84
Using R in Academic Finance Sanjiv R. Das Professor, Santa Clara University Department of Finance h?p://algo.scu.edu/~sanjivdas/

Using&Rin&Academic&Finance& - Meetupfiles.meetup.com/1225993/Using_R_in_Academic_Finance-Sanjiv_Das-Nov_2011.pdf · 34 employment, director, officer insider, 5% owner, 10% owner lender

Embed Size (px)

Citation preview

Using  R  in  Academic  Finance  

Sanjiv  R.  Das  Professor,  Santa  Clara  University  

Department  of  Finance  h?p://algo.scu.edu/~sanjivdas/  

Outline  •  High-­‐performance  compuGng  for  Finance  •  Modeling  the  opGmal  modificaGon  of  home  loans  using  R  

•  IdenGfying  systemically  risky  financial  insGtuGons  using  R  network  models.  

•  Goal-­‐based  porOolio  opGmizaGon  with  R  

•  Using  R  to  deliver  funcGons/models  on  the  web,  and  for  pedagogical  purposes.  

R  works  well  with  Python  and  C.  

h?p://www.rinfinance.com/RinFinance2010/agenda/  

h?p://cran.r-­‐project.org/web/views/Finance.html  

Calling  C  from  R:  An  Example  of  Tax-­‐opGmized  PorOolio  Rebalancing  

Calling  C  from  R:  An  Example  of  Tax-­‐opGmized  PorOolio  Rebalancing  

R  CMD  SHLIB  tax.c  

MODIFYING  HOME  LOANS  WITH  R  MODELS  

Topic  1  

THE  PRINCIPAL  PRINCIPLE:  OpGmal  ModificaGon  of  Distressed  Home  Loans  (Why  Lenders  should  Forgive,  not  Foresake  Mortgages)  

STRATEGIC  LOAN  MODIFICATION:  An  OpGons  based  response  to  strategic  default  (joint  work  with  Ray  Meadows)  

Game  theoreGc  problem:    

Lender  determines  the  loan  modificaGon  that  maximizes  value  of  loan  given  that  the  borrower  will  act  strategically  in  his  best  interest.    

Model  

h?p://algo.scu.edu/~sanjivdas/   13  

Home  value  

HJM  

CorrelaGon  

Discrete-­‐Gme  ImplementaGon  

h?p://algo.scu.edu/~sanjivdas/   14  

MarGngale  system  

h?p://algo.scu.edu/~sanjivdas/   15  

Risk-­‐neutral  ProbabiliGes  

h?p://algo.scu.edu/~sanjivdas/   16  

Modeling  the  Mortgage  

h?p://algo.scu.edu/~sanjivdas/   17  

Loan  balance  

Default  put  

Lender’s  value  on  default  

Borrower’s  liability  

Deadweight  cost  of  foreclosure  

Refinancing  opGon  

“Iso-­‐Service”  Surface  

11/21/11   h?p://algo.scu.edu/~sanjivdas/   18  

Loan  balance  =  $300,000  Home  value  =  $250,000  

Remaining  maturity  =  25  years  A  =  $1,933  per  month    

Amax  =  $20,000  per  year    ($1,667  per  month)  

choose  

Some  R  

Values  of  Iso-­‐Service  Loans  

h?p://algo.scu.edu/~sanjivdas/   20  

Default  Put  Exercise  Region  

h?p://algo.scu.edu/~sanjivdas/   21  

L=225,000  

L=250,000  

Cure  risk  and  Re-­‐default  Risk  

h?p://algo.scu.edu/~sanjivdas/   22  

The  risk  of  unnecessary  relief,  i.e.,  the  borrower  would  not  have  ulGmately  defaulted.  

Providing  fuGle  relief,  leading  to  ulGmate  default  anyway.    

Value  of  loan  accounGng  for  willingness  to  pay  

A:  borrower  income  available  for  housing  service,  with  mean  μ  and  std.  dev  σ.    

h?p://algo.scu.edu/~sanjivdas/   23  

h?p://algo.scu.edu/~sanjivdas/  

Logit:  Explaining  Re-­‐default  

h?p://algo.scu.edu/~sanjivdas/  25  

Reduced-­‐Form  Analysis  of  SAMs  

Home  values  

Normalize  iniGal  home  value  to  1.  The  opGon  to  default  is  ITM  when  (H  >  L).    

There  is  a  home  value  D  at  which  the  borrower  will  default.  D  is  a  “default  level”  or  default  exercise  barrier.    

D  is  a  funcGon  of  the  lender  share  θ,  we  write  it  as  D(L,  θ).  

D  increases  in  L  and  in  θ.  

Foreclosure  recovery  as  a  fracGon  of  H  is  ϕ.  

h?p://algo.scu.edu/~sanjivdas/  26  

Default  Barrier  and  Lender  Share  

h?p://algo.scu.edu/~sanjivdas/  27  

Barrier  Model  IntuiGon  

D=L  exp[-­‐γ(1-­‐θ)]  

Region  of  no  default  and  gains  to  SAM  

Region  of  default    

H0  =  1  

Default"Payoff=фD"

No  default  Payoff=L  

h?p://algo.scu.edu/~sanjivdas/  28  

A  Barrier  OpGon  DecomposiGon  Non-­‐default    component  

Default  component  

Shared  AppreciaGon  component  

PDE  

h?p://algo.scu.edu/~sanjivdas/  29  

The  Closed-­‐Form  SoluGon  

h?p://algo.scu.edu/~sanjivdas/  30  

SAM  or  not?  

MANAGING  SYSTEMIC  RISK  BY  ANALYZING  NETWORKS  USING  R  

THE  MIDAS  PROJECT  @IBM  

Topic  2  

Paper:  “Unleashing  the  Power  of  Public  Data  for  Financial  Risk  Measurement,  RegulaGon,  and  Governance”  (with  Mauricio  A.  Hernandez,  Howard  Ho,  Georgia  Koutrika,  Rajasekar  Krishnamurthy,  Lucian  Popa,  Ioana  R.  Stanoi,  Shivakumar  Vaithyanathan)  IBM  Almaden)  

Midas  Financial  Insights  

32  

Annual Report

Proxy Statement Insider Transaction

Loan Agreement

Extract Integrate

Related Companies

Loan Exposure

Exposure by subsidiary

…  

…  

Raw  Unstructured  Data  

Data  for  Analysis  

Raw  Unstructured  Data  

Example  of  Midas  Financial  Insights  

33  

Company

Person

Extract Integrate

Over  2200  financial  companies  

Over  32000  key  officials  in  financial  companies  

SEC  Filings  

Over  1  Million  documents  

     2005                            2010          

Filing  Gmeline  

Filings  of  Financial    Companies  

(Forms  10-­‐K,8-­‐k,  10-­‐Q,  DEF  14A,  3/4/5,  13F,  SC  13D  SC  

13  G  FDIC  Call  Reports)    

Call  Data  Records  

34  

employment, director, officer

insider, 5% owner, 10% owner

holdings,

transactions

Event

Company Person

Security Loan

subsidiaries, insider, 5%, 10% owner, banking

subsidiaries

borrower, lender

Forms 8-K

Forms 10-K, DEF 14A, 8-K, 3/4/5

Forms 10-K, DEF 14A, 8-K, 3/4/5, 13F, SC 13D, SC 13G, FDIC Call Report

Reference SEC table Forms 13F, Forms 3/4/5

Forms 3/4/5, SC 13D, SC 13G, 10-K, FDIC Call Report

Forms 3/4/5, SC 13D, SC 13G

Forms 10-K, 10-Q, 8-K

5%  beneficial  ownership  •  owner  •  issuer  •  %  owned  •  date  

Shareholders  •  related  insGtuGonal  managers  •  Holdings  in  different  securiGes  

Subsidiaries  •  list  subsidiaries  of  a  company  

Current  Events  •  merger  and  acquisiGon  •  bankruptcy  •  change  of  officers  and  directors  •  material  definiGve  agreements  

Loan  Agreements  •  loan  summary  details  •  counterparGes  (borrower,  lender,  other  agents)  

•  commitments  

Insider  filings  •  transacGons  •  holdings  •  Insider  relaGonship  

Officers  &  Directors  •  menGon  •  bio  range,  age,  current  posiGon,  past  posiGon  

•  signed  by  •  commi?ee  membership  

Midas  provides  Analy8cal  Insights  into  company  rela8onships  by  exposing  informa8on  concepts  and  rela8onships  within  extracted  concepts  

35  

Systemic  Analysis  Systemic  Analysis  

•  DefiniGon:  the  measurement  and  analysis  of  relaGonships  across  enGGes  with  a  view  to  understanding  the  impact  of  these  relaGonships  on  the  system  as  a  whole.    

•  Challenge:  requires  most  or  all  of  the  data  in  the  system;  therefore,  high-­‐quality  informaGon  extracGon  and  integraGon  is  criGcal.    

Systemic  Risk  

•  Current  approaches:  use  stock  return  correlaGons  (indirect).  [Acharya,  et  al  2010;  Adrian  and  Brunnermeier  2009;  Billio,  Getmansky,  Lo  2010;  Kritzman,  Li,  Page,  Rigobon  2010]  

•  Midas:  uses  semi-­‐structured  archival  data  from  SEC  and  FDIC  to  construct  a  co-­‐lending  network;  network  analysis  is  then  used  to  determine  which  banks  pose  the  greatest  risk  to  the  system.    

36  

Co-­‐lending  Network  

•  DefiniGon:  a  network  based  on  links  between  banks  that  lend  together.    

•  Loans  used  are  not  overnight  loans.  We  look  at  longer-­‐term  lending  relaGonships.    

•  Lending  adjacency  matrix:    

•  Undirected  graph,  i.e.,  symmetric      

•  Total  lending  impact  for  each  bank:  

37  

Centrality  

•  Influence  relaGons  are  circular:  

•  Pre-­‐mulGply  by  scalar  to  get  an  eigensystem:  

•  Principal  eigenvector  of  this  system  gives  the  “centrality”  score  for  a  bank.  

•  This  score  is  a  measure  of  the  systemic  risk  of  a  bank.    

38  

Data  

•  Five  years:  2005—2009.  

•  Loans  between  FIs  only.    •  Filings  made  with  the  SEC.  

•  No  overnight  loans.  •  Example:  364-­‐day  bridge  loans,  longer-­‐term  credit  arrangement,  Libor  

notes,  etc.    

•  Remove  all  edge  weights  <  2  to  remove  banks  that  are  minimally  acGve.  Remove  all  nodes  with  no  edges.  (This  is  a  choice  for  the  regulator.)  

2005  

CiGgroup  Inc.  

J.P.  Morgan  Chase  

Bank  of  America  Corp.  

42  

2006   2007  

2008   2009  

43  

Network  Fragility  

•  DefiniGon:  how  quickly  will  the  failure  of  any  one  bank  trigger  failures  across  the  network?  

•  Metric:  expected  degree  of  neighboring  nodes  averaged  across  all  nodes.    

•  Neighborhoods  are  expected  to  “expand”  when    •  Metric:  diameter  of  the  network.  

44  

Top  25  banks  by  systemic  risk  

PORTFOLIO  OPTIMIZATION  USING  R  

Topic  3  

The  research  papers  for  this  work  are  on  my  web  page  –  just  google  it.  h?p://algo.scu.edu/~sanjivdas/research.htm/  

1.  Das,  Markowitz,  Scheid,  and  Statman  (JFQA  2010),  “PorOolio  OpGmizaGon  with    Mental  Accounts”  

2.    Das  &  Statman  (2008),  “Beyond  Mean-­‐Variance:  PorOolio  with      Structured  Products  and  non-­‐Gaussian  returns.”        

Standard  OpGmizaGon  Problem  

Sanjiv Das 46

Mean Covariance matrix Risk aversion

Portfolio weights

SOLUTION:

See D, Markowitz, Scheid, Statman (JFQA 2010)

SoluGon  Math  

Sanjiv  Das   47

Final  soluGon  

Sanjiv  Das   48

Example:  ConstrucGon  of  PorOolios:  Available  securiGes  

Expected returns Standard deviations

Bond 5% 5%

Low-risk stock 10% 20%

High-risk stock 25% 50%

Sanjiv Das 49

The correlation between the two stocks is 0.2. Other correlations are zero.

Investor  goals  (sub-­‐porOolios)  

50

Sub-­‐porOolios  and  overall  porOolio  

The  expected  return  of  the  overall  porOolio  is  the  weighted  average  of  the  expected  returns  of  the  sub-­‐porOolios.  

The  risk  of  the  overall  porOolio  is  not  the  weighted  average  of  the  risk  of  the  sub-­‐porOolios.  

Sanjiv Das 51

Mean-­‐variance  efficient  fronGer  

Sanjiv Das 52

Real  porOolios  versus  virtual  porOolios  

Sanjiv Das 53

An  alternate  problem  

Sanjiv Das 54

For normal returns

Solve for γ

Risk  as  probability  of  losses  

Sanjiv Das 57

Mean-variance problem: Minimize Risk (variance) subject to minimum level of Expected Return.

Behavioral portfolio theory: Maximize Return subject to a maximum probability of falling below a threshold.

SubporOolio  Scenarios  

Sanjiv Das 58

Efficient  FronGers  in  the  BPT    (Mental  Account)  World  

Sanjiv Das 59

Short-­‐Selling  Constraints  

60

Linear  program  with  non-­‐linear  constraints.  This  is  not  a  standard  quadraGc  programming  problem  (QP)  like  the  Markowitz  model.    

MVT  uses  a  standard  QP:  quadra8c  objecGve  funcGon  with  linear  constraints.    

Modified  Problem  

San  Diego,  12-­‐Nov-­‐2007   61

Standard  QP  

Amenable  to  industrial  opGmizers;  we  use  the  R  system  with  the  quadprog  package  and  minpack.lm  library.  

Standard QP problem with linear constraints

MV  FronGer  with  Short-­‐selling  

Sanjiv Das 62

DeviaGng  from  Normality  with  Copulas  

Sanjiv Das 63

Gaussian  Copula  

Sanjiv Das 64

Extended  OpGmizaGon  Problem  

Sanjiv Das 65

SoluGon  

Sanjiv Das 67

Non-­‐Linear  Products  

Sanjiv Das 68

U is a set of states over n assets

r(u) is a n-vector of random returns

Compute p[r(u)]

Restatement  of  the  problem  

Sanjiv Das 69

This is a quadratic optimization with linear constraints.

Not a quadratic optimization with non-linear constraints.

Introducing  Structured  Products  

Sanjiv Das 70

Can we improve the risk-adjusted returns in a portfolio by using puts and calls?

Derivatives are very risky.

And so ….

Are  puts  opGmal?  

Sanjiv Das 71

No, they add very little value to the portfolio.

But …

Puts  are  needed  when  the  threshold  return  is  high  

Sanjiv Das 72

For high thresholds the investor cannot get an acceptable portfolio without puts.

Should  investors  use  calls?  

Sanjiv Das 73

Calls are risky too.

But have attractive and high mean returns!

Calls  give  be?er  porOolios  

Sanjiv Das 74

Improvement is greater than 60 bps !

Structured  Product:    The  Barrier-­‐M-­‐note  

Sanjiv Das 75

Barrier-­‐M  Note  

Sanjiv Das 76

“Truncated  Straddle”  

Sanjiv Das 77

Return pick-up greater than 250 bps!

Barrier-M-note

Equity-­‐Indexed  Product  

Sanjiv Das 78

Conclusion  •  Investors  find  it  easier  to  think  in  terms  of  mental  accounts  or  sub-­‐porOolios  

when  trying  to  reach  their  separate  financial  goals.    

•  Behavioral  porOolio  theory  deals  with  maximizing  return  subject  to  managing  the  risk  of  loss.  This  problem  has  a  mathemaGcal  mapping  into  mean-­‐variance  opGmizaGon,  yet  is  much  more  general.    

•  Even  with  short-­‐selling  prohibited,  the  loss  from  sub-­‐porOolio  opGmizaGon  is  smaller  than  the  loss  from  misesGmaGng  investor  preferences.    

•  ReporGng  performance  by  sub-­‐porOolio  enables  investors  to  track  their  goals  be?er.    

•  Goal-­‐based  opGmizaGon  enables  choosing  porOolios  even  when  normality  is  not  assumed.    

•  Goal-­‐based  opGmizaGon  provides  a  framework  for  including  structured  products  in  investor  porOolios.  

Sanjiv Das 79

The  research  papers  for  this  work  are  on  my  web  page  –  just  google  it.  h?p://algo.scu.edu/~sanjivdas/research.htm/  

1.  Das,  Markowitz,  Scheid,  and  Statman  (JFQA  2010),  “PorOolio  OpGmizaGon  with    Mental  Accounts”  

2.    Das  &  Statman  (2008),  “Beyond  Mean-­‐Variance:  PorOolio  with      Structured  Products  and  non-­‐Gaussian  returns.”        

PEDAGOGICAL  USES  FOR  R  USING  THE  WEB  

Topic  4  

h?p://sanjivdas.wordpress.com/  

Use  the  Rcgi  package  from  David  Firth:  h?p://www.omegahat.org/CGIwithR/    

You  need  two  program  files  to  get  everything  working.  (a)  The  html  file  that  is  the  web  form  for  input  data.  (b)  The  R  file,  with  special  tags  for  use  with  the  CGIwithR  package.  

R  Code  called  from  CGI  

h?p://algo.scu.edu/~sanjivdas/Rcgi/mortgage_calc.html  

High-performance computing (parallelR)

Calling C from R

Lattice dynamic optimization

Network modeling

Optimization

High-dimensional distributions with copulas

Web functions

Q?