3
Buy PDF Printerfriendly version Published in SOS March 2007 Omnipattern microphones have a relatively even, spherical response, which makes them very useful for natural sounding recordings. They're ideal for recording instruments such as strings or acoustic guitar — provided that the instruments are being played in a pleasantsounding room! This diagram shows the three basic polar patterns found in microphones. All other patterns are variations on these themes. The blue circle is an omni pattern, the red circles show a figure of eight pattern, and the green line shows the cardioid. Using Microphone Polar Patterns Effectively Sound Workshop Technique : Miking Techniques Knowing your cardioid from your omni can help you to achieve better recordings. If you're confused about what it all means, our guide to mic polarity should be a step in the right direction. Paul White Every music technology textbook includes a description of the different microphone pickup patterns, but what most users really want to know is what benefits the different patterns have to offer, and in what situation you might choose them. In this article I'll be concentrating on 'single microphone' applications rather than stereo, which we'll look at in a future article. Basics It is worth remembering that although the printed polar patterns are in two dimensions (as below), the actual pattern is threedimensional. For example, an omnidirectional microphone pattern drawn on paper looks like a circle, but in reality it is a sphere. Despite the mics on sale with multiple switchable pickup patterns, there are only two fundamental patterns: the omni and the figureofeight. All the other patterns in use today, including the popular cardioid, are created by combining these two in differing proportions. Omni mics are often referred to as 'pressure microphones', because they essentially measure sound pressure at a point in space. A diaphragm is fixed across the mouth of a sealed cavity, so in effect the mic behaves like a very small barometer capable of following audio frequency pressure changes — but it has no means of detecting the direction of the sound waves, hence it has an omnidirectional polar pattern. Because this arrangement only senses pressure, it doesn't matter what direction the sound approaches from. All that matters is the change in pressure at that point in space, so it is more or less equally sensitive to sounds from all directions — hold this thought, as I'll come back to it in a moment. To prevent the microphone behaving too much like a meteorological barometer and responding to changes in the weather, the cavity is engineered with a very small air leak or vent built into it, so that very lowfrequency pressure changes due to weather (or altitude) don't force the diaphragm in or out permanently. At audio frequencies, however, the cavity can be considered to be sealed. The mechanical simplicity of this 'pressure operated' design means that offaxis sound is still picked up reasonably accurately (in terms of frequency response), but the physical size of any microphone's diaphragm will always result in some highfrequency loss as you move offaxis — and the larger the diaphragm, the more pronounced this highfrequency loss will be. If you imagine a sound approaching a diaphragm at, say, 45 degrees offaxis, the sound will reach one side of the diaphragm slightly sooner than it reaches the other. This results in some phase cancellation at high frequencies and hence a degree of highend loss. That's why precision measurement microphones tend to have very smalldiameter capsules. This creates another problem, as the smaller amount of sound energy captured by a small diaphragm requires more amplification, which in turn leads to a higher level of electrical noise. That's why this sort of microphone is unsuitable for most music applications. Another advantage inherent in the design of pressureoperated microphones is a well extended frequency response at the bottom end — typically an octave more than a similar sized cardioid microphone. They are also less susceptible to picking up noise and rumbles from mechanical vibrations than cardioid mics. A figureofeight microphone uses a diaphragm open to the air on both sides, so, rather than responding directly to pressure, it responds to the difference (or gradient) in pressure between the front and the rear of the diaphragm — hence the generic term 'pressure gradient' microphone (sometimes also referred to as a 'velocity' microphone, because it detects the velocity of sound waves). This arrangement of the diaphragm makes the microphone very sensitive to sounds approaching from either the front or rear axis, while sounds approaching from the side cause no diaphragm movement at all, as the pressure each side of the diaphragm always remains equal. The practical outcome is a microphone that is essentially 'deaf' 90 degrees offaxis but is equally sensitive to both front and rear. Sound picked up by the rear of the diaphragm also produces an inverted electrical signal compared with the same sound picked up by the front of the diaphragm (this is pretty logical if you think about it, as the two scenarios result in the diaphragm being pushed in opposite directions). The frequency response of onaxis sounds is reasonably consistent within the limitations set by diaphragm size. In other words, the smaller the diaphragm, the greater the accuracy when picking up offaxis sounds. One critical aspect of the design of a pressure gradient microphone is that the output level falls with decreasing frequency. This is because the pressure difference across the diaphragm gets smaller as the wavelength of the sound wave increases. To overcome this problem, the diaphragm's suspension is usually arranged to respond more easily to lowfrequency sounds than to highfrequency sounds, which results in a more even frequency response. A side effect of this is that the microphone becomes much more sensitive to mechanical vibrations. Proximity Effect Another important factor to be aware of is that all pressuregradient microphones exhibit, to different degrees, a 'proximity effect' — a lowfrequency boost that occurs when the microphone is used very close to the sound source (hence the other common term, 'bass tipup'). The effect is due to the physics of the way the mic works, and is quite a complicated topic, but in practical terms, for recording, it can be both a strength and a weakness — it depends on what you're trying to achieve. If you were to combine pressureoperated and pressuregradient capsules in a single mic, or arrange a single capsule to have the properties of both, the result would be a cardioid shape. Onaxis, at the front, the omni and figureofeight polar patterns produced by the two fundamental mic elements add together to make the combination very sensitive. At the sides, the figureofeight element has nothing to add, leaving just the omni's pickup. Consequently, the sides of the cardioid are less sensitive than the front. At the rear, the figureofeight In this article: Basics Proximity Effect Theory Into Practice A Final Word... DAW Techniques 100s of great SOS articles! Cubase Digital Performer Live Logic Pro Tools Reaper Reason Sonar Studio One Home | Tablet Mag | Podcasts | WIN Prizes | Subscribe | Advertise | About SOS | Help Fri 24 Apr 2015 Search SOS Have an account? or Register for free Log in Sound On Sound : Est. 1985 Search News Articles Forum SOS TV Subscribe Shop Readers' Adverts Information WebExtras

Using microphone polar patterns effectively

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Using microphone polar patterns effectively

4/24/2015 Using Microphone Polar Patterns Effectively

https://www.soundonsound.com/sos/mar07/articles/micpatterns.htm 1/3

  Buy PDF

Printerfriendly version

Published in SOS March 2007

Omnipattern microphones have arelatively even, spherical response, whichmakes them very useful for naturalsounding recordings. They're ideal forrecording instruments such as strings oracoustic guitar — provided that theinstruments are being played in apleasantsounding room!

This diagram shows the threebasic polar patterns found inmicrophones. All other patternsare variations on these themes.The blue circle is an omni pattern,the red circles show a figure ofeight pattern, and the green lineshows the cardioid.

Using Microphone Polar Patterns EffectivelySound WorkshopTechnique : Miking Techniques

Knowing your cardioid from your omni can help you toachieve better recordings. If you're confused about whatit all means, our guide to mic polarity should be a step inthe right direction.

Paul White

Every music technology textbook includes a description of the different microphonepickup patterns, but what most users really want to know is what benefits the differentpatterns have to offer, and in what situation you might choose them. In this article I'llbe concentrating on 'single microphone' applications rather than stereo, which we'lllook at in a future article.

Basics

It is worth remembering that although the printed polar patterns are in twodimensions (as below), the actual pattern is threedimensional. For example, anomnidirectional microphone pattern drawn on paper looks like a circle, but in reality itis a sphere.

Despite the mics on sale with multiple switchable pickup patterns, there are only twofundamental patterns: the omni and the figureofeight. All the other patterns in usetoday, including the popular cardioid, are created by combining these two in differingproportions.

Omni mics are often referred to as 'pressure microphones', because they essentially measure sound pressure at a point inspace. A diaphragm is fixed across the mouth of a sealed cavity, so in effect the mic behaves like a very small barometercapable of following audio frequency pressure changes — but it has no means of detecting the direction of the sound waves,hence it has an omnidirectional polar pattern. Because this arrangement only senses pressure, it doesn't matter what directionthe sound approaches from. All that matters is the change in pressure at that point in space, so it is more or less equallysensitive to sounds from all directions — hold this thought, as I'll come back to it in a moment.

To prevent the microphone behaving too much like a meteorological barometer andresponding to changes in the weather, the cavity is engineered with a very small air leak orvent built into it, so that very lowfrequency pressure changes due to weather (or altitude)don't force the diaphragm in or out permanently. At audio frequencies, however, the cavitycan be considered to be sealed.

The mechanical simplicity of this 'pressure operated' design means that offaxis sound is stillpicked up reasonably accurately (in terms of frequency response), but the physical size ofany microphone's diaphragm will always result in some highfrequency loss as you moveoffaxis — and the larger the diaphragm, the more pronounced this highfrequency loss willbe. If you imagine a sound approaching a diaphragm at, say, 45 degrees offaxis, the soundwill reach one side of the diaphragm slightly sooner than it reaches the other. This results insome phase cancellation at high frequencies and hence a degree of highend loss. That'swhy precision measurement microphones tend to have very smalldiameter capsules. Thiscreates another problem, as the smaller amount of sound energy captured by a smalldiaphragm requires more amplification, which in turn leads to a higher level of electricalnoise. That's why this sort of microphone is unsuitable for most music applications.

Another advantage inherent in the design of pressureoperated microphones is a wellextended frequency response at the bottom end — typically an octave more than a similarsized cardioid microphone. They are also less susceptible to picking up noise and rumblesfrom mechanical vibrations than cardioid mics.

A figureofeight microphone uses a diaphragm open to the air on both sides, so, rather than responding directly to pressure, itresponds to the difference (or gradient) in pressure between the front and the rear of the diaphragm — hence the generic term'pressure gradient' microphone (sometimes also referred to as a 'velocity' microphone, because it detects the velocity of soundwaves). This arrangement of the diaphragm makes the microphone very sensitive to sounds approaching from either the frontor rear axis, while sounds approaching from the side cause no diaphragm movement at all, as the pressure each side of thediaphragm always remains equal. The practical outcome is a microphone that is essentially 'deaf' 90 degrees offaxis but isequally sensitive to both front and rear. Sound picked up by the rear of the diaphragm also produces an inverted electricalsignal compared with the same sound picked up by the front of the diaphragm (this is pretty logical if you think about it, as thetwo scenarios result in the diaphragm being pushed in opposite directions).

The frequency response of onaxis sounds is reasonably consistent within the limitations set by diaphragm size. In otherwords, the smaller the diaphragm, the greater the accuracy when picking up offaxis sounds. One critical aspect of the designof a pressure gradient microphone is that the output level falls with decreasing frequency. This is because the pressuredifference across the diaphragm gets smaller as the wavelength of the sound wave increases. To overcome this problem, thediaphragm's suspension is usually arranged to respond more easily to lowfrequency sounds than to highfrequency sounds,which results in a more even frequency response. A side effect of this is that the microphone becomes much more sensitive tomechanical vibrations.

Proximity Effect

Another important factor to be aware of is that all pressuregradient microphones exhibit, to different degrees, a 'proximityeffect' — a lowfrequency boost that occurs when the microphone is used very close to the sound source (hence the othercommon term, 'bass tipup'). The effect is due to the physics of the way the mic works, and is quite a complicated topic, but inpractical terms, for recording, it can be both a strength and a weakness — it depends on what you're trying to achieve.

If you were to combine pressureoperated and pressuregradient capsules in a single mic, orarrange a single capsule to have the properties of both, the result would be a cardioid shape.Onaxis, at the front, the omni and figureofeight polar patterns produced by the twofundamental mic elements add together to make the combination very sensitive. At the sides,the figureofeight element has nothing to add, leaving just the omni's pickup. Consequently,the sides of the cardioid are less sensitive than the front. At the rear, the figureofeight

In this article:BasicsProximity EffectTheory Into PracticeA Final Word...

DAW Techniques100s of great SOS articles!CubaseDigital PerformerLiveLogicPro ToolsReaperReasonSonarStudio One

Home | Tablet Mag | Podcasts | WIN Prizes | Subscribe | Advertise | About SOS | Help Fri 24 Apr 2015 Search SOS   Have an account?   or Register for freeLog in

Sound On Sound : Est. 1985

Search News Articles Forum SOS TV Subscribe Shop Readers' Adverts Information WebExtras

Page 2: Using microphone polar patterns effectively

4/24/2015 Using Microphone Polar Patterns Effectively

https://www.soundonsound.com/sos/mar07/articles/micpatterns.htm 2/3

Here, both mics have a figureofeight pattern. The siderejection is being put to goodeffect so that the guitar micrejects most of the vocal andviceversa, giving betterseparation than you would getwith cardioid or omni mics.However, given that they alsopick up from the rear, you needto be particularly careful toavoid sounds hitting the rear ofthe mic.

If the mic diaphragm is open to the air on oneside but closed at the other, it is consideredto be pressureoperated: although it reacts toair pressure, it is not sensitive to direction,resulting in an omnidirectional mic pattern.Where the diaphragm is open on both sides,as in this diagram, it responds to thepressuregradient (the difference between thepressure at the front and the back of thediaphragm). In this case, sound from the sideresults in even pressure on both sides of thediaphragm, which is why figureofeight micsreject sound from the side, but areresponsive to both the front and rear .

Although separatemics may bepreferable, you canuse a cardioidpattern to captureboth toms, as thepattern isreasonably wide tothe front of the mic,while it providessignificant rejectionto the rear, helpingto avoid spill fromcymbals.

The cardioid pattern is a combination ofthe basic omni and figureofeightpatterns, resulting in a directional mic thatresponds to sound from the side andfront, but virtually rejects it from the rear.Rather than using two capsules toachieve this, most cardioid mics nowincorporate a vented 'labyrinth' in asinglecapsule design that manipulatesthe phase of sounds hitting the rear, toproduce the desired cardioid pattern. Thesupercardioid and hypercardioid designsuse the same principle to create a more

response is the same sensitivity as the omni, but the electrical output is in the oppositepolarity, so the two cancel out, making the mic extremely insensitive to sounds coming directlyfrom the rear. A plot of the microphone's sensitivity at different angles is roughly heartshaped,hence the cardioid tag, though in reality it looks more like a vertical cross section through anapple, with the stalk being the rear of the pattern.

The cardioid or unidirectional pattern is widely used because of its ability to discriminateagainst sounds arriving from the sides or rear of the microphone. However, when you lookmore closely at how a cardioid microphone behaves, it soon becomes evident that it isn't theonesizefitsall solution that it might at first appear to be.

Although the very first cardioid mics used two separate capsules, the majority of cardioidmicrophones these days are built using a single capsule, where a sonic labyrinth behind thediaphragm is used to manipulate the phase of sounds reaching the rear of the capsule in sucha way as to produce the desired cardioid pattern. In general, this system works extremely welland is at the heart of most handheld stage dynamic microphones, as well as many studiocapacitor models, but its weakness is that the cardioid pickup pattern isn't the same at allfrequencies, so while the mic might produce very accurate results in situations where theincident sound is directly onaxis, offaxis sounds will in effect be filtered by the directionalcharacteristics of the microphone, most often characterised by a dropoff in highfrequencysensitivity. Try talking into the side of a cardioid microphone and you'll soon hear just howcoloured the offaxis pick up can be.

In the real world, sound rarely arrives only onaxis, as most environments produce a significantamount of reflected sound, and this can arrive at the microphone from pretty much any angle.The practical outcome of this is that the (otherwise accurate) onaxis sound is mixed withsignificantly coloured reflected sound and, in untreated rooms, this can lead to a noticeablynasal or boxy characteristic. It is also worth noting that cardioid microphones are classified as pressuregradient microphones(because the rear of the diaphragm is not sealed off) so, like the figureofeight, they also exhibit the proximity effect — whichcan result in a significant rise in bass when used very close to instruments or vocalists.

By varying the mix of pressureoperated (omni) andpressuregradient (figureofeight) elements, we canproduce wider or narrower cardioid patterns and, onceagain, these variants can be replicated using a singlediaphragm capsule by modifying the acoustic labyrinthbehind the diaphragm. Narrowpattern mics, such assupercardioid and hypercardioid, show a small lobe ofsensitivity at the rear, where the larger pressure gradientcomponent starts to leave its mark in the form of a smalloppositepolarity rear tail. As a result, the least sensitiveaxes on these types of mic tend to be between 35 and 45degrees off the rear axis, rather than directly behind. Thisbecomes critical when placing foldback monitors for a stagevocalist, for example, and also affects how you mustposition the mic in a studio to reject unwanted spill. Ingeneral, where you aim the 'dead axis' of the microphone isat least as important as what you point it at, and often more so!

Because these mics have a narrower pickup pattern than a regular cardioid, they are more sensitive to positional changes inthe sound source, so it is important to minimise movement when working close to them. Physical absorbers placed behind themicrophone can help reduce the level of sound reaching that sensitive rear lobe, so in situations where good separation isparamount, the careful use of narrow cardioid mics is a valid option.

Theory Into Practice

How does this very basic overview of microphone patterns and theircharacteristics help us when it comes to actually making our recordings?Returning to our old friend the cardioid, we now know that we have to makeallowances for an inaccurate offaxis frequency response and, if used reallyclose to a sound source, for proximity bass boost. The directional qualities helpkeep instruments separate in the recording and also help minimise the amountof reflected sound reaching the microphone, but you can be sure that any spill orreflected sound that does reach the rear and sides of the microphone will besignificantly coloured in comparison with an omni mic used in the samesituation. An omni will, of course, pick up more of the room sound, but it will pickit up with much less coloration than a cardioid.

Armed with this knowledge, you can try to arrange your recording setup tominimise the amount of offaxis sound reaching the microphone. One way to dothis is with sound absorbers, such as heavy, folded blankets, duvets, or panelsof acoustic foam. For example, when recording vocals you need something behind the singer's head that will intercept andabsorb sound that might otherwise bounce off the wall directly behind them and get into the front and sides of the cardioidpattern. It also helps to have absorbers around the rear and sides of the mic, not forgetting the ceiling above the mic andsinger. While improvised screening can be very effective, commercial solutions such as the SE Reflexion Filter are somewhatneater and less obtrusive when it comes to screening the microphone itself, but the reflective surfaces behind the singer mustalso be treated to achieve optimal results.

Using effective absorbers will significantly improve the quality of recordings made using a cardioidpattern microphone in ahighly reflective space, but few cardioid microphones sound as natural as a good omni model, simply because of the way theacoustic labyrinth behind the diaphragm affects the purity of the sound.

Excessive proximity effect is most problematic when recording vocals, but it is easilydealt with by positioning a pop shield so that the singer can't get closer than a coupleof inches from the microphone. The decisionmaking process here involves weighingup the consequences of using an omni microphone and suffering more spill, orchoosing a cardioid mic, where the amount of spill is reduced but the spill that is leftwill sound more coloured — in fact, the basic sound may be less natural too. In manyinstances, you'll actually get noticeably bettersounding results by using an omnipattern mic and then arranging acoustic screens to reduce the amount of spill gettinginto the rear and sides of the microphone.

In my own studio, I used to always reach for a cardioid mic when recording acousticguitar, but I now often choose to use an omni microphone in conjunction with aReflexion filter. Not only is the result more naturalsounding, but the exact positioningof the microphone seems less critical than when using a cardioid model. Of course,we're not always going for a natural sound — especially in pop music, where amusically pleasing result is of more importance than absolute fidelity. This is whylargediaphragm cardioid mics (arguably the least accurate in terms of fidelity) are sopopular for vocal recording.

While it doesn't take too much imagination to explore the pros and cons of cardioid oromni microphones in typical recording situations, it is less obvious where the figureofeight fits in. After all, why would you want a microphone that is as sensitive at therear as it is at the front, other than for specialist stereo applications such as M&S

Page 3: Using microphone polar patterns effectively

4/24/2015 Using Microphone Polar Patterns Effectively

https://www.soundonsound.com/sos/mar07/articles/micpatterns.htm 3/3

 

Email: Contact SOSTelephone: +44 (0)1954 789888Fax: +44 (0)1954 789895

Registered Office: Media House, Trafalgar Way, Bar Hill,Cambridge, CB23 8SQ, United Kingdom.

Sound On Sound Ltd is registered in England and Wales.Company number: 3015516 VAT number: GB 638 5307 26

             

Current MagazineWeb EditionTablet Mag appBuy PDF articlesMagazine Feedback

SubscribeSubscribe NowWeb Subscription FAQs

Podcasts

Competitions

Home

SOS Shop

News

SearchNew SearchForum SearchSearch Tips

ArticlesReviewsTechniqueSound AdvicePeopleGlossary

Help + Support

ForumToday's Hot TopicsForum Channel ListForum SearchMy Forum HomeMy Forum SettingsMy Private MessagesForum Rules & Etiquette

SOS TVWatch exhibition videos, tutorials,interviews, masterclasses

Readers ClassifiedsSubmit New AdvertsView My Adverts

My SOSChange PasswordChange My EmailChange My AddressMy SubscriptionMy eNewslettersMy Downloads

InformationAdvertisingMagazine Onsale DatesAbout SOSContact SOS StaffControlled CirculationLicensing EnquiriesSOS Logos & GraphicsSOS Site AnalyticsPrivacy Policy

 

Home | Search | News | Current Issue | Tablet Mag | Articles | Forum | Blog | Subscribe | Shop | Readers AdsAdvertise | Information | Privacy Policy | Support | Login Help

We accept the following payment methods in our web Shop:

                 

All contents copyright © SOS Publications Group and/or its licensors, 19852015. All rights reserved.The contents of this article are subject to worldwide copyright protection and reproduction in whole or part, whether mechanical or electronic, is expressly forbidden without the prior written consent of the

Publishers. Great care has been taken to ensure accuracy in the preparation of this article but neither Sound On Sound Limited nor the publishers can be held responsible for its contents.The views expressed are those of the contributors and not necessarily those of the publishers.

Web site designed & maintained by PB Associates | SOS | Relative Media

focused pattern to the front, at theexpense of reducing the rear rejection. Ifyou notice vents at the side of the michead, the mic probably has a cardioidpattern (or a variation on it).

Polar patterns aren't always as simple asthey first appear: the 'squashed spider'polar response pattern of thesupercardioid Sennheiser MKH416'shotgun mic' for high frequencies (above8kHz) is shown in red. The midfrequency(18kHz) polar pattern of the same mic isshown in blue, as compared to the typicalcardioid response, shown in green.

Published in SOS March 2007

(Mid & Side)? Well, sometimes it's because the physical makeup of the microphonegives you no choice. Ribbon microphones, for example, have a natural figureofeightpolar pattern and, back in the '50s and '60s they used to be popular with live bands,as they allowed two backing singers to sing into opposite sides of the samemicrophone. In the studio today, we choose ribbon mics for their tonality.

However, one of the main reasons to choose a figureofeight microphone is not so much where it picks up from as where itdoesn't. Remember that a figureofeight mic is totally deaf to sounds arriving from 90 degrees offaxis. This means that whereyou have two sound sources in close proximity, you can often significantly improve the separation between them by arranginga couple of figureofeight mics so that the 'deaf axis' of each mic points towards the sound source you're trying to reject.Often the rear sensitivity of the mic can be countered by using acoustic screening. This technique can be very successfulwhen recording an acoustic guitarist who also sings, as it helps to separate the guitar and voice, though the separation willnever be perfect for two reasons: the sounds don't originate from a single point and room reflections can reach the mics frommany different angles. For this last reason, using acoustic absorbers to isolate the recording area from excessive roomreflections is highly recommended.

Multipattern microphones work by combining the outputs from two capsules, themost popular arrangement being two backtoback cardioid capsules. By controllingthe level and polarity of the two capsule's outputs, any of the basic polar patterns canbe created. However, where purity of sound is important — such as the criticalrecording of classical or ethnic instruments — choosing a dedicated omni or figureofeight singlediaphragm microphone (ideally with a small diaphragm) is likely toproduce more accurate results, with less coloration of the offaxis sound.

When it comes to cardioidpattern mics, it makes little difference whether you use asinglecapsule model or a dualcapsule, multipattern model. Both will performsimilarly, as both are based on cardioid capsules. In theory, the smaller diaphragmvariants should produce more accurate results for offaxis sounds, but the benefitsmay be overshadowed by the coloration caused by the acoustic labyrinth used tocreate the polar pattern in the first place.

A Final Word...

I've deliberately kept this overview as simple as possible, in order to get over a fewimportant concepts. Perhaps the main thing to appreciate is that, while the largediaphragm, cardioidpattern microphone might be the mainstay of project studiorecording, there are situations in which it may not be the best choice. I hope that I'vealso adequately stressed the importance of the recording environment, as controllingwhat reaches the microphone — especially by way of reflection — can make a hugedifference to the end result.