5
Thousands of Customers Search View Cart Follow MaxBotix: Using Multiple MaxSonar ® Sensors | Written By: Tom Bonar | DatePosted: 07112012 | When using a single sensor, typically it is possible to just let it range continuously in free run mode. This method is easy and works well. Please consult your sensor datasheet or Finding Distance Using Analog Voltage for calculation formulas for analog voltage to distance. This guide covers: Free Run Operation Simultaneous Operation Commanded Sequential Reading Constant Looping Operation Please consult your sensor datasheet or Finding Distance Using Analog Voltage for calculation formulas for analog voltage to distance. Free run all Sensors (not recommended) Continuous free run operation will generally not work when using more than one sensor in the same system. If you leave Pin 4 (the RX pin) unconnected so that the sensors range continuously, at startup the sensors will range at exactly the same time. Since the sensors are not synchronized, the sensors will range with slightly different intervals. Slowly the sensors will stop ranging at the same time. These frequency drifts will likely cause interference between sensors for most applications. If looking at the analog voltage output from the MaxSonar®, this will appear as voltage noise that occurs at some regularly occurring rates. Additionally, the digital outputs will have phantom readings at some regularly occurring rates. This is because the sensor "noise" is actually interference from other sensors, not actual noise. The sensors are just behaving the way they were designed to behave. This describes the general results that you would be getting (as verified by a voltmeter). This issue becomes more apparent at longer distances, to the point that the sensor readings are very rarely reliable. The reason the action is happening is because the sensors are not operating synchronously with each other or at the same speed. One sensor may be operating slightly faster than the other. For example; sensor 1 is operating at 49.0mS while sensor 2 operates at 49.2mS. When the sensors are not synchronized, one sensor may be in transmitting mode while the other sensor is in receiving mode. Because this action is happening, the sensor is receiving the pulses from the sender and not its own pulse bounce back. The closer the sensors are in synchronization, the longer the stable period is. The farther out of synchronization the sensors are, eventually they may not even appear to function properly. This happens because the stable period is extremely short or there is no period of stability. Figure 1 below shows a single sensor operating, detecting an object at 96 inches with now other sensors present. Figures 2 and 3 show the operating of a sensor if other sensors are operating in the area in freerun operation. As the sensors become more unsyncronized the range readings become more and more unstable. Figure 1. Single Sensor operation 1.3k Like Home Sensor Selection Guide Products / Buy Now Documents & Downloads Performance Data Tutorials & Application Notes Contact News MaxBotix Inc., Christmas 2014 Author: Roshael Hanna Date: 12232014 Merry Christmas and a world of good wishes to our customers, vendors, distributors, and our staff! One of the joys of this holiday season is the opportunity to say thank you and wish you the very best for the new year. We would also like to say that MaxBotix Inc., will be closed for the Christmas and New Year's holidays between 5pm Dec., 23rd and 8am Jan., 2nd. Release of the ParkSonarEZ Sensors Author: Janice Wielenberg Date: 1125 2014 MaxBotix Inc., developed a sensor line specifically for parking garage applications that has unique properties. MaxBotix Inc., released the ParkSonarEZ ultrasonic sensor line tailored to meet needs in the parking garage industry. Release of the MB8450 Car Detection Sensor Author: JKW & RH Date: 11/25/2014 The MB8450 Car Detection Sensor is a USB ultrasonic proximity sensor with a True/False output that detects cars in a variety of installations. MB8450 sensors can be used to enhance the customer experience, such as giving an automated greeting shortly after their arrival that can result in greater efficiency of staff. Easy to Use Sensors are Now Easier to Select Author: Tom Bonar Date: 05/08/2014 The sensors in the MaxSonar family have always been easy to use, but now we have made it even easier to select the proper sensor for your application. We have just released the new Sensor Selection Guide, that is as simple as choosing the environment type and the application. News Archive

Using Multiple MaxSonar Sensors · 2015. 1. 2. · Figure 2 Figure 3 Control the MaxSonar Sensors to Range Simultaneously (works for most instances) Connect all the MaxSonar® RX

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • Thousands of Customers   Search

    View Cart

    Follow MaxBotix:

    Using Multiple MaxSonar® Sensors|     Written By: Tom Bonar     |     DatePosted: 07112012     |

    When using a single sensor, typically it is possible to just let it rangecontinuously in free run mode. This method is easy and works well.

    Please consult your sensor datasheet or Finding Distance UsingAnalog Voltage for calculation formulas for analog voltage todistance.

    This guide covers:‑Free Run Operation‑Simultaneous Operation‑Commanded Sequential Reading‑Constant Looping Operation

    Please consult your sensor datasheet or Finding Distance UsingAnalog Voltage for calculation formulas for analog voltage todistance.

    Free run all Sensors(not recommended)

    Continuous free run operation will generally not work when using more than one sensor in the samesystem. If you leave Pin 4 (the RX pin) unconnected so that the sensors range continuously, at startupthe sensors will range at exactly the same time. Since the sensors are not synchronized, the sensorswill range with slightly different intervals. Slowly the sensors will stop ranging at the same time. Thesefrequency drifts will likely cause interference between sensors for most applications. If looking at theanalog voltage output from the MaxSonar®, this will appear as voltage noise that occurs at someregularly occurring rates. Additionally, the digital outputs will have phantom readings at some regularlyoccurring rates.

    This is because the sensor "noise" is actually interference from other sensors, not actual noise. Thesensors are just behaving the way they were designed to behave. This describes the general resultsthat you would be getting (as verified by a voltmeter). This issue becomes more apparent at longerdistances, to the point that the sensor readings are very rarely reliable.

    The reason the action is happening is because the sensors are not operating synchronously with eachother or at the same speed. One sensor may be operating slightly faster than the other. For example;sensor 1 is operating at 49.0mS while sensor 2 operates at 49.2mS. When the sensors are notsynchronized, one sensor may be in transmitting mode while the other sensor is in receiving mode.Because this action is happening, the sensor is receiving the pulses from the sender and not its ownpulse bounce back. The closer the sensors are in synchronization, the longer the stable period is. Thefarther out of synchronization the sensors are, eventually they may not even appear to functionproperly. This happens because the stable period is extremely short or there is no period of stability.

    Figure 1 below shows a single sensor operating, detecting an object at 96 inches with now other sensorspresent. Figures 2 and 3 show the operating of a sensor if other sensors are operating in the area infreerun operation. As the sensors become more unsyncronized the range readings become more andmore unstable.

    Figure 1. Single Sensor operation 

    1.3kLike

    Home

    Sensor Selection Guide

    Products / Buy Now

    Documents & Downloads

    Performance Data

    Tutorials & Application Notes

    Contact

    News

     

      

    MaxBotix Inc., Christmas2014Author: Roshael Hanna    Date: 12232014

    Merry Christmas and aworld of good wishes toour customers, vendors,distributors, and ourstaff! One of the joys ofthis holiday season is theopportunity to say thankyou and wish you thevery best for the new

    year. We would also like to say that MaxBotixInc., will be closed for the Christmas and NewYear's holidays between 5pm Dec., 23rd and8am Jan., 2nd.

    Release of theParkSonar‑EZ SensorsAuthor: Janice Wielenberg  Date: 11252014

    MaxBotix Inc., developeda sensor line specificallyfor parking garageapplications that hasunique properties.MaxBotix Inc., releasedthe ParkSonar‑EZultrasonic sensor linetailored to meet needs inthe parking garageindustry.

    Release of the MB8450Car Detection SensorAuthor: JKW & RH   Date: 11/25/2014

    The MB8450 CarDetection Sensor is aUSB ultrasonic proximitysensor with a True/Falseoutput that detects carsin a variety ofinstallations. MB8450sensors can be used toenhance the customer

    experience, such as giving an automatedgreeting shortly after their arrival that canresult in greater efficiency of staff.

    Easy to Use Sensors areNow Easier to SelectAuthor: Tom Bonar  Date: 05/08/2014

    The sensors in theMaxSonar family havealways been easy to use,but now we have made iteven easier to select theproper sensor for yourapplication. We have justreleased the new SensorSelection Guide, that is

    as simple as choosing the environment typeand the application.

    News Archive

    http://www.maxbotix.com/downloads.htmhttp://www.auctioninc.com/?cmd=_cart&business=4212http://www.maxbotix.com/performance.htmhttp://www.maxbotix.com/SelectionGuide/Selection-Guide.htmhttp://www.maxbotix.com/contact.htmhttp://www.auctioninc.com/?cmd=_cart&business=4212http://www.maxbotix.com/articles/101.htmhttp://www.maxbotix.com/Ultrasonic_Sensors.htmhttp://www.maxbotix.com/tutorials.htmhttp://www.maxbotix.com/articles/032.htmhttp://www.sensorsportal.com/HTML/DIGEST/10_Top_Products_2012.htmhttp://www.maxbotix.com/archive.htmhttp://www.maxbotix.com/archive.htmfile:///C:/Users/Macek/Disk%20Google/Semestr_1/ROB/Dokumentace/Using%20Multiple%20MaxSonar%20Sensors%20Simultaneously_files/Using%20Multiple%20MaxSonar%20Sensors%20Simultaneously.htmlhttp://www.maxbotix.com/index.htmhttp://www.maxbotix.com/articles/102.htmhttp://www.maxbotix.com/articles/090.htmhttp://www.maxbotix.com/articles/100.htmhttp://www.maxbotix.com/index.htmhttp://www.maxbotix.com/contact-us/contact_support.htmhttp://www.usfirst.org/

  • Figure 2

    Figure 3

    Control the MaxSonar Sensors to Range Simultaneously(works for most instances)

    Connect all the MaxSonar® RX lines together, and connect to your control circuit such as a pin on amicrocontroller (or even a 555 timer set up to strobe high for at least 20uS with a period betweenstrobes great or equal to timing that has been stated in the sensor datasheet).

    To view a wiring diagram of what this set up should look like view figure 4.

    Figure 4

    For the MaxSonar sensors you can start all the sensors at the same time by pulling the RX pins high forthe 20uS. For the LVMaxSonar sensors this can be done as often as every 50ms. For the XLMaxSonarsensors this can be done as often as every 100mS or more. This will sync the MaxSonar® sensors totake readings at the same time.

    The MaxSonar® sensors, because of continuously variable gain, will typically ignore adjacent sensorswhen running simultaneously. This method is especially convenient when using the analog voltage (ANoutput), as the analog voltage can be read at any time.

    This method works for all sensors lines. We used an LVMaxSonarEZ line to show the diagram. As longas Pin 4 (RX) is connected to the same trigger device all the sensors will range simultaneously.

    Sequentially Read Each MaxSonar®(Always Works)

    To sequentially read each sensor, connect your triggering device to pin 4 (RX) of the first sensor, thenconnect pin 5 (TX) output of the first sensor to the RX pin of the next sensor that is to be ranged insequence. Do this with however many sensors are to be used in the chain. To view a diagram of howeach chaining diagram is wired view figures 5 through 8 below.

     

    New Product SignupAuthor: Tom Bonar     Date:06/18/2012

    Signup for notification of our exciting newproducts and periodic new letters. We areexcited to provide the latest informationfrom MaxBotix Inc. 

    Subscribe

    http://www.maxbotix.com/articles/041.htmhttp://www.maxbotix.com/pictures/articles/031-Simultaneous.jpghttp://www.maxbotix.com/articles/041.htm

  •  Figure 5 LVMaxSonarEZ and XLMaxSonarEZ/AE Diagram

     Figure 6 HRLVMaxSonarEZ diagram

     Figure 7 MaxSonarWR and MaxSonarWRC diagram

     Figure 8 HRXLMaxSonarWR and HRXLMaxSonarWRC diagram

    To start the commanded sequential reading for the MaxSonar sensors, trigger the first sensor to range.This allows each device to range only after the previous has finished (every 50mS for the LVMaxSonarsensors or every 100mS for the XLMaxSonar sensors). This method will always work. There will not beany interference between sensors, but ranging frequency drops by the factor of the number of sensorsused.

    Continuous LoopingTo have the circuit continuously loop so the chain is always giving an analog voltage output, connect pin 5of the last sensor in the sequence to pin 4 of the first sensor in sequence with a 1K resistor in sequencebetween the pin 5 output and pin 4 input. For a diagram of how the wiring should look for the MaxSonarsensors operating in a Continous Loop please see figures 9 through 12 below.

    http://www.maxbotix.com/pictures/articles/031-Command-Looping-Chaining-HRLV.jpghttp://www.maxbotix.com/pictures/articles/031-Command-Looping-Chaining.jpghttp://www.maxbotix.com/pictures/articles/031-Command-Looping-Chaining-HRXLWR-WRC.jpghttp://www.maxbotix.com/pictures/articles/031-Command-Looping-Chaining-WR-WRC.jpg

  •  Figure 9LVMaxSonarEZ and XLMaxSonarEZ/AE Constant Chaining Loop Diagram

     Figure 10HRLVMaxSonarEZ Constant Chaining Loop Diagram

     Figure 11XLMaxSonarWR and XLMaxSonarWRC Constant Chaining Loop Diagram

     Figure 12HRXLMaxSonarWR and HRXLMaxSonarWRC Constant Chaining Loop Diagram

    With these sensor chaining methods, once pin 4 is pulled high for 20uS on the first sensor, all sensors willchain sequencially. After the micro controller brings pin 4 high, the micro controller will have to return it’spin to a high impedance state so that after the sequence is complete the TX signal output from the lastsensor will trigger the RX of the first sensor.

    http://www.maxbotix.com/pictures/articles/031-Constant-Looping-Chaining-WR.jpghttp://www.maxbotix.com/pictures/articles/031-Constant-Looping-Chaining-HRLV.jpghttp://www.maxbotix.com/pictures/articles/031-Constant-Looping-Chaining.jpghttp://www.maxbotix.com/pictures/articles/031-Constant-Looping-Chaining-HRXLWR.jpg

  • LV‑MaxSonar‑EZ1 I2CXL‑MaxSonar‑EZ1 HRXL‑MaxSonar‑WRProducts related to the Article Above

    Home | Distributors | FAQ | Downloads | Performance | Terms & Conditions | Privacy Policy | Site Map | Contact  

    Copyright © 2014 MaxBotix Inc. All Rights Reserved. MaxBotix Inc. High Performance 

    IP67 Ultrasonic Sensors

    Ultrasonic Rangefinders

    Outdoor Sensors

    Low Cost People Detection

    Ultrasonic Proximity Sensors

    Weather Resistant Rangefinders

    Ultrasonic Component Module

    Autonimous Navigation

    Low Power Sensors

    Ultrasonic Transducers

    People Detection

    Autonimous Navigation

    Low Cost Outdoor Sensors

    Ultrasonic Rangefinders

    Weather Resistant Rangefinders

    Sumo Robotic Contest

    IP67 Ultrasonic Sensors

    NonContact Detection

    Ultrasonic Transducers

    Low Power Sensors

    Ultrasonic Proximity Sensors

    Ultrasonic Rangefinders

    Ultrasonic Transducers

    Autonimous Navigation

    Ultrasonic Component Module

    People Detection

    Long Range Detection

    Ultrasonic Proximity Sensors

    Low Power Sensors

    Low Cost Outdoor Sensors

    Sumo Robotic Contest

    IP67 Ultrasonic Sensors

    Weather Resistant Rangefinders

    The names MaxBotix®, MaxSonar®, ProxSonar, EZ0, EZ1, EZ2, EZ3, EZ4, AE0, AE1, AE2, AE3, AE4, WR1, WR, WRA, WRL, WRLA, WRLS, WRLST, WRM, WRMA, WRC, and WRC1 aretrademarks of MaxBotix Inc.

    Teflon® is a registered trademark of DuPont™All other trademarks mentioned herein are the property of their respective companies.

    website revision 3.04

    http://www.maxbotix.com/Ultrasonic_Sensors/MB7360.htmhttp://www.maxbotix.com/tutorials.htmhttp://www.maxbotix.com/index.htmhttp://www.maxbotix.com/Ultrasonic_Sensors/MB7360.htmhttp://www.maxbotix.com/distributors.htmhttp://www.maxbotix.com/documents/MaxBotix_Electronic_Privacy_Policy.pdfhttp://www.maxbotix.com/Ultrasonic_Sensors/MB1212.htmhttp://www.maxbotix.com/contact.htmhttp://www.maxbotix.com/sitemap.htmhttp://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htmhttp://www.maxbotix.com/Ultrasonic_Sensors/MB1212.htmhttp://www.maxbotix.com/documents/MaxBotix_Inc._Terms_and_Conditions_.pdfhttp://www.maxbotix.com/performance.htmhttp://www.maxbotix.com/downloads.htmhttp://www.maxbotix.com/Ultrasonic_Sensors/MB1010.htm