHz) (*denotes minor diastereoisomer signals), δ 9.43* (d, J = 3.8 Hz, 1H), 9.40 (d, J = 3.9 Hz, 1H), 8.22 (d, J = 8.7 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 5.43* (d, J = 11.2 Hz, 1H), 5.25 (d, J = 11.2 Hz, 1H), 3.41 (dd, J = 11.5, 11.5 Hz, 1H), 3.20-3.11 (m, 1H), 2.87 (dq, J = 12.5, 6.3 Hz, 1H), 2.16-2.06 (m, 1H), 1.86-1.75 (m, 1H), 1.63-1.51 (m, 1H), 1.40 (d, J = 6.3 Hz, 3H), 1.00 (t, J = 7.5 Hz, 3H). 13C-NMR (CDCl3, 75 MHz) δ 198.7, 186.3, 148.0, 142.5, 129.1, 124.5, 88.1, 53.6, 51.0, 45.3, 37.9, 21.4, 12.5, 7.2. FTIR (ATR, cm-1): 1725 (C=O st), 1627 (C=N st), 1520 (NO2 st as), 1373 (SO2 st as), 1348 (NO2 st sym), 1199 (SO2 st sym). MS (70 eV) m/z (%): 281 (9), 207 (29), 147 (21), 129 (100), 112 (25), 71 (24), 57 (42). The ee was determined by HPLC using a Chiralpak ADH column [n-hexane/i-PrOH (85:15)]; flow rate 1.0 mL/min; τmajor = 61.50 min, τminor = 41.73 min (94% ee). [α]D

20 = -59.4 (c = 1.00, CH2Cl2). M.p.: 91-93ºC (hexanes/EtOAc).

OSN

OO

CHONO2

Page 18: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-18

General procedure for the synthesis of cyclic sulfamidate amine (6)

NaBH4 (1.20 mmol) was added to a solution of the cycloadduct 4a (1.00 mmol) in MeOH (10 mL) at 0ºC. The mixture was stirred at 0ºC for 10 minutes, NH4Cl sat. (10 mL) was added to quenched the reaction and it was stirred for another 5 minutes. The mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dry with anhydrous Na2SO4, filtered and the solvent was removed under reduced pressure. The sulfamidate amine 6 were obtained following this procedure, and purified by flash column chromatography (hexanes/EtOAc gradient from 6:4 to 1:1).

(3aS,4R,5S,5aR,9aR,9bR)-5-(Hydroxymethyl)-4-methyldecahydro-1H-naphtho[1,2-d][1,2,3]oxathiazole 2,2-dioxide (6).

The sulfamidate amine 6 (27 mg, 0.10 mmol, >99%, dr: >20:1) was obtained as a white solid according to the general procedure using NaBH4 (5 mg, 0.12 mmol) and cycloadduct 4a (27 mg, 0.10 mmol) in MeOH (1 mL). 1H-NMR (CDCl3, 300 MHz) δ 5.27 (d, J = 9.0 Hz, 1H), 4.35 (dd, J = 10.4, 5.0 Hz, 1H), 4.06-4.00 (m, 1H), 3.88-3.72 (m, 2H), 2.28-2.07 (m, 3H), 1.83-1.72 (m, 3H), 1.59-1.41 (m, 2H), 1.32-1.20 (m, 3H), 1.12 (d, J = 6.4 Hz, 3H), 0.87-0.73 (m, 2H). 13C-NMR (CDCl3, 75 MHz) δ 91.8, 60.2,

57.7, 47.1, 41.9, 34.0, 32.9, 30.4, 29.8, 26.1, 25.8, 15.2. FTIR (ATR, cm-1): 3547 (O-H st), 3261 (N-H st), 1342 (SO2 st as), 1184 (SO2 st sym). . MS (70 eV) m/z (%): 245 (24), 190 (14), 163 (20), 148 (100), 133 (14), 119 (19), 105 (40), 91 (27), 70 (36), 55 (22). HRMS: calculated for [C12H22NO4S]+: 276.1270 [(M+H)+]; found: 276.1272. The ee was determined by HPLC using a Chiralpak ADH column [n-hexane/i-PrOH (98:2)]; flow rate 1.0 mL/min; τmajor = 20.14 min, τminor = 22.86 min (92% ee). [α]D

20 = -66.8 (c = 1.00, CH2Cl2). M.p.: 155-157ºC (n-hexane/EtOAc).

OSHN

OO

HMe

H

OH

Page 19: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-19

General procedure for the synthesis of β-aminoalcohol (7)

To a suspension of LAH (3.00 mmol) in dry THF (10 mL) the sulfamidate amine 6 (1.00 mmol) in dry THF (20 mL) was added dropwise at 0ºC. The reaction mixture was stirred under reflux for 1 hour, and then HCl 1M (3 mL) was added at room temperature. The reaction was stirred under reflux for 1 hour and then cooled to room temperature. The mixture was washed with CH2Cl2 (3 × 10 mL). The aqueous layer was basified with NaOH 1M and then was extracted with CH2Cl2 (3 × 10 mL). The combined organic layers were dry over Na2SO4 and the solvent was removed under reduced pressure, obtaining the β-aminoalcohol 7.

(1R,2S,3R,4S,4aR,8aR)-1-Amino-4-(hydroxymethyl)-3-methyldecahydronaphthalen-2-ol (7).

The β-aminoalcohol 7 (55 mg, 0.26 mmol, 56%, dr: >20:1) was obtained as a white solid according to the general procedure using LAH (52 mg, 1.38 mmol) and sulfamidate amine 6 (127 mg, 0.46 mmol) in dry THF (5 mL), and then using HCl 1M (1 mL). 1H-NMR (CDCl3, 300 MHz) δ 3.83-3.71 (m, 2H), 3.12 (dd, J = 10.6, 4.1 Hz, 1H), 2.86-2.80 (m, 1H), 2.24-2.02 (m, 4H), 1.80-1.72 (m, 2H), 1.62-1.48 (m, 2H), 1.40-1.14 (m, 6H), 1.07 (d,

J = 6.3 Hz, 3H), 0.86-0.66 (m, 2H). 13C-NMR (CDCl3, 75 MHz) δ 76.1, 58.6, 56.0, 49.4, 44.8, 33.3, 33.3, 30.6, 30.3, 26.3, 26.2, 15.5. FTIR (ATR, cm-1): 3356 (O-H st). MS (70 eV) m/z (%): 207 (94), 129 (100), 84 (23), 57 (52). HRMS: calculated for [C12H24NO2]

+: 214.1807 [(M+H)+]; found: 214.1810. [α]D

20 = -37.1 (c = 1.00, CH2Cl2). M.p.: 102-104ºC (CH2Cl2).

HMe

H

OH

NH2

OH

Page 20: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-20

NMR spectra

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

4.14

4.06

2.01

1.00

1.61

1.71

1.71

1.72

1.81

2.35

2.36

2.38

2.38

2.40

5.31

6.77

6.78

6.80

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

21.11

21.33

24.18

26.90

74.03

131.30

146.77

175.67

Figure 1: 1H-NMR and 13C-NMR spectra for compound 1a.

NO

SO

O

Page 21: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-21

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

6.08

2.06

1.00

1.99

2.01

5.32

6.52

6.54

6.57

6.59

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.51

15.55

74.09

130.21

144.15

176.64

Figure 2: 1H-NMR and 13C-NMR spectra for compound 1b.

NO

SO

O

Page 22: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-22

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.04

3.00

2.06

2.02

1.00

1.07

1.10

1.12

2.00

2.32

2.35

2.37

2.40

2.42

5.33

6.40

6.41

6.43

6.43

6.45

6.46

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.58

12.63

22.98

74.16

128.73

150.78

176.89

Figure 3: 1H-NMR and 13C-NMR spectra for compound 1c.

NO

SO

O

Page 23: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-23

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.09

3.05

1.37

3.14

1.17

3.15

1.10

1.00

1.03

1.18

1.20

1.22

1.24

1.26

1.27

1.29

1.30

1.33

1.59

1.62

1.64

1.77

1.78

1.81

1.82

1.85

1.89

1.90

1.93

2.17

2.18

2.19

2.20

2.21

2.21

2.22

2.23

2.24

2.25

2.29

2.30

2.33

2.34

2.37

2.38

4.80

4.83

9.48

9.50

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

17.01

24.44

24.98

26.22

31.33

40.67

43.62

44.48

58.48

89.93

185.46

200.43

Figure 4: 1H-NMR and 13C-NMR spectra for compound 4a.

OSN

OO

CHOH

Me

H

Page 24: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-24

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.06

3.02

2.22

1.03

3.03

1.18

4.11

1.00

0.99

0.95

0.97

1.00

1.23

1.26

1.28

1.29

1.52

1.53

1.54

1.56

1.57

1.58

1.62

1.68

1.69

1.70

1.71

1.73

1.74

1.76

1.80

1.82

1.83

1.87

1.89

1.89

2.16

2.21

2.23

2.25

2.27

2.28

2.31

2.33

2.35

2.36

4.99

5.03

9.46

9.48

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

8.74

23.12

24.43

24.98

26.26

31.38

43.44

44.39

45.58

55.62

87.19

186.17

200.39

Figure 5: 1H-NMR and 13C-NMR spectra for compound 4b.

OSN

OO

CHOH

Et

H

Page 25: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-25

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.04

8.08

3.01

1.00

1.10

3.03

1.00

1.00

0.89

0.91

0.93

1.22

1.24

1.26

1.27

1.29

1.31

1.34

1.37

1.39

1.41

1.44

1.45

1.46

1.48

1.49

1.51

1.53

1.54

1.55

1.58

1.59

1.77

1.78

1.81

1.82

2.16

2.17

2.22

2.26

2.27

2.30

2.31

2.32

2.33

4.95

4.99

9.47

9.48

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

14.05

18.28

24.42

24.97

26.26

31.37

33.27

43.46

44.42

44.75

56.61

88.08

185.85

200.36

Figure 6: 1H-NMR and 13C-NMR spectra for compound 4c.

OSN

OO

CHOH

nPr

H

Page 26: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-26

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.25

6.12

4.00

3.03

1.09

1.14

3.05

1.00

1.01

0.86

0.89

0.91

1.28

1.30

1.32

1.35

1.50

1.52

1.55

1.57

1.58

1.61

1.76

1.78

1.79

1.82

1.88

2.16

2.20

2.21

2.27

2.27

2.30

2.31

2.33

2.34

4.98

5.01

9.46

9.48

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

13.75

22.70

24.42

24.97

26.26

26.84

30.59

31.36

43.46

44.39

44.83

56.43

88.00

186.06

200.46

Figure 7: 1H-NMR and 13C-NMR spectra for compound 4d.

OSN

OO

CHOH

nBu

H

Page 27: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-27

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

6.01

4.07

3.03

3.06

1.13

4.17

1.00

0.98

0.87

0.88

0.89

0.90

1.22

1.25

1.27

1.28

1.30

1.31

1.48

1.50

1.55

1.59

1.63

1.75

1.77

1.80

1.84

1.89

2.16

2.22

2.24

2.26

2.27

2.30

2.31

4.88

4.91

9.45

9.46

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

21.92

23.29

24.39

24.95

25.64

26.28

31.36

42.96

43.02

43.32

44.41

58.41

89.96

185.42

200.36

Figure 8: 1H-NMR and 13C-NMR spectra for compound 4e.

OSN

OO

CHOH

iBu

H

Page 28: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-28

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.04

8.31

4.10

3.03

1.05

1.08

3.01

1.00

1.02

0.85

0.87

0.90

1.22

1.23

1.26

1.29

1.30

1.34

1.49

1.53

1.54

1.56

1.58

1.59

1.61

1.75

1.78

1.79

1.82

2.20

2.25

2.27

2.30

2.31

2.33

2.34

4.97

5.01

9.46

9.48

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

13.91

22.32

24.37

24.42

24.97

26.26

30.82

31.36

31.72

43.46

44.40

44.85

56.42

87.98

186.03

200.41

Figure 9: 1H-NMR and 13C-NMR spectra for compound 4f.

OSN

OO

CHOH

nC5H11

H

Page 29: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-29

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.07

10.14

4.09

3.07

1.01

1.11

2.97

1.00

1.03

0.85

0.87

0.89

1.26

1.33

1.50

1.51

1.53

1.55

1.58

1.59

1.61

1.75

1.76

1.78

1.79

1.82

1.88

2.16

2.20

2.21

2.26

2.27

2.29

2.30

2.32

2.34

4.97

5.01

9.46

9.48

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

13.99

22.49

24.43

24.68

24.97

26.26

29.24

30.89

31.36

31.45

43.45

44.40

44.85

56.43

87.97

185.99

200.38

Figure 10: 1H-NMR and 13C-NMR spectra for compound 4g.

OSN

OO

CHOH

nC6H13

H

Page 30: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-30

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.0f1 (ppm)

1.11

3.29

2.22

2.04

2.11

4.43

0.83

1.01

1.02

1.00

2.00

0.97

5.04

1.15

1.25

1.27

1.28

1.31

1.41

1.43

1.45

1.46

1.59

1.67

1.68

1.69

1.70

1.85

1.87

1.89

2.11

2.13

2.16

2.17

2.18

2.19

2.21

2.21

2.23

2.23

3.17

3.18

3.20

3.21

3.23

3.23

3.97

3.99

4.02

4.72

4.74

5.15

5.95

7.33

7.34

7.35

7.37

7.38

7.39

7.40

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

24.67

25.08

26.22

29.41

29.75

37.49

41.70

44.31

45.07

45.22

67.70

73.56

89.85

128.05

128.39

128.66

135.97

186.07

Page 31: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-31

0.51.01.52.02.53.03.54.04.55.05.56.06.57.07.5f2 (ppm)

0

20

40

60

80

100

120

140

160

180

200

220

f1 (ppm)

IR626B

Figure 11: 1H-NMR, 13C-NMR and HMBC spectra for compound 4h.

Page 32: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-32

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

1.07

4.15

5.00

1.05

1.04

3.02

1.02

1.00

1.07

5.07

0.88

0.92

0.92

0.95

0.96

1.00

1.29

1.34

1.35

1.40

1.41

1.44

1.66

1.68

1.71

1.74

1.74

1.77

1.78

1.81

1.82

2.12

2.16

3.03

3.06

3.07

3.30

3.31

3.32

3.36

3.61

4.05

4.06

4.08

4.88

4.89

4.91

7.24

7.27

7.27

7.29

7.31

7.33

7.35

-100102030405060708090100110120130140150160170180190200210220f1 (ppm)

27.25

27.56

31.07

31.75

35.77

43.22

47.24

47.89

58.74

61.92

91.96

128.08

129.72

130.17

141.96

Figure 12: 1H-NMR and 13C-NMR spectra for compound 4i.

Page 33: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-33

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

2.98

2.98

1.02

0.98

0.97

1.07

1.00

5.13

1.02

1.17

1.19

1.42

1.44

1.98

1.99

2.01

2.03

2.55

2.57

2.59

2.61

2.63

2.65

2.84

2.86

2.88

2.90

2.92

2.93

3.20

3.23

3.27

5.26

5.29

7.22

7.24

7.24

7.29

7.32

7.34

7.37

7.39

9.34

9.35

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.99

17.64

40.19

41.72

51.52

57.92

89.08

127.76

128.83

129.46

135.04

186.15

199.67

Figure 13: 1H-NMR and 13C-NMR spectra for compound 5a.

Page 34: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-34

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.00

3.02

1.08

3.07

1.05

1.04

1.10

1.00

2.03

2.07

1.00

1.17

1.19

1.42

1.44

1.95

1.97

1.98

2.00

2.02

2.04

2.33

2.54

2.56

2.58

2.59

2.61

2.64

2.81

2.83

2.85

2.87

2.89

2.90

3.16

3.20

3.24

5.23

5.26

7.10

7.13

7.16

7.19

9.33

9.34

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

13.01

17.66

21.10

40.13

41.73

51.22

58.00

89.18

127.59

130.15

131.96

138.75

186.09

199.73

Figure 14: 1H-NMR and 13C-NMR spectra for compound 5b.

Page 35: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-35

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.06

3.03

1.09

1.07

1.09

1.05

3.00

1.00

2.08

2.09

1.00

1.16

1.18

1.41

1.43

1.95

1.97

1.99

2.01

2.03

2.55

2.57

2.59

2.61

2.83

2.84

2.88

3.15

3.19

3.23

3.78

5.20

5.24

6.87

6.89

7.13

7.16

9.32

9.33

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

13.00

17.64

40.07

41.70

50.84

55.31

58.07

89.31

114.83

126.86

128.86

159.79

186.19

199.80

Figure 15: 1H-NMR and 13C-NMR spectra for compound 5c.

Page 36: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-36

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.01

3.05

1.08

3.07

1.02

1.05

1.04

3.05

1.00

2.10

1.04

1.02

1.16

1.19

1.40

1.42

1.95

1.97

2.30

2.56

2.58

2.60

2.62

2.90

2.91

2.95

3.16

3.20

3.24

3.81

5.21

5.25

6.77

6.77

6.80

6.81

6.83

6.83

7.01

7.04

9.36

9.37

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.96

17.61

20.65

40.33

41.71

51.33

56.05

57.55

88.87

112.29

119.41

123.69

133.82

140.02

151.70

168.68

185.90

199.58

Figure 16: 1H-NMR and 13C-NMR spectra for compound 5d.

Page 37: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-37

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.07

3.09

1.04

1.10

1.08

1.08

6.09

1.00

2.02

1.08

1.00

1.16

1.19

1.41

1.43

1.96

1.98

2.00

2.02

2.54

2.56

2.58

2.60

2.83

2.85

3.09

3.13

3.17

3.77

5.25

5.29

6.35

6.36

6.38

6.39

6.40

9.37

9.39

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.96

17.63

40.19

41.72

51.75

55.41

57.78

88.80

100.06

105.87

137.28

161.51

185.99

199.55

Figure 17: 1H-NMR and 13C-NMR spectra for compound 5e.

Page 38: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-38

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.04

3.00

1.09

1.07

1.05

1.09

1.00

2.03

2.04

1.00

1.18

1.20

1.41

1.43

1.98

2.00

2.01

2.03

2.55

2.57

2.60

2.61

2.63

2.65

2.82

2.83

2.86

2.87

2.90

2.91

3.18

3.21

3.25

5.21

5.24

7.10

7.13

7.48

7.51

9.35

9.36

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.95

17.61

40.28

41.71

50.81

57.67

88.73

122.95

129.45

132.63

134.13

185.89

199.36

Figure 18: 1H-NMR and 13C-NMR spectra for compound 5f.

Page 39: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-39

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.12

3.03

1.08

1.01

1.23

1.01

1.00

2.04

2.03

1.00

1.23

1.25

1.43

1.46

2.01

2.02

2.04

2.06

2.64

2.66

2.67

2.97

2.98

3.36

3.40

3.43

5.26

5.30

7.43

7.46

8.21

8.24

9.41

9.42

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.90

17.59

40.60

41.76

50.80

57.47

88.15

124.55

129.03

142.44

148.02

185.50

198.91

Figure 19: 1H-NMR and 13C-NMR spectra for compound 5g.

Page 40: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-40

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.00

3.01

1.18

1.04

1.11

1.03

1.00

2.09

2.09

1.00

1.22

1.24

1.43

1.45

1.99

2.00

2.03

2.04

2.61

2.63

2.65

2.92

2.94

3.29

3.32

3.36

5.23

5.26

7.36

7.39

7.66

7.69

9.39

9.40

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.91

17.60

40.52

41.74

51.05

57.40

88.18

112.89

118.00

128.82

133.13

140.49

185.52

198.94

Figure 20: 1H-NMR and 13C-NMR spectra for compound 5h.

Page 41: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-41

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.14

3.03

1.14

1.06

1.09

1.02

1.00

2.05

2.13

1.01

1.21

1.23

1.43

1.45

1.99

2.01

2.03

2.04

2.58

2.60

2.63

2.64

2.66

2.68

2.89

2.90

2.93

2.94

2.97

2.98

3.29

3.33

3.37

5.24

5.28

7.36

7.39

7.63

7.65

9.38

9.39

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.92

17.60

40.45

41.76

51.02

57.58

88.49

118.25

121.85

125.46

126.36

126.40

126.45

126.50

128.37

129.07

130.46

130.89

131.33

131.76

139.15

185.62

199.12

Figure 21: 1H-NMR and 13C-NMR spectra for compound 5i.

Page 42: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-42

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.12

3.00

3.10

1.08

2.08

1.10

1.00

1.08

1.13

1.15

1.18

1.20

1.39

1.41

1.85

1.87

1.87

1.89

1.91

1.92

1.94

2.15

2.16

2.17

2.19

2.21

2.22

2.40

2.42

2.44

2.45

2.48

2.50

4.80

4.84

9.47

9.49

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

12.95

16.94

17.71

39.71

40.07

41.50

59.33

89.84

186.39

200.21

Figure 22: 1H-NMR and 13C-NMR spectra for compound 5j.

Page 43: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-43

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.07

3.07

1.15

1.15

1.05

1.05

1.06

1.03

1.00

5.74

0.97

0.95

0.97

1.00

1.39

1.42

1.56

1.57

1.59

1.76

1.77

2.09

2.76

2.78

2.80

2.82

2.84

2.86

3.03

3.04

3.07

3.08

3.11

3.12

3.22

3.25

3.29

5.21

5.25

7.22

7.25

7.32

7.34

7.35

7.38

7.40

9.33

9.35

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

7.18

12.63

21.37

37.81

44.87

51.69

53.94

88.91

127.78

128.85

129.46

135.08

186.76

199.32

Figure 23: 1H-NMR and 13C-NMR spectra for compound 5k.

Page 44: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-44

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.04

3.11

1.22

1.19

1.13

1.10

1.08

1.13

3.01

1.00

2.06

2.01

0.96

0.93

0.95

0.98

1.37

1.39

1.54

1.55

1.74

1.75

2.04

2.06

2.78

2.80

3.02

3.03

3.07

3.17

3.20

3.24

3.78

5.17

5.21

6.86

6.89

7.13

7.16

9.31

9.32

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

7.16

12.62

21.37

37.75

44.74

50.98

54.08

55.30

89.23

114.81

126.96

128.90

159.77

187.02

199.57

Figure 24: 1H-NMR and 13C-NMR spectra for compound 5l.

Page 45: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-45

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.06

3.05

1.13

1.16

1.11

1.15

1.12

1.32

6.13

1.00

3.08

0.96

0.93

0.95

0.98

1.36

1.39

1.54

1.55

1.72

1.74

2.04

2.05

2.79

2.81

3.02

3.03

3.07

3.11

3.15

3.19

3.77

5.24

5.27

6.35

6.35

6.37

6.38

6.39

9.36

9.37

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

7.23

12.59

21.34

37.76

44.88

51.89

53.82

55.41

88.75

99.95

105.96

137.45

161.47

186.99

199.37

Figure 25: 1H-NMR and 13C-NMR spectra for compound 5m.

Page 46: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-46

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.15

0.49

0.37

3.02

1.16

1.07

1.07

0.09

1.01

1.23

1.15

0.09

1.00

0.09

2.07

2.24

0.97

0.94

0.96

0.99

1.12

1.15

1.29

1.32

1.37

1.39

1.52

1.53

1.54

1.55

1.58

1.74

1.75

1.76

1.79

2.04

2.05

2.07

2.08

2.76

2.78

2.80

2.82

2.84

2.86

3.00

3.01

3.04

3.05

3.08

3.09

3.19

3.23

3.27

5.17

5.20

5.35

5.39

7.10

7.12

7.48

7.51

9.33

9.35

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

7.15

10.87

11.18

12.57

21.36

23.14

35.42

37.77

44.94

45.32

48.38

50.97

52.83

53.71

86.62

88.65

122.26

122.93

129.50

130.50

132.30

132.60

134.21

134.28

186.77

195.56

199.14

199.60

Figure 26: 1H-NMR and 13C-NMR spectra for compound 5n.

Page 47: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-47

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

3.19

3.01

0.69

0.99

1.01

1.00

1.16

1.12

1.00

0.07

2.04

2.19

0.96

0.08

0.97

1.00

1.02

1.39

1.41

1.56

1.58

1.63

1.80

1.81

2.11

2.82

2.84

2.86

2.88

2.90

2.92

3.11

3.12

3.15

3.16

3.19

3.20

3.37

3.41

3.45

5.23

5.27

5.41

5.45

7.43

7.46

8.21

8.24

9.39

9.41

9.43

9.44

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

7.15

12.53

21.35

37.86

45.26

50.98

53.55

88.06

124.54

129.07

142.48

148.02

186.33

198.68

Figure 27: 1H-NMR and 13C-NMR spectra for compound 5o.

Page 48: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-48

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

2.03

3.06

3.23

2.08

3.10

3.15

2.02

1.04

1.02

1.00

0.73

0.77

0.80

0.84

0.87

1.11

1.13

1.32

1.41

1.48

1.50

1.51

1.55

1.59

1.72

1.78

1.81

2.07

2.11

2.15

2.17

2.18

2.21

2.22

2.26

3.72

3.76

3.84

3.88

4.00

4.02

4.03

4.05

4.06

4.33

4.34

4.36

4.38

5.25

5.28

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

15.21

25.75

26.07

29.76

30.40

32.90

33.97

41.85

47.07

57.73

60.15

91.82

Figure 28: 1H-NMR and 13C-NMR spectra for compound 6.

HMe

H

OH

O

SHN

OO

Page 49: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-49

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.5f1 (ppm)

2.04

3.09

6.05

2.24

2.05

4.28

1.01

1.00

2.08

0.69

0.73

1.06

1.08

1.16

1.20

1.21

1.24

1.28

1.33

1.34

1.36

1.38

1.49

1.53

1.57

1.74

1.76

1.77

2.03

2.08

2.13

2.83

2.84

3.09

3.10

3.13

3.71

3.71

3.74

3.75

3.78

3.79

3.82

3.83

-100102030405060708090100110120130140150160170180190200210f1 (ppm)

15.48

26.25

26.27

30.30

30.60

33.28

44.78

49.44

55.95

58.55

76.05

Figure 29: 1H-NMR and 13C-NMR spectra for compound 7.

HMe

HOH

NH2

OH

Page 50: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-50

HPLC Chromatograms

OSN

OO

CHOH

Me

H

Figure 30: HPLC chromatogram for compounds rac-4a and 4a.

Page 51: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-51

OSN

OO

CHOH

Et

H

Figure 31: HPLC chromatogram for compounds rac-4b and 4b.

Page 52: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-52

OSN

OO

CHOH

nPr

H

Figure 32: HPLC chromatogram for compounds rac-4c and 4c.

Page 53: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-53

Figure 33: HPLC chromatogram for compounds rac-4d and 4d.

Page 54: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-54

Figure 34: HPLC chromatogram for compounds rac-4e and 4e.

Page 55: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-55

Figure 35: HPLC chromatogram for compounds rac-4f and 4f.

Page 56: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-56

Figure 36: HPLC chromatogram for compounds rac-4g and 4g.

Page 57: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-57

Figure 37: HPLC chromatogram for compounds rac-4h and 4h.

Page 58: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-58

Figure 38: HPLC chromatogram for compounds rac-4i and 4i.

Page 59: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-59

Figure 39: HPLC chromatogram for compounds rac-5a and 5a.

Page 60: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-60

Figure 40: HPLC chromatogram for compounds rac-5b and 5b.

Page 61: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-61

Figure 41: HPLC chromatogram for compounds rac-5c and 5c.

Page 62: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-62

Figure 42: HPLC chromatogram for compounds rac-5d and 5d.

Page 63: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-63

Figure 43: HPLC chromatogram for compounds rac-5e and 5e.

Page 64: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-64

Figure 44: HPLC chromatogram for compounds rac-5f and 5f.

Page 65: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-65

Figure 45: HPLC chromatogram for compounds rac-5g and 5g.

Page 66: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-66

Figure 46: HPLC chromatogram for compounds rac-5h and 5h.

Page 67: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-67

Figure 47: HPLC chromatogram for compounds rac-5i and 5i.

Page 68: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-68

Figure 48: HPLC chromatogram for compounds rac-5j and 5j.

Page 69: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-69

Figure 49: HPLC chromatogram for compounds rac-5k and 5k.

Page 70: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-70

Figure 50: HPLC chromatogram for compounds rac-5l and 5l.

Page 71: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-71

Figure 51: HPLC chromatogram for compounds rac-5m and 5m.

Page 72: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-72

Figure 52: HPLC chromatogram for compounds rac-5n and 5n.

Page 73: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-73

Figure 53: HPLC chromatogram for compounds rac-5o and 5o.

Page 74: )URQWLHUV 7KLV 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides ... · SI-3 General procedure for the synthesis of 4-Alkenyl-5H-1,2,3-oxathiazole 2,2-dioxides (1a-c). To a solution of

SI-74

Figure 54: HPLC chromatogram for compounds rac-6 and 6.