27
Using functional genomics to explore the impacts of ocean acidification on calcifying marine organisms Gretchen Hofmann UC, Santa Barbara USA Thanks to: Workshop Steering Committee OCB & NSF’s Office of Polar Programs

Using functional genomics to explore the impacts of ocean

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Using functional genomics to explore the impacts of ocean

Using functional genomicsto explore the impacts ofocean acidification oncalcifying marine organisms

Gretchen HofmannUC, Santa Barbara USA

Thanks to: Workshop Steering CommitteeOCB &NSF’s Office of Polar Programs

Page 2: Using functional genomics to explore the impacts of ocean

Outline of the presentation

• Highlight gene expression approaches

• Sample data from sea urchin studies– Organismal response

larval skeleton development

– Compensation/plasticity/adaptation

– Synergistic effect of temperature and CO2

• Strategies for future research

From: Ungerer et al. (2007) Heredity, 1-6

Page 3: Using functional genomics to explore the impacts of ocean

#1 Organismal response: skeleton formation in sea urchin embryos and larvae

Juvenile purple sea urchin© Gerardo Amador

4-arm echinopluteus larvae

Strongylocentrotus purpuratus

1) Utility of early life history stages2) Sea urchin: Developmental model

Embryoswith fertilization membrane

Page 4: Using functional genomics to explore the impacts of ocean

Our multidisciplinary approach

• Morphometrics– Measure the elements of

the larval skeleton

• Gene expression analysis– Ask the embryo to tell you

the answer.– Generating “physiological

fingerprints”4-arm stageLytechinus pictus

Page 5: Using functional genomics to explore the impacts of ocean

First-cut experimental approach

• IPCC gives predictions

• We use B1 and A1F1

Page 6: Using functional genomics to explore the impacts of ocean

Gas Mix

Page 7: Using functional genomics to explore the impacts of ocean

Experimental approach? Use IPCC scenarios for future CO2 levels

• Used IPCC Scenarios (by 2100)– Present 380 ppm CO2– B1 540 ppm CO2– A1F1 970 ppm CO2

• Raise larval cultures at 15 °C

Postdoctoral FellowDr. Michael ‘Moose’ O’Donnell

Page 8: Using functional genomics to explore the impacts of ocean

Body Length vs. Development in Lythechinus pictus larvae

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140 160

Hours post spawn

Bod

y le

ngth

(µm

)

Page 9: Using functional genomics to explore the impacts of ocean

Larval Measurements1. Body length to tip of oral hood

2. BL to ventral arch

3. Left body rod

4. Left post-oral arm

5. Right body rod

6. Right post-oral arm

7. Left transverse rod

8. Right transverse rod

9. Body width

10. Width at tip

Page 10: Using functional genomics to explore the impacts of ocean

150

160

170

180

190

200

210

220

230

240

250

260

270

Bod

y Le

ngth

Tip

to O

ral h

ood

B G O

Treatment

Body Length: 48 h

380 540 970CO2 (ppm)

Page 11: Using functional genomics to explore the impacts of ocean

Total Skeleton: 48 h

500

600

700

800

900

Tota

l ske

leto

n

B G OTreatment380 540 970

CO2 (ppm)

Page 12: Using functional genomics to explore the impacts of ocean

Mean Body Length and Total Skeleton vs. Time

Mean Body Length Over Time

170

190

210

230

250

270

290

310

330

8/2/2007 8/3/2007 8/4/2007 8/5/2007 8/6/2007

Time (d)

len

gth

m)

380ppm540ppm970ppm

Mean Total Skeleton Over Time

500

600

700

800

900

1000

1100

8/2/2007 8/3/2007 8/4/2007 8/5/2007 8/6/2007

Time (d)le

ng

th µ

m

380ppm540ppm970ppm

Page 13: Using functional genomics to explore the impacts of ocean

Making Hard PartsWhat genes to choose?

From: Hofmann and O’Donnell (in prep) TS section on OA

Page 14: Using functional genomics to explore the impacts of ocean

#2: Linking plasticity & physiology with gene expression

Spicule Matrix Proteins Gene ID Exp. Notes

SMP30-A SPU_000825 High in prismSMP30-D SPU_000828 Low in prism

1. Biomineralization chip in prep.2. E.g., lots of spicule matrix proteins3. Oligo microarray from Agilent

~1,500 genes60-mers$170/array

Page 15: Using functional genomics to explore the impacts of ocean

Red = up-regulated

= down-regulatedGreen

Yellow = no difference

The “raw” data

Page 16: Using functional genomics to explore the impacts of ocean

Zoom in

Turned on

Page 17: Using functional genomics to explore the impacts of ocean

Zoom in

Turned off

Page 18: Using functional genomics to explore the impacts of ocean

Another way to look at the data on the chip

• Spots are genes we know• For example, gene chip for

mussels – ~3,000 genes of interest– Classified by function

Page 19: Using functional genomics to explore the impacts of ocean

-238

1318232833

0:00 12:0 24:0 36:0 48:0 60:0 72:0

DAY 1 DAY 2 DAY 3

Bod

y te

mpe

ratu

re o

f m

usse

ls (o

C)

TimeHelmuth et al. 2002 Science 298: 1015-1017

An ecological example:Thermal stress in Intertidal mussels

Page 20: Using functional genomics to explore the impacts of ocean

Physiological fingerprints says: Oregon is hot!

• Mussels at Oregon site have strong up-regulation of “stress”genes in summer

Place, Hofmann (2007) MEPS (in review)

Page 21: Using functional genomics to explore the impacts of ocean

#3: Synergistic effects

The red sea urchin: S. franciscanus

• All cultures raised at 15 ºC• Three levels of CO2

• What happens to physiological plasticity?

(Not just biomineralization)

Page 22: Using functional genomics to explore the impacts of ocean

Changes in thermal phenotype

0.0

0.5

1.0

1.5

2.0

2.5

3.0

15 19 21 23 25 27 29 31

Rel

ativ

e ex

pres

sion

Temp ºC

HSP70 normalized by Ef1_a

380ppm 542ppm 970ppm

Page 23: Using functional genomics to explore the impacts of ocean

Strategies or what to do while we wait for the genome…

• Study highly conserved genes

• Work on targetedspecies with good genomic resources

• Vegas baby! Heterologoushybridizations

Jackson et al. (2007) Science

Page 24: Using functional genomics to explore the impacts of ocean

• Genes responsible for biomineralization in the pearl oyster

• Nacrein RT-primers from the pearl oyster used with other molluscs(Takeuchi and Endo 2006)

• PCR product size ~150-250bp

• Some success with other genes (msi60 and aspein)

• In process of sequencing the product

500 bp

300 bp

200 bp

Veliger:

N. ostrina

Mantle:

M. californianus

Nacrein

NacreousPrismatic

Periostracum

Modified from Takeuchi and Endo 2006

Veliger stage Nucella ostrina

Cross-species primers

Page 25: Using functional genomics to explore the impacts of ocean

Antarctic sea urchin

Sterechinus neumayeriblastula stage

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

COLP-3_ SM30-_

mR

NA

Exp

ress

ion

Rel

ativ

e to

actin

Air

CO2

Cross hybridization to purp cDNA chipqPCR data

Sterechinus neumayeri

Page 26: Using functional genomics to explore the impacts of ocean

Suggested strategies & priorities for OA studies

• These approaches can be applied to many organisms

• Significant areas– Compensation?– Synergistic effects– Species interactions– Metagenomics– Genome project

proposals to JGI– Training gap and

collaborations

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Metazoan examples

Page 27: Using functional genomics to explore the impacts of ocean

AcknowledgementsData from: • Tim Crombie• LaTisha Hammond• Dr. Moose O’Donnell • Dr. Sean Place• Dr. Anne Todgham• Mackenzie Zippay

Supported by:U.S. National Science Foundation

&David and Lucile Packard Foundation

and the Moore Foundation (PISCO)