35
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Rewiring metabolic pathways for novel organic acid production in the filamentous fungus Aspergillus niger Hossain, A.H. Link to publication Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses): Other Citation for published version (APA): Hossain, A. H. (2020). Rewiring metabolic pathways for novel organic acid production in the filamentous fungus Aspergillus niger. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 23 Aug 2020

UvA-DARE (Digital Academic Repository) Rewiring metabolic ... · observed by A. niger strains that carry the full IA biosynthesis cluster, which is ... the correct transporter to

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

    UvA-DARE (Digital Academic Repository)

    Rewiring metabolic pathways for novel organic acid production in the filamentous fungusAspergillus niger

    Hossain, A.H.

    Link to publication

    Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):Other

    Citation for published version (APA):Hossain, A. H. (2020). Rewiring metabolic pathways for novel organic acid production in the filamentous fungusAspergillus niger.

    General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

    Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

    Download date: 23 Aug 2020

    https://dare.uva.nl/personal/pure/en/publications/rewiring-metabolic-pathways-for-novel-organic-acid-production-in-the-filamentous-fungus-aspergillus-niger(8aab04f9-0277-40c3-b9aa-e8a7bb2e9162).html

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 147PDF page: 147PDF page: 147PDF page: 147

    137

    Appendices

    Summary

    Samenvatting

    সারাাংশ

    References

    List of publications

    Word of thanks

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 148PDF page: 148PDF page: 148PDF page: 148

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 149PDF page: 149PDF page: 149PDF page: 149

    Summary

    139

    Summary Filamentous fungi are remarkable organisms, that merit their own Kingdom in the

    Tree of Life. Most of these fungi are organisms that degrade and feed on (non-

    living) organic matter, that is usually composed of complex biopolymers, with their

    innate ability to secrete enzymes that degrade the biopolymers into saccharides.

    Fungi also have the remarkable ability to grow in acidic environments and

    produce organic acids, which resemble the chemical building blocks that are used

    in the chemical industry for making common household products, such as

    plastics. This makes fungi interesting organisms for use in industrial

    biotechnology where their superior organic acid producing capacity can be fully

    exploited to generate cost-effective production processes. In particular, the

    species Aspergillus niger is industrially exploited for the biotechnological

    production of enzymes and organic acids. This organism is widely used in

    industrial biotechnological processes worldwide due to its ability to grow on a

    wide variety of feedstocks and natural robustness which allow for a large

    operating envelope. As such, A. niger is a suitable production organism for

    bioengineering purposes.

    One of the products for which A. niger is especially well suited, is itaconic acid

    (IA), a dicarboxylic acid with enormous application potential. Currently, IA is used

    for the production of super absorbent polymers, unsaturated polyester resins,

    detergents and coatings, but if the cost price can be lowered from the current

    €1.4 - €2/kg to around €1/kg, IA can serve as bio-based pre-cursor for the

    synthesis of Plexiglass, which would significantly expand the IA market. The

    application potential and market size of IA is hampered by the limited production

    capacity of the currently used industrial production organism A. terreus, which is

    sensitive towards inhibiting compounds present in cheap and unrefined

    feedstocks. Therefore, improving production of IA has been proposed to increase

    IA yield, titer and productivity.

    The use of A. niger as a production host for IA has already been suggested earlier

    by Li et al., [39], Blumhoff et al., [54] and van der Straat et al., [43]. The

    introduction of the genes cadA, mttA, and mfsA, together comprising the A.

    terreus IA biosynthesis cluster, in A. niger, has resulted in low-level IA production

    [39,52,53]. Furthermore, significant side-production of citric acid (CA) was

    observed by A. niger strains that carry the full IA biosynthesis cluster, which is

    described in Chapter 2. Transcriptome analysis of IA producing A. niger strains

    have led to the identification of a gene encoding a non-canonical citrate synthase

    citB, which upon overexpression significantly improved IA production. Moreover,

    overexpression of citB led to abolishment of CA side-product formation (Chapter

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 150PDF page: 150PDF page: 150PDF page: 150

    Summary

    140

    2). The citB gene appears to be clustered in a secondary metabolite pathway,

    which has been further elucidated by Palys et al., [58] to be involved in the

    biosynthesis of alkylcitric acids. However, by introducing the IA biosynthesis

    cluster in A. niger, we have observed citB induction. Moreover its overexpression

    ultimately led to an improvement in IA production (Chapter 2).

    Chapter 3 describes the further improvement of the rewired pathway by

    overexpressing two genes that encode for ATP-citrate lyase (ACL), an enzyme

    responsible for citrate breakdown in its constituent components oxaloacetate and

    acetyl-CoA, at the cost of ATP. ACL overexpression has led to a further

    improvement of IA yield, titer and productivity, which is probably caused by a

    CitB-ACL mediated futile cycle of citrate synthesis and breakdown, resulting in

    increased ATP consumption. Furthermore, in Chapter 3 we also describe the

    improvement of cultivation conditions for IA production by supplementing an

    alkalizing nitrogen source during IA production, which resulted in an extended

    production phase and higher IA titers.

    IA production in A. niger led to more unexpected rewiring, as described in Chapter

    4. Upon achieving high IA titers as described in Chapters 2 and 3, we have

    observed reduced biomass formation and also diminishing IA titers. Moreover, in

    Chapter 2 we describe the observation of reduced biomass formation upon

    externally added IA to the cultivation medium. To identify and elucidate potential

    IA bioconversion pathways in A. niger, we have performed transcriptome analysis

    that has led to the identification of two genes, ictA and ichA, that together form

    an intracellular IA bioconversion pathway. These genes are silent under non-IA

    producing conditions and highly active under conditions where high IA titers are

    achieved. The deletion of either ictA or ichA led to the abolishment of IA

    breakdown. Furthermore, a putative second IA bioconversion pathway, mediated

    by the enzyme TmtA, was also identified. The expression pattern of tmtA closely

    resembles the expression patterns of ictA and ichA. However, upon deletion of

    tmtA we have observed strongly reduced IA titers.

    In Chapter 5, we describe the identification of the end-product of the IA

    bioconversion pathway by performing HPLC analysis, which is citramalate (CM).

    Furthermore, in Chapter 5, we have looked into the effects of metabolic rewiring

    on the expression of genes encoding enzymes and transporters that are related

    to the production of 9 industrially relevant organic acids, by transcriptome

    analysis. Surprisingly, this analysis has led to the identification of a biosynthesis

    cluster that consists of a citramalate synthase and MFS transporter,

    overexpression of which resulted in CM production, demonstrating the possibility

    of two independently regulated CM pathways in our strains.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 151PDF page: 151PDF page: 151PDF page: 151

    Summary

    141

    In Chapter 6, the results presented in this thesis are discussed in line with results

    presented in the scientific literature regarding the production of organic acids with

    filamentous fungi. A frequently overlooked aspect in organic acid production is

    organic acid transport. In Chapters 2, 5 and 6, we describe results that emphasize

    the importance of organic acid transport and also the importance of expressing

    the correct transporter to achieve high product titers, is discussed. Furthermore,

    the aspect of IA-mediated weak organic acid stress is also discussed in Chapter

    6, where preliminary results with S. cerevisiae are described that show

    intracellular acidification after external addition of IA to the culture. The topic of

    metabolic rewiring and ATP wasting as strategy to improve metabolite production

    is also discussed in Chapter 6, where these aspects are discussed in line with

    results presented in the scientific literature.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 152PDF page: 152PDF page: 152PDF page: 152

    Samenvatting

    142

    Samenvatting Draadvormige schimmels zijn opmerkelijke organismen, die hun eigen rijk

    verdienen in de biologie. Het merendeel van deze schimmels voedt zich door het

    afbreken van (niet levend) organisch materiaal, doorgaans bestaande uit

    complexe biopolymeren, middels hun natuurlijke eigenschap om enzymen uit te

    scheiden die deze biopolymeren afbreken tot suikers en andere bouwstoffen.

    Schimmels hebben ook het opmerkelijke vermogen om in een zure omgeving te

    groeien en organische zuren te produceren, die lijken op de chemische

    bouwstenen die in de chemische industrie worden gebruikt voor het maken van

    huishoudelijke materialen, zoals kunststoffen. Dit maakt schimmels interessante

    organismen voor gebruik in de industriële biotechnologie, waar hun superieure

    productiecapaciteit van organische zuren volledig kan worden benut om

    kosteneffectieve productieprocessen te genereren. De schimmelsoort

    Aspergillus niger wordt met name gebruikt bij de biotechnologische productie van

    enzymen en organische zuren. Dit organisme wordt wereldwijd gebruikt voor

    zulke industriële biotechnologische processen, vanwege zijn robuustheid en

    vermogen om te groeien op een breed scala aan verschillende grondstoffen. Dit

    maakt A. niger tot een geschikt productieorganisme voor biotechnologische

    doeleinden.

    Een van de producten waarvoor A. niger bijzonder goed geschikt voor is om te

    produceren is itaconzuur (IA), een dicarbonzuur met veel mogelijke

    toepassingen. Momenteel wordt IA gebruikt voor de productie van

    superabsorberende polymeren, onverzadigde polyesterharsen, wasmiddelen en

    coatings. Als echter de kostprijs kan worden verlaagd van de huidige € 1,4 - € 2

    / kg tot ongeveer € 1 / kg, dan kan IA dienen als duurzame grondstof voor de

    productie van plexiglas. Gezien de grote getale waarin plexiglas geproduceerd

    word, zou deze ontwikkeling de IA-markt aanzienlijk vergroten. De

    toepassingsmogelijkheden en de marktomvang van IA wordt momenteel

    belemmerd door de beperkte productiecapaciteit van het op dit moment gebruikte

    industriële productieorganisme A. terreus, die gevoelig is voor verbindingen die

    aanwezig zijn in goedkope en ongeraffineerde grondstoffen. Daarom is in dit

    proefschrift een strategie uitgewerkt om de IA opbrengst, titer en productiviteit te

    verhogen.

    Het gebruik van A. niger als productieorganisme voor IA is al eerder voorgesteld

    door Li et al., [39], Blumhoff et al., [54] en van der Straat et al., [43]. De introductie

    van de genen cadA, mttA en mfsA (die samen het A. terreus IA

    biosynthesecluster vormen) in A. niger heeft geresulteerd in kleine hoeveelheden

    IA [39,52,53]. Bovendien werd een significante nevenproductie van citroenzuur

    (CA) waargenomen door A. niger stammen die het volledige IA

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 153PDF page: 153PDF page: 153PDF page: 153

    Samenvatting

    143

    biosynthesecluster bevatte, zoals wordt beschreven in hoofdstuk 2.

    Transcriptoom analyse van IA producerende A. niger stammen leidde tot de

    identificatie van een gen dat codeert voor een onconventioneel citraatsynthase,

    citB, dat bij overexpressie de IA productie aanzienlijk verbeterde. Bovendien

    verdween de nevenproductie van CA als gevolg van citB overexpressie

    (hoofdstuk 2). Het citB-gen blijkt onderdeel te zijn van een genencluster dat

    codeert voor een biosyntheseroute van een bepaald secundair metaboliet, dat

    verder onderzocht is door Palys et al., [58] en betrokken blijkt te zijn bij de

    biosynthese van alkylcitroenzuur. Door het IA-biosynthesecluster in A. niger te

    introduceren, hebben we een effect op de expressie van citB waargenomen en

    hebben we waargenomen dat citB overexpressie leidt tot een verbetering van de

    IA-productie.

    Hoofdstuk 3 beschrijft de verdere verbetering van de IA productieroute door

    overexpressie van twee genen die coderen voor ATP-citraatlyase (ACL), een

    enzym dat verantwoordelijk is voor de afbraak van citraat in oxaloacetaat en

    acetyl-CoA, ten koste van het energie dragende molecuul ATP. Overexpressie

    van heeft geleid tot een verdere verbetering van de opbrengst, titer en

    productiviteit van IA, wat gedeeltelijk wordt veroorzaakt door een zogenaamde

    futiele cyclus van citraatsynthese en -afbraak door CitB en ACL, die netto ATP

    verbruikt. Verder beschrijven we in hoofdstuk 3 de verbetering van de

    kweekomstandigheden voor IA productie door het gebruik van een stikstofbron

    die de extracellulaire pH verhoogd, hetgeen resulteerde in een verlengde

    productiefase en hogere IA titers.

    IA productie in A. niger leidde tot meer en zelfs onverwachte aanpassing van het

    metabole circuit, zoals beschreven in hoofdstuk 4. Bij het bereiken van hoge IA

    titers, zoals beschreven in hoofdstuk 2 en 3, hebben we een verminderde

    vorming van biomassa waargenomen en ook afnemende IA titers. Bovendien

    beschrijven we in hoofdstuk 2 de waarneming van verminderde vorming van

    biomassa bij extern toegevoegd IA aan het kweekmedium. Om de mogelijke

    biologische omzettingsroutes van IA die hiermee samenhangen in A. niger te

    identificeren hebben we transcriptoomanalyses uitgevoerd die hebben geleid tot

    de identificatie van twee genen, ictA en ichA, die samen een intracellulaire

    biologische omzettingsroute vormen. Deze genen zijn inactief onder

    omstandigheden waarin geen IA wordt geproduceerd en zijn zeer actief onder

    omstandigheden waarbij hoge IA titers worden bereikt. Het inactiveren van de

    ictA of ichA genen resulteerde in het stoppen van IA afbraak. Verder werd ook

    een tweede mogelijke IA-bioconversieroute geïdentificeerd, gemedieerd door het

    enzym TmtA. Het expressiepatroon van tmtA lijkt sterk op de expressiepatronen

    van ictA en ichA. Na inactiveren van het tmtA gen hebben we echter sterk

    verlaagde IA titers waargenomen.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 154PDF page: 154PDF page: 154PDF page: 154

    Samenvatting

    144

    In hoofdstuk 5 beschrijven we de identificatie van het eindproduct van de IA-

    bioconversieroute, citramalaat (CM). Verder hebben we in hoofdstuk 5 het

    transcriptoom onderzocht van IA producerende A. niger stammen op de

    expressie van genen die coderen voor enzymen en transporteiwitten die

    gerelateerd zijn aan de productie van 9 industrieel relevante organische zuren.

    Verrassend genoeg heeft deze analyse geleid tot de identificatie van een tot dan

    toe onbekend biosynthese-cluster bestaande uit een citramalaatsynthase en een

    MFS-transporteiwit, overexpressie van beiden resulteerde in CM-productie.

    In Hoofdstuk 6 worden de resultaten zoals gepresenteerd in dit proefschrift

    besproken in lijn met de resultaten uit de wetenschappelijke literatuur met

    betrekking tot de productie van organische zuren met draadvormige schimmels.

    Een aspect wat vaak over het hoofd wordt gezien bij de productie van organische

    zuren is het transport van deze. In de hoofdstukken 2, 5 en 6 beschrijven we

    resultaten die het belang van het transport van organische zuren benadrukken

    en ook het belang van het tot expressie brengen van de juiste transporteiwitten

    om hoge titers te bereiken. Verder wordt ook het aspect van het ontstaan van

    zwakzuur stress, veroorzaakt door IA besproken in hoofdstuk 6, waar voorlopige

    resultaten met S. cerevisiae worden beschreven die intracellulaire verzuring

    vertonen na externe toevoeging van IA. Het aanpassen van metabole routes en

    ATP-verspilling als strategie om de metabolietproductie te verbeteren wordt

    verder besproken in hoofdstuk 6, waarbij ook de resultaten uit de gerelateerde

    wetenschappelijke literatuur verder worden bediscussieerd.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 155PDF page: 155PDF page: 155PDF page: 155

    সারাাংশ

    145

    সারাাংশ

    তন্তুময় ছত্রাক হল একটি অসাধারণ জীব, যা ট্রি অফ লাইফফ তাফের নিজস্ব নকিংডম এর যযাগ্য। এই

    ছত্রাকগুল োর যবনিরভাগই জজনবক পোর্থফক (মৃত) ক্ষয় করর এবিং যভাজি কফর, যা সাধারণত জটিল

    বাফয়াপনলমার সমন্বফয় গঠিত হয় এবিং তাফের সহজাত ক্ষমতাবফল এমি এিজাইমগুনল বাফয়াপনলমারফক

    স্যাকারাইফড অবিনমত কফর । ছত্রাফকর অম্লীয় পনরফবফি বৃনি এবিং জজব অযানসড উৎপােিকরার অসাধারণ

    ক্ষমতাও রফয়ফছ যা রাসায়নিক নিফে প্লানিফকর মফতা সাধারণ পণ্য জতনরফত একক নহফসফব ব্যবহৃত হয় ।

    এটি নিে বাফয়াফেকফিালনজফত ব্যবহাফরর জন্য ছত্রাকফক আকর্থণীয় জীফব পনরণত কফর যযখাফি সাশ্রয়ী

    উৎপােি প্রনিয়া জতনর করফত তাফের জজব অযানসড উৎপােফির উচ্চ ক্ষমতা সমূ্পণথরূফপ কাফজ লাগাফিা

    যযফত পাফর। নবফির্ত, Aspergillus niger প্রজানতটি এিজাইম এবিং জজব অযানসফডর

    বাফয়াফেকফিালনজকাল উৎপােফির জন্য নিেগতভাফব ব্যবহার করা হয়। এই জীবটি নবনভন্ন ধরফণর কাাঁ চামাল

    এবিং প্রাকৃনতক দৃঢ়তার মফে যবফ়ে ওঠার ক্ষমতার কারফণ, নবশ্বজুফ়ে নিেজাত বাফয়াফেকফিালনজকাল

    প্রনিয়াগুনলফত ব্যাপকভাফব ব্যবহৃত হয়।যযমি, A. niger হল বাফয়াইনিনিয়ানরিং এর উফেফে, অন্য

    পণ্যগুনলর উৎপােি সুনবধাফর্থ একটি উপযুক্ত উৎপােিফযাগ্য জীব।

    এগুফলার মফে একটি, যার জন্য A. niger নবফির্ভাফব উপযুক্ত, যসটি হল আইোফকানিক অযানসড

    (আইএ), একটি ডাইকাবথনিনলক অযানসড যার ব্যবহার সম্ভাবিাসূচক ।বতথ মাফি আইএ সুপার যিার্ণকারী

    পনলমার, অসমৃ্পক্ত পনলফয়িার যরনসি, নডোরফজন্টস এবিং আবরণ উৎপােি করার জন্য ব্যবহৃত হয়, তফব

    ব্যফয়র মূল্য যনে বতথ মাি € 1.4 - € 2 / যকনজ যর্ফক প্রায় € 1 / যকনজ পযথন্ত িানমফয় আিা যায় তফব তা

    আইএ যপ্লনিগ্লাফসর সিংফের্ফণর জন্য বাফয়া-নভনিক অগ্রদূত নহফসফব কাজ করফত পাফর, যা আইএ বাজারফক

    উফেখফযাগ্যভাফব প্রসানরত করফব। আইএর প্রফয়াফগর সম্ভাবিা এবিং বাজাফরর আকার বতথ মাফি ব্যবহৃত নিে

    উৎপােি জীব A. terreusএর সীনমত উৎপােি ক্ষমতার কারফণ বাধাগ্রস্ত, যা অপনরফিানধত এবিং ব্যয়বহুল

    কাাঁ চামাল গুফলাফত উপনিত বাধাোিকারী যযৌগগুফলার প্রনত সিংফবেিিীল। তাই আইএ ফলি, োইোর ও

    উৎপােিিীলতা বৃনির যকৌিল নহসাফব আইএর উৎপােি প্রস্তাব করা হফয়ফছ। A. niger এর সাইট্রিক

    অযানসড উৎপােি এবিং বহু নিে-ব্যবহৃত কাাঁ চামাল গুফলাফত উপনিত বাধা েমিকারীফের নবরুফি প্রনতফরাফধর

    উোহরণ নহসাফব এর জজব অযানসড উৎপােি করার উচ্চ ক্ষমতা, খুব উপযুক্ত বফল মফি হয়।

    আইএর জন্য যপ্রাডাকিি যহাি নহসাফব A. niger ব্যবহার ইনতমফে নল et al. [39], ব্লুমহফ et al.,

    [54] এবিং ভযাি যডর স্ট্র্যাে et al. দ্বারা পরামিথ যেওয়া হফয়ফছ। [43]। A. niger এ cadA, mttA,

    এবিং mfsA নজিগুফলার পনরনচনতর ফফল, যারা একফত্র A. terreus জজবসিংফের্ণ গুচ্ছ জতনর কফর, নিম্ন

    স্তফরর আইএ উৎপােি হফয়ফছ [39,52,53]। তদ্বযতীত, A. niger দ্বারা উপজাত নহফসফব সাইট্রিক

    অযানসড (নসএ) এর উফেখফযাগ্য উৎপােি পযথফবক্ষণ করা হফয়ফছ, যযটি সমূ্পণথ আইএ জজবসিংফের্ণ গুচ্ছ

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 156PDF page: 156PDF page: 156PDF page: 156

    সারাাংশ

    146

    বহি কফর এবিং যা অোয় ২-এ বণথিা করা হফয়ফছ। A. niger এর ট্রান্সনিপফোম নবফের্ণ একটি নজি

    সিাক্তকরফণর নেফক ধানবত কফরফছ, যযটি একটি িি-কযাফিানিকাল সাইফট্রে নসিফর্জ citB যক এিফকাড

    কফর, যা অনতমাত্রায় প্রকাফির মােফম আইএ উৎপােফির উফেখফযাগ্যভাফব উন্ননত কফরনছল। তদুপনর, citB

    এর অতযনধক প্রকাি নসএ-উপজাত গঠি বানতল কফর যেয় (নদ্বতীয় অোয়)। citB নজিটি একটি নদ্বতীয়

    নবপাকীয় পফর্র মফে গুচ্ছাকাফর আফছ বফল মফি হয়, যা প্যানলস et al. [58] দ্বারা অযালকাইলসাইট্রিক

    অযানসফডর জজব সিংফের্ফণ জন়েত হওয়ার কর্া বণথিা করা হফয়ফছ (অোয় 2 এবিং 6)। তফব, A. niger

    এ আইএ জজবসিংফের্ণ গুচ্ছটি প্রবতথ ি কফর আমরা citB যক আইএ জজবসিংফের্ফণ পুিনিথমথাণফক পযথফবক্ষণ

    কফরনছ, যা অনতমাত্রায় প্রকাফির পফর অবফিফর্ আইএ উৎপােফির উন্ননত সাধি কফর।

    অোয় ৩ এ এটিনপ-র মূফল্য সাইফট্রে এর উপাোি অিাফলা এনসফেে এবিং এনসোইল-যকাএ যত এর ভাঙ্গফির

    জন্য োয়ী একটি এিজাইম, এটিনপ-সাইফট্রে লাফয়জ (এনসএল)যক এিফকাড কফর এমি দুটি নজিফক

    ওভারএিফপ্রস কফর পুিনিথমথাণ পফর্র আরও উন্ননতর বণথিা যেওয়া হফয়ফছ। এনসএল এর ওভারএিফপ্রিি

    আইএ ফলি, োইোর এবিং উৎপােিিীলতার আরও উন্ননত ঘোয়,যা আিংনিকভাফব সাইফট্রে সিংফের্ণ এবিং

    ভাঙ্গি এর একটি নিরর্থক চি নহফসফব citB-এনসএল দ্বারা পনরচানলত হয়, যযটি অবনিষ্ট এটিনপ গ্রহণ কফর

    এবিং িনক্তর যিার্ণ ঘোয়। অনধকন্তু, তৃতীয় অোফয় আমরা আইএ উৎপােফির সময় ক্ষারযুক্ত িাইফট্রাফজি

    উৎফসর পনরপূরক দ্বারা আইএ উৎপােফির জন্য চাফর্র অবিার উন্ননত বণথিা কফরনছ, যার ফলস্বরূপ বনধথত

    উৎপােি পবথ এবিং উচ্চতর আইএ োইোর নছল।

    A. niger এ আইএ উৎপােি আরও যবনি এবিং এমিনক অপ্রতযানিত পুিনিথমথাফণর নেফক পনরচানলত

    কফরনছল, যযমিটি চতুর্থ অোফয় বনণথত হফয়ফছ। উচ্চ আইএ োইোর অজথ ফির পফর নদ্বতীয় এবিং তৃতীয়

    অোফয় বনণথত হফয়ফছ, আমরা জজবভফরর গঠফি হ্রাস এবিং হ্রাসকারী আইএ োইোরফক পযথফবক্ষণ কফরনছ।

    অনধকন্তু, নদ্বতীয় অোফয় আমরা বানহযকভাফব আবােকৃত আইএ চাফর্র মােফম হ্রাস করা জজবভর গঠফির

    পযথফবক্ষণ বণথিা কনর। A. niger এ আইএ জজব রুপান্তফরর পর্ রফয়ফছ নকিা তা ব্যাখ্যা করার জন্য, আমরা

    ট্রান্সনিপফোম নবফের্ণ কফরনছ যা দুটি নজি, ictA এবিং ichA নচনিত কফরফছ, যা একসাফর্ একটি

    আন্তঃফকার্ীয় আইএ জজব রুপান্তফরর পর্ জতনর কফর। এই নজিগুফলা িি-আইএ উৎপােফি নিনিয় র্াফক

    এবিং উচ্চ আইএ োইোর প্রানিফত অতযন্ত সনিয় র্াফক। ictA বা ichA উভয়ই মুফছ যফলার ফফল আইএর

    ভাঙ্গি বানতল হফয় যায়। তদ্বযতীত, এিজাইম tmtA এর মেিতায় একটি নিনতিীল নদ্বতীয় আইএর জজব

    রুপান্তফরর পর্ও নচনিত করা হফয়নছল। TmtA এর অনভব্যনক্তর িমুিাটি ictA এবিং ichA এর অনভব্যনক্তর

    িমুিার সাফর্ ঘনিষ্ঠভাফব নমফল যায়। তফব, tmtA মুফছ যফলার পফর আমরা আইএ োইোফর তীব্র হ্রাস

    পযথফবক্ষণ কফরনছ।

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 157PDF page: 157PDF page: 157PDF page: 157

    সারাাংশ

    147

    অোয় 5 এ, আমরা এইচনপএলনস নবফের্ণ কফর আইএর জজব রুপান্তর পফর্র যির্-পণ্যটির সিাক্তকরণ

    বণথিা কনর, যা সাইট্রাম্যাফলে (নসএম)। অনধকন্তু, অোয় 5 এ, আমরা ট্রান্সনিপফোম নবফের্ণ কফর নজি

    এিফকানডিং এিজাইম এবিং এমি ট্রান্সফপােথ ারগুফলা যারা ৯ টি নিে-সম্পনকথ ত প্রাসনঙ্গক জজব অযানসফডর

    উৎপােফির সাফর্ সম্পনকথ ত, তাফের উপর নবপাকীয় পুিনিথমথাফণর প্রভাবগুফলা যেফখনছ। আশ্চযথজিকভাফব,

    এই নবফের্ণ একটি জজব সিংফের্ণ গুচ্ছ িিাক্তকরফণর নেফক পনরচানলত কফরফছ যযটি সাইট্রাম্যাফলে সিংফের্

    এবিং এমএফএস ট্রান্সফপােথ ার সমন্বফয় গঠিত,যার অতযনধক এিফপ্রিি যার ফফল নসএম উৎপােি হফয়নছল।

    র্ষ্ঠ অোফয়, এই নর্নসফস উপিানপত ফলাফলগুফলা তন্তুময় ছত্রাক যর্ফক জজব অযানসড উৎপােি সম্পনকথ ত

    জবজ্ঞানিক সানহফতয উপিানপত ফলাফলগুনলর সাফর্ নমল যরফখ আফলাচিা করা হফয়ফছ। জজব অযানসড

    উৎপােফির একটি বোরংবোর উফপনক্ষত নেক হল জজব অযানসড পনরবহি। অোয় ২,৫ এবিং ৬ এ,আমরা জজব

    অযানসড পনরবহফির গুরুত্ব সম্পনকথ ত ফলাফলগুফলাফত যজার যেই এবিং উচ্চ পণ্য োইোর অজথ ফির জন্য

    সঠিক পনরবহিকারীফক প্রকাফির গুরুত্বফকও যজার নেফয় আফলাচিা করা হফয়ফছ। তদ্বযতীত,আইএ- মেনিত

    দুবথল জজব অযানসড পীরফণর নেকটি র্ষ্ঠ অোফয়ও আফলাচিা করা হফয়ফছ,যযখাফি S. cerevisiae এর

    প্রার্নমক ফলাফলগুফলা, যা কালচাফর আইএর বানহযক সিংফযাজফির পফর অন্তঃফকানর্ক অযানসনডনফফকিি

    যেখায়, যসগুফলা বণথিা করা হফয়ফছ। নবপাকীয় পুিনিথমথাণ এবিং নবপাফকর উৎপােি উন্ননতর যকৌিল নহসাফব

    এটিনপ িফষ্টর নবর্য়টিও র্ষ্ঠ অোফয় আফলাচিা করা হফয়ফছ, যযখাফি এই নেকগুফলা জবজ্ঞানিক সানহফতয

    উপিানপত ফলাফফলর সাফর্ নমল যরফখ আফলাচিা করা হফয়ফছ।

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 158PDF page: 158PDF page: 158PDF page: 158

    References

    148

    References

    1. Kavanagh K. Fungi. 2005.

    2. Gadd GM. Fungal Production of Citric and Oxalic Acid: Importance in Metal Speciation, Physiology and Biogeochemical Processes. Adv. Microb. Physiol. 1999;41:47–92.

    3. Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. Trends Biotechnol. 2008;26:100–8.

    4. Machida, M. and Gomi K. Aspergillus: Molecular Biology and Genomics. Caister Acad. Press. 2010.

    5. Houbraken J, de Vries RP, Samson RA. Modern Taxonomy of Biotechnologically Important Aspergillus and Penicillium Species. 2014;86:199–249.

    6. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, Côrrea dos Santos RA, de Lima Dámasio AR, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Krasevec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár AP, Mulé G, Ngan CH, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepcic K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, de Castro Oliveira JV, Vesth TC, Visser J, Yu JK, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol. 2017;18(1):28

    7. Park HS, Jun SC, Han KH, Hong SB, Yu JH. Diversity, Application, and Synthetic Biology of Industrially Important Aspergillus Fungi. Adv. Appl. Microbiol. 2017;100:161-202

    8. Dagenais TRT, Keller NP. Pathogenesis of Aspergillus fumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 2009;22(3):447–65.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 159PDF page: 159PDF page: 159PDF page: 159

    References

    149

    9. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153:1677–92.

    10. Cabañes FJ, Accensi F, Bragulat MR, Abarca ML, Castellá G, Minguez S, Pons A. What is the source of ochratoxin A in wine? Int. J. Food Microbiol. 2002;79:213–5.

    11. Schuster E, Dunn-Coleman N, Frisvad J, Van Dijck P. On the safety of Aspergillus niger - A review. Appl. Microbiol. Biotechnol. 2002;59:426–35.

    12. Solomon, S. D, Qin M, Manning Z, Chen M, Marquis KB, Averyt M, Tigno & H. L. Miller (eds). Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York Cambridge Univ. Press. 2007;996.

    13. European Commission. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS - Innovating for Sustainable Growth: A Bioeconomy for Europe. Off. J. Eur. Union. 2012.

    14. Cherubini F, Stromman AH. Chemicals from lignocellulosic biomass: opportunities, perspectives, and potential of biorefinery systems. Biofuels, Bioprod. Biorefining. 2011;5:548–61.

    15. Cherubini F. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 2010;51:1412–21.

    16. Isikgor FH, Becer CR. Polymer Chemistry the production of bio-based chemicals and polymers. Royal Society of Chemistry. 2015;4497–559.

    17. Cheng H, Wang L. Lignocelluloses Feedstock Biorefinery as Petrorefinery Substitutes. Biomass Now - Sustain. Growth Use 2013;347–88.

    18. Chen Y, Nielsen J. Biobased organic acids production by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 2016;37:165–72.

    19. Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK. Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review. 2017;66(10):1349-63.

    20. Werpy T, Petersen G. Top Value Added Chemicals from Biomass Volume I — Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Other Inf. PBD 1 Aug 2004;Medium: ED; Size: 76 pp. pages.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 160PDF page: 160PDF page: 160PDF page: 160

    References

    150

    21. Robert T, Friebel S. Itaconic acid – a versatile building block for renewable polyesters with enhanced functionality. Green Chem. 2016;18:2922–34.

    22. Werpy T, Petersen G. Top Value Added Chemicals from Biomass. Program. 2004;76.

    23. Choi S, Song CW, Shin JH, Lee SY. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 2015;28:223–39.

    24. Won CY, Chu CC, Yu TJ. Novel amine-containing biodegradable polyester via copolymerization of aspartic anhydride and 1, 4-cyclohexanedimethanol. Macromol. Rapid Commun. 1996;17:653–659.

    25. Voll A, Klement T, Gerhards G, Büchs J, Marquardt W. Metabolic modelling of itaconic acid fermentation with Ustilago maydis. Chem. Eng. Trans. 2012;27:367-72.

    26. Saha BC, Kennedy GJ, Qureshi N, Bowman MJ. Production of itaconic acid from pentose sugars by Aspergillus terreus. Biotechnol. Prog. 2017;1–9.

    27. Hull CW. United States Patent [ 19]. Patent number 4929402. 1990;1–5.

    28. Weastra SRO. Determination of market potential for selected platform chemicals: itaconic acid, succinic adis, 2,5-furandicarboxylic acid. 2011;1–173.

    29. Karaffa L, Díaz R, Papp B, Fekete E, Sándor E, Kubicek C. A deficiency of manganese ions in the presence of high sugar concentrations is the critical parameter for achieving high yields of itaconic acid by Aspergillus terreus. Appl. Microbiol. Biotechnol. 2015;99(19):7397-44.

    30. Kuenz A, Krull S. Biotechnological production of itaconic acid—things you have to know. Appl. Microbiol. Biotechnol. 2018;102:3901–14.

    31. Papagianni M. Advances in citric acid fermentation by Aspergillus niger: Biochemical aspects, membrane transport and modeling. Biotechnol. Adv. 2007;25:244–63.

    32. Soccol CR, Vandenberghe LPS, Rodrigues C. New Perspectives for Citric Acid Production and Application. Food Technol. Biotechnol. 2006;44:141–9.

    33. Rumbold K, van Buijsen HJ, Overkamp KM, van Groenestijn JW, Punt PJ, Werf M. Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb. Cell Fact. 2009;8:64.

    34. Bentley R, Thiessen CP. Biosynthesis of itaconic acid in Aspergillus terreus II. Early stages in glucose dissimilation and the role of citrate. J. Biol. Chem. 1957;226(2):689-701.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 161PDF page: 161PDF page: 161PDF page: 161

    References

    151

    35. Bentley R, Thiessen CP. Biosynthesis of itaconic acid in Aspergillus terreus I. Tracer studies with V-labeled substrates. J. Biol. Chem. 1957;226(2):673-87.

    36. Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq AC. Itaconate Biosynthesis in Aspergillus terreus. J. Bacteriol. 1995;177(12):3573-8.

    37. Dwiarti L, Yamane KEN, Yamatani H, Kahar P, Okabe M. Purification and Characterization of cis-Aconitic Acid Decarboxylase from Aspergillus terreus TN484-M1. J. Biosci. Bioeng. 2002;94(1):29-33.

    38. Jaklitsch WM, Kubicek CP, Scrutton MC. The subcellular organization of itaconate biosynthesis in Aspergillus terreus. J. Gen. Microbiol. 1991;137:533–9.

    39. Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M. A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet. Biol. 2011;48:602–11.

    40. Steiger MG, Punt PJ, Ram AF, Mattanovich D, Sauer M. Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab. Eng. 2016;35:95–104.

    41. Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microb. Cell Fact. 2016;15.

    42. Hosseinpour Tehrani H, Geiser E, Engel M, Hartmann SK, Hossain AH, Punt PJ, Blank LM, Wierckx N. The interplay between transport and metabolism in fungal itaconic acid production. Fungal Genet. Biol. 2019;125:45-52

    43. van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, de Graaff LH. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb. Cell Fact. 2014;13:11.

    44. Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, Bölker M. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb. Biotechnol. 2016;9(1):116-26

    45. Levinson WE, Kurtzman CP, Kuo TM. Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb. Technol. 2006;39:824–7.

    46. Tabuchi T, Sugisawa T, Ishidori T, Nakahara T, Sugiyama J. Itaconic Acid Fermentation by a Yeast Belonging to the Genus Candida. Agric. Biol. Chem. 1981;45(2):475-479.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 162PDF page: 162PDF page: 162PDF page: 162

    References

    152

    47. Kawamura D, Furuhashi M, Saito O, Matsui H. Production of itaconic acid by fermentation. 1981. Shizuoka Prefecture;Iwata Kagaku Kogyo Japan Patent 56137893.

    48. Sayama A, Kobayashi K, Ogoshi A. Morphological and physiological comparisons of Helicobasidium mompa and H. purpureum. Mycoscience. 1994.

    49. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Blinz T, Wegner A, Tallam A, Rausell A, Buttini M, Linster CL, Medina E, Balling R, Hiller K. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. 2013;110(19):7820-5

    50. Cordes T, Michelucci A, Hiller K. Itaconic Acid: The Surprising Role of an Industrial Compound as a Mammalian Antimicrobial Metabolite. Annu. Rev. Nutr. 2014;35:451-73.

    51. Steiger MG, Blumhoff ML, Mattanovich D, Sauer M. Biochemistry of microbial itaconic acid production. Front. Microbiol. 2013;4:1–5.

    52. Li A, Pfelzer N, Zuijderwijk R, Punt P. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol. 2012;12:57.

    53. Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl. Microbiol. Biotechnol. 2013;97:3901–11.

    54. Blumhoff ML, Steiger MG, Mattanovich D, Sauer M. Targeting enzymes to the right compartment: Metabolic engineering for itaconic acid production by Aspergillus niger. Metab. Eng. 2013;19:26–32.

    55. Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl. Microbiol. Biotechnol. 2014;98(19):8155-64.

    56. Otten A, Brocker M, Bott M. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab. Eng. 2015;30:156–65.

    57. Chin T, Sano M, Takahashi T, Ohara H, Aso Y. Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803. J. Biotechnol. 2015;195:43–5.

    58. Palys S. Biosynthesis of alkylcitric acids in Aspergillus niger involves both co-localized and unlinked genes. 2019;1–23.

    59. Klement T, Büchs J. Itaconic acid - A biotechnological process in change. Bioresour. Technol. 2013;135:422–31.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 163PDF page: 163PDF page: 163PDF page: 163

    References

    153

    60. Willke T, Vorlop KD. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 2001;56:289–95.

    61. Kuenz A, Gallenmüller Y, Willke T, Vorlop KD. Microbial production of itaconic acid: Developing a stable platform for high product concentrations. Appl. Microbiol. Biotechnol. 2012;96:1209–16.

    62. Hevekerl A, Kuenz A, Vorlop KD. Influence of the pH on the itaconic acid production with Aspergillus terreus. Appl. Microbiol. Biotechnol. 2014;98:6983–9.

    63. Mattern IE, van Noort JM, van den Berg P, Archer DB, Roberts IN, van den Hondel CA. Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol. Gen. Genet. 1992;234:332–6.

    64. Punt PJ, Li A, Caspers M. Novel organic acid pathway. 2014. WO2014/178717 A1.

    65. Punt PJ, Van Den Hondel CA. Transformation of filamentous fungi based on Hygromycin B and Phleomycin Resistance Markers. Methods Enzymol. 1992;216:447–57.

    66. Van Zeijl CM, van de Kamp EH, Punt PJ, Selten GC, Hauer B, Van Gorcom RF, van den Hondel CA. An improved colony-PCR method for filamentous fungi for amplification of PCR-fragments of several kilobases. J. Biotechnol. 1997;59:221–4.

    67. Mortazavi A, Williams B, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods. 2008;5:621–8.

    68. Huang X, Lu X, Li Y, Li X, Li J. Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microb. Cell Fact. 2014;13:119.

    69. Li A, Punt P. Industrial Production of Organic Acids by Fungi. Appl. Microb. Eng. CRC Press; 2013. p. 52–74.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 164PDF page: 164PDF page: 164PDF page: 164

    References

    154

    70. Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 2007;25:221–31.

    71. Andersen MR, Lehmann L, Nielsen J. Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol. 2009;10:R47.

    72. Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl. Microbiol. Biotechnol. 2015;99:7859–77.

    73. Hasegawa Y, Fukuda T, Hagimori K, Tomoda H, Omura S. Tensyuic acids, new antibiotics produced by Aspergillus niger FKI-2342. Chem. Pharm. Bull. 2007;55:1338–41.

    74. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008;36:465–9.

    75. Karaffa L, Kubicek CP. Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl. Microbiol. Biotechnol. 2003;61:189–96.

    76. Plumridge A, Hesse SJ, Watson AJ, Lowe KC, Stratford M, Archer DB. The weak acid preservative sorbic acid inhibits conidial germination and mycelial growth of Aspergillus niger through intracellular acidification. Appl. Environ. Microbiol. 2004;70:3506–11.

    77. Chen M, Huang X, Zhong C, Li J, Lu X. Identification of an itaconic acid degrading pathway in itaconic acid producing Aspergillus terreus. Appl. Microbiol. Biotechnol. 2016;100:7541-8

    78. Sasikaran J, Ziemski M, Zadora PK, Fleig A, Berg IA. Bacterial itaconate degradation promotes pathogenicity. Nat. Chem. Biol. 2014;10:371–7.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 165PDF page: 165PDF page: 165PDF page: 165

    References

    155

    79. Blank L, Green J, Guest JR. AcnC of Escherichia coli is a 2-methylcitrate dehydratase (PrpD) that can use citrate and isocitrate as substrates. Microbiology. 2002;148:133–46.

    80. Gou Y, Li J, Zhu J, Xu W, Gao J. Enhancing inulinase yield by irradiation mutation associated with optimization of culture conditions. Braz. J. Microbiol. 2015;920:911–20.

    81. Okabe M, Lies D, Kanamasa S, Park EY. Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 2009;84:597–606.

    82. Hynes MJ, Murray SL. ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot. Cell. 2010;9:1039–48.

    83. Wynn JP, Hamid AA, Midgley M, Ratledge C. Short Communication: Widespread occurrence of ATP:citrate lyase and carnitine acetyltransferase in filamentous fungi. J. Microbiol. 1998;14:145–7.

    84. Bozell JJ, Petersen GR. Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited. Green Chem. 2010;12:539.

    85. Willke T, Vorlop KD. Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 2001;56:289–95.

    86. Krull S, Hevekerl A, Kuenz A, Prüße U. Process development of itaconic acid production by a natural wild type strain of Aspergillus terreus to reach industrially relevant final titers. Appl. Microbiol. Biotechnol. 2017;101:4063-72.

    87. De Carvalho JC, Magalhães AI, Soccol CR. Biobased itaconic acid market and research trends-is it really a promising chemical? Chim. Oggi/Chemistry Today. 2018;36:56–8.

    88. Markit I. Citric Acid-Chemical Economics Handbook. 2015.

    89. FDA/CFSAN U. Inventory of GRAS notices: Summary of all GRAS notices. 2008.

    90. Boulton C, Ratledge C. Correlation of Lipid Accumulation in Yeasts with Possession of ATP : Citrate Lyase. J. Gen. Microbiol. 1981;127:169–76.

    91. Weyda I, Sinha M, Sørensen A, Peter S, Ahring BK. Increased Production of Free Fatty Acids and Triglycerides in Aspergillus carbonarius by Metabolic Engineering of Fatty Acid Biosynthesis and Degradation Pathways. JSM Microbiol. 2018;6:1–10.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 166PDF page: 166PDF page: 166PDF page: 166

    References

    156

    92. Fliksweert MT, van der Zanden L, Janssen WMTM, Yde Steensma H, van Dijken JP, Pronk JT. Pyruvate Decarboxylase: An Indispensable Enzyme for Growth of Saccharomyces cerevisiae on Glucose. Yeast. 1996;12:247–57.

    93. Osmani SA, Scrutton MC. The Sub-Cellular Localisation of Pyruvate Carboxylase and of Some Other Enzymes in Aspergillus nidulans. Eur. J. Biochem. 1983;133:551–60.

    94. Pfitzner A, Kubicek C, Rohr M. Presence and regulation of ATP:citrate lyase from the citric acid producing fungus Aspergillus niger. Arch. Microbiol. 1987;88–91.

    95. Katz ME, Hynes MJ. Isolation and Analysis of the Acetate Regulatory Gene, facB, from Aspergillus nidulans. Mol. Cell. Biol. 1989; 9:5696-701.

    96. Son H, Min K, Lee J, Choi GJ, Kim JC, Lee YW. Mitochondrial carnitine-dependent acetyl coenzyme a transport is required for normal sexual and asexual development of the ascomycete Gibberella zeae. Eukaryot. Cell. 2012;11:1143–53.

    97. Hynes MJ, Murray SL, Andrianopoulos A, Davis MA. Role of carnitine acetyltransferases in acetyl coenzyme A metabolism in Aspergillus nidulans. Eukaryot. Cell. 2011;10:547–55.

    98. Bond J. More Gene Manipulations in Fungi. Bennett WJ, Lasure LL, editors. Academic Press. 1991.

    99. Sambrook J, Russell DW, David W. Molecular cloning : a laboratory manual. Cold Spring Harbor Laboratory Press; 2001.

    100. d’Enfert C. Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Curr. Genet. 1996;30:76–82.

    101. Arentshorst M, Ram AFJ, Meyer V. Plant Fungal Pathogens. Bolton MD, Thomma BPH., editors. 2012.

    102. Bradstreet RB. The Kjeldahl method for organic nitrogen. Academic Press; 1965.

    103. Rodriguez S, Denby CM, Van Vu T, Baidoo EEK, Wang G, Keasling JD. ATP citrate lyase mediated cytosolic acetyl-CoA biosynthesis increases mevalonate production in Saccharomyces cerevisiae. Microb. Cell Fact. 2016;15:48.

    104. Meijer S, Panagiotou G, Olsson L, Nielsen J. Physiological Characterization of Xylose Metabolism in Aspergillus niger Under Oxygen-Limited Conditions. Biotechnol. Bioeng. 2007;98:462-75

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 167PDF page: 167PDF page: 167PDF page: 167

    References

    157

    105. Meijer S, Adriaan De Jongh W, Olsson L, Nielsen J. Physiological characterisation of acuB deletion in Aspergillus niger. Appl. Microbiol. Biotechnol. 2009;84:157-67

    106. Ruijter GJG, van de Vondervoort PJI, Visser J. Oxalic acid production by Aspergillus niger: an oxalate-non-producting mutant produces citric acid at ph 5 and in the presence of manganese. Microbiology. 1999;145:2569–76.

    107. Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui T V, Cross JR, Thompson CB. ATP-Citrate Lyase Links Metabolism to Histone Acetylation. Science. 2009;324:0–4.

    108. Yin X, Shin H, Li J, Du G, Liu L, Chen J. Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production. Sci. Rep. 2017;7:41040.

    109. Hossain AH, Beek A Ter, Punt PJ. Itaconic acid degradation in Aspergillus niger: the role of unexpected bioconversion pathways. Fungal. Biol. Biotechnol. 2019;6:1.

    110. Feehily C, Karatzas KAG. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 2013;114:11–24.

    111. Cotter PD, Ryan S, Gahan CGM, Hill C. Presence of GadD1 Glutamate Decarboxylase in Selected Listeria monocytogenes Strains Is Associated with an Ability To Grow at Low pH. Appl. Environ. Biotechnology. 2005;71:2832–9.

    112. Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of Acid Resistance in Escherichia coli. J. Bacteriol. 1999;181:3525–35.

    113. Hersh BM, Farooq FT, Barstad DN, Blankenhorn DL, Slonczewski JL. A glutamate-dependent acid resistance gene in Escherichia coli. J. Bacteriol. 1996;178:3978–81.

    114. Lin J, Lee IS, Frey J, Slonczewski JL, Foster JW. Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J. Bacteriol. 1995;177:4097–104.

    115. Lin J, Smith MP, Chapin KC, Suk Baik H, Bennett GN, Foster JW. Mechanisms of Acid Resistance in Escherichia coli. Appl. Environ. Microbiol. 1996;62:3094–100.

    116. Waterman SR, Small P. Identification of dependent genes associated with the stationary-phase acid-resistance phenotype of Shigella flexneri. Mol. Microbiol. 1996;21:925–40.

    117. Kubicek CP, Hampel W. Manganese deficiency leads to elevated amino acid pools in citric acid accumulating Aspergillus niger. Arch. Microbiol. 1979;79:73–9.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 168PDF page: 168PDF page: 168PDF page: 168

    References

    158

    118. Jung Ho A, Yu-Sin J, Yup lee S. Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 2016;42:54–66.

    119. Nieder-Heitmann M, Haigh KF, Görgens JF. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. Bioresour. Technol. 2018;262:159–68.

    120. Cunha da Cruz J, Machado de Castro A, Camporese Sérvulo EF. World market and biotechnological production of itaconic acid. 3 Biotech. 2018;8:138.

    121. Gyamerah MH. Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl. Microbiol. Biotechnol. 1995;44:20–6.

    122. Vandenberghe LPS, Soccol CR, Pandey A, Lebeault JM. Review: Microbial production of citric acid. Braz. Arch. Biol. Technol. 1999;42:263–76.

    123. Boeke JD, Lacroute F, Fink GR. A positive selection for mutants lacking orotidine-5 ’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 1984;197:345–6.

    124. Arentshorst M, Niu J, Ram AFJ. Genetic Transformation Systems in Fungi, Volume 1. 2015;1:263–72.

    125. Guillemette T, Ram AFJ, Carvalho NDSP, Joubert A, Simoneau P, Archer DB. Methods for Investigating the UPR in Filamentous Fungi. Methods Enzymol. 2011;490:1–29.

    126. Carvalho ND, Arentshorst M, Kooistra R, Stam H, Sagt CM, van den Hondel CA, Ram AF. Effects of a defective ERAD pathway on growth and heterologous protein production in Aspergillus niger. Appl. Microbiol. Biotechnol. 2011;89:357-73.

    127. Zhao Z, Meijrink B, Van der Hoeven R, Roubos A, van Gelder M. Cells for itaconic acid production. United States; 2015. WO 2015/181312 A2.

    128. Cai H, Strouse J, Dumlao D, Jung ME, Clarke S. Distinct reactions catalyzed by bacterial and yeast trans-aconitate methyltransferases. Biochemistry. 2001;40:2210–9.

    129. Cai H, Dumlao D, Katz JE, Clarke S. Identification of the gene and characterization of the activity of the trans-aconitate methyltransferase from Saccharomyces cerevisiae. Biochemistry. 2001;40:13699–709.

    130. Shen H, Campanello GC, Flicker D, Luo C, Banerjee R, Mootha VK. The Human Knockout Gene CLYBL Connects The Human Knockout Gene CLYBL Connects Itaconate to Vitamin B12. Cell. 2017;171:771–82.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 169PDF page: 169PDF page: 169PDF page: 169

    References

    159

    131. Roth JR, Lawrence JG, Bobik TA. Cobalamin (coenzyme B12): synthesis and biological significance. Annu. Rev. Microbiol. 1996;50:137–81.

    132. Brock M, Buckel W. On the mechanism of action of the antifungal agent propionate. Eur. J. Biochem. 2004;271:3227–41.

    133. Fuchs G, Berg IA. Unfamiliar metabolic links in the central carbon metabolism. J. Biotechnol. 2014;192:314–22.

    134. Katz JE, Dumlao DS, Wasserman JI, Lansdown MG, Jung ME, Faull KF, Clarke S. 3-Isopropylmalate is the major endogenous substrate of the Saccharomyces cerevisiae trans-aconitate methyltransferase. Biochemistry. 2004;43:5976–86.

    135. Dave KK, Punekar NS. Expression of lactate dehydrogenase in Aspergillus niger for L-lactic acid production. PLoS One. 2015;10:1–16.

    136. Schneider KD, Van Straaten P, De Orduña RM, Glasauer S, Trevors J, Fallow D, Smith PS. Comparing phosphorus mobilization strategies using Aspergillus niger for the mineral dissolution of three phosphate rocks. J. Appl. Microbiol. 2010;108:366–74.

    137. Chuang CC, Kuo YL, Chao CC, Chao WL. Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol. Fertil. Soils. 2007;44:415–6.

    138. Upton DJ, McQueen-Mason SJ, Wood AJ. An accurate description of Aspergillus niger organic acid batch fermentation through dynamic metabolic modelling. Biotechnol. Biofuels. 2017;10:258.

    139. Schuster E, Dunn-Coleman N, Frisvad J, Van Dijck P. On the safety of Aspergillus niger - A review. Appl. Microbiol. Biotechnol. 2002. p. 426–35.

    140. Cairns TC, Nai C, Meyer V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 2018;1–14.

    141. Meyer V, Wu B, Ram AFJ. Aspergillus as a multi-purpose cell factory: Current status and perspectives. Biotechnol. Lett. 2011;33:469–76.

    142. Lubertozzi D, Keasling JD. Developing Aspergillus as a host for heterologous expression. Biotechnol. Adv. 2009;27:53–75.

    143. Meyer V. Genetic engineering of filamentous fungi — Progress, obstacles and future trends. Biotechnol. Adv. 2008;26:177–85.

    144. Boecker S, Grätz S, Kerwat D, Adam L, Schirmer D, Richter L, Schütze T, Süssmuth RD, Meyer V. Aspergillus niger is a superior expression host for the production of bioactive fungal cyclodepsipeptides. Fungal Biol. Biotechnol. 2018;5:4.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 170PDF page: 170PDF page: 170PDF page: 170

    References

    160

    145. van Hartingsveldt W, Mattern IE, van Zeijl CMJ, Pouwels PH, van den Hondel CA. Development of a homologous transformation system for Aspergillus niger based on the pyrG gene. Mol. Gen. Genet. 1987;206:71–5.

    146. Knuf C, Nookaew I, Remmers I, Khoomrung S, Brown S, Berry A, et al. Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl. Microbiol. Biotechnol. 2014;98:3517–27.

    147. Geiser E, Przybilla SK, Friedrich A, Buckel W, Wierckx N, Blank LM, et al. Ustilago maydis produces itaconic acid via the unusual intermediate trans-aconitate. Microb. Biotechnol. 2016;9:116–26.

    148. Steiger MG, Rassinger A, Mattanovich D, Sauer M. Engineering of the citrate exporter protein enables high citric acid production in Aspergillus niger. Metab. Eng. 2019;52:224–31.

    149. Mcfadden BA, Purohit S. Itaconate, an Isocitrate Lyase-Directed Inhibitor in Pseudomonas indigofera. J. Bacteriol. 1977;131:136-144.

    150. Howell DM, Xu H, White RH. (R)-Citramalate Synthase in Methanogenic Archaea. J. Bacteriol. 1999;181:331–3.

    151. Frantom PA. Structural and functional characterization of α-isopropylmalate synthase and citramalate synthase, members of the LeuA dimer superfamily. Arch. Biochem. Biophys. 2012;519:202-9.

    152. He BF, Ozawa T, Nakajima-Kambe T, Nakahara T. Efficient Conversion of Itaconic Acid to (s)-( +)-Citramalic Acid by Alcaligenes xylosoxydans IL 142. J. Biosci. Bioeng. 2000;89:388–91.

    153. Wierckx N, Agrimi G, Lubeck PS, Steiger MG, Mira NP, Punt PJ. Metabolic specialization in itaconic acid production: a tale of two fungi. Curr. Opin. Biotechnol.

    154. Hossain AH, van Gerven R, Overkamp KM, Lübeck PS, Taşpınar H, Türker M, Punt PJ. Metabolic engineering with ATP ‑ citrate lyase and nitrogen source supplementation improves itaconic acid production in Aspergillus niger. Biotechnol. Biofuels. 2019;12:233.

    155. Wang J, Yang Y, Zhang R, Shen X, Chen Z, Wang J, et al. Microbial production of branched-chain dicarboxylate 2-methylsuccinic acid via enoate reductase-mediated bioreduction. Metab. Eng. 2018;45:1–10.

    156. Webb JP, Arnold SA, Baxter S, Hall SJ, Eastham G, Stephens G. Efficient bio-production of citramalate using an engineered Escherichia coli strain. Microbiology. 2018;164:133-141.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 171PDF page: 171PDF page: 171PDF page: 171

    References

    161

    157. Wu X, Eiteman MA. Production of citramalate by metabolically engineered Escherichia coli. Biotechnol. Bioeng. 2016;113:2670–5.

    158. Webb J, Springthorpe V, Rossoni L, Minde D-P, Langer S, Walker H, Alstrom-Moore A, Larson T, Lilley K, Eastham G, Stephens G, Thomas GH, Kelly DJ, Green J. Systems Analyses Reveal the Resilience of Escherichia coli Physiology during Accumulation and Export of the Nonnative Organic Acid Citramalate. mSystems. 2019;4.

    159. Loia ACR. Metabolic Engineering for Enhancement of Itaconic Acid Production in Ustilago including Introduction of the QDR3 Gene from Saccharomyces cerevisiae. 2017. https://fenix.tecnico.ulisboa.pt/downloadFile/281870113703984/EA%20final.pdf

    160. Geiser E, Przybilla SK, Engel M, Kleineberg W, Büttner L, Sarikaya E, Hartog TD, Klankermeyer J, Leitner W, Bölker M, Blank LM, Wierckx N. Genetic and biochemical insights into the itaconate pathway of Ustilago maydis enable enhanced production. Metab. Eng. 2016;38:427-35.

    161. Odoni DI, Vazquez-Vilar M, van Gaal MP, Schonewille T, Martins Dos Santos VAP, Tamayo-Ramos JA, Suarez-Diez M, Schaap PJ. Aspergillus niger citrate exporter revealed by comparison of two alternative citrate producing conditions. FEMS Microbiol. Lett. 2019;366:1–11.

    162. Yuzbasheva EY, Agrimi G, Yuzbashev T V., Scarcia P, Vinogradova EB, Palmieri L, Shutov AV, Kosikhina IM, Palmieri F, Sineoky SP. The mitochondrial citrate carrier in Yarrowia lipolytica: Its identification, characterization and functional significance for the production of citric acid. Metab. Eng. 2019;54:264–74.

    163. Cerrutti P, Cavallo E, Foresti L. Yarrowia lipolytica : a model yeast for citric acid production. FEMS Yeast Res. 2017;1–16.

    164. Kirimura K, Kobayashi K, Yoshioka I. Decrease of citric acid produced by Aspergillus niger through disruption of the gene encoding a putative mitochondrial citrate-oxoglutarate shuttle protein. Biosci. Biotechnol. Biochem. 2019;1–9.

    165. Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, Mccall K, McCulloch M, Mcfarland S, Thompson S, Yaver D, Berry A. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L -malic acid. Appl. Microbiol. Biotechnol. 2013;8903–12.

    166. Yang L, Christakou E, Vang J, Lübeck M, Lübeck PS. Overexpression of a C4-dicarboxylate transporter is the key for rerouting citric acid to C4-dicarboxylic acid production in Aspergillus carbonarius. Microb. Cell Fact. 2017;16:1–12.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 172PDF page: 172PDF page: 172PDF page: 172

    References

    162

    167. Yang L, Linde T, Hossain AH, Lübeck M, Punt PJ, Lübeck PS. Disruption of a putative mitochondrial oxaloacetate shuttle protein in Aspergillus carbonarius results in secretion of malic acid at the expense of citric acid production. BMC Biotechnol. 2019;19:72.

    168. Ullah A, Chandrasekaran G, Brul S, Smits GJ. Yeast adaptation to weak acids prevents futile energy expenditure. Front. Microbiol. 2013;4:1–10.

    169. Hesse SJA, Ruijter GJG, Dijkema C, Visser J. Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. Eur. J. Biochem. 2002;269:3485–94.

    170. Miesenböck G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998;394:192–5.

    171. Orij R, Postmus J, Beek A Ter, Brul S, Smits GJ. In vivo measurement of cytosolic and mitochondrial pH using a pH-sensitive GFP derivative in Saccharomyces cerevisiae reveals a relation between intracellular pH and growth. Microbiology. 2009;155:268–78.

    172. Vesth TC, Nybo JL, Theobald S, Frisvad JC, Larsen TO, Nielsen KF, Hoof JB, Brandl J, Salamov A, Riley R, Gladden JM, Phatale P, Nielsen MT, Lyhne EK, Kogle ME, Strasser K, McDonnell E, Barry K, Clum A, Chen C, LaButti K, Haridas S, Nolan M, Sandor L, Kuo A, Lipzen A, Hainaut M, Drula E, Tsang A, Magnuson JK, Henrissat B, Wiebenga A, Simmons BA, Mäkelä MR, de Vries RP, Grigoriev IV, Mortensen UH, Baker SE, Andersen MR. Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nat. Genet. 2018;50(12);1688-95.

    173. Boecker S, Zahoor A, Schramm T, Link H. Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in Escherichia coli. Biotechnol. J. 2019;14.

    174. Semkiv MV., Dmytruk KV., Abbas CA, Sibirny AA. Activation of futile cycles as an approach to increase ethanol yield during glucose fermentation in Saccharomyces cerevisiae. Bioengineered. 2016;7:106–11.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 173PDF page: 173PDF page: 173PDF page: 173

    List of publications

    163

    List of publications

    1. Abhyankar W, Hossain AH, Djajasaputra A, Permpoonpattana P, Ter

    Beek A, Dekker HL, Cutting SM, Brul S, de Koning LJ, de Koster CG. In

    pursuit of protein targets: proteomic characterization of spore coat outer

    layers. J. Proteome Res. 2013;12(10):4507-21.

    2. Zha Y, Hossain AH, Tobola F, Sedee N, Havekes M, Punt PJ. Pichia

    anomala 29X: a resistant strain for lignocellulose biomass hydrolysate

    fermentation. FEMS Yeast Res. 2013;13(7):609-17.

    3. Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K,

    Punt PJ. Rewiring a secondary metabolite pathway towards itaconic acid

    production in Aspergillus niger. Microb. Cell Fact. 2016;15(1):130.

    4. de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima

    CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö,

    Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC,

    Chen F, Chen W, Choi C, Clum A, Dos Santos RA, Damásio AR,

    Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas

    C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R,

    Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch

    H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen

    A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V,

    Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz

    E, Ouedraogo JP, Overkamp KM, Park HS, Perrone G, Piumi F, Punt PJ,

    Ram AF, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert

    V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E,

    Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G,

    Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A,

    Unkles SE, van de Wiele N, van Rossen-Uffink D, Oliveira JV, Vesth TC,

    Visser J, Yu JH, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I,

    Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH,

    Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA,

    Wortman J, Dyer PS, Grigoriev I. Comparative genomics reveals

    highbiological diversity and specific adaptations in the industrially and

    medically important fungal genus Aspergillus. Genome Biol.

    2017;18(1):28

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 174PDF page: 174PDF page: 174PDF page: 174

    List of publications

    164

    5. Hossain AH, Ter Beek A, Punt PJ. Itaconic acid degradation in

    Aspergillus niger: the role of unexpected bioconversion pathways.

    Fungal Biol. Biotechnol. 2019;6:1.

    6. Hosseinpour Tehrani H, Geiser E, Engel M, Hartmann SK, Hossain AH,

    Punt PJ, Blank LM, Wierckx N. The interplay between transport and

    metabolism in fungal itaconic acid production. Fungal Genet. Biol.

    2019;125:45-52.

    7. Hossain AH, van Gerven R, Overkamp KM, Lübeck PS, Taşpınar H,

    Türker M, Punt PJ. Metabolic engineering with ATP-citrate lyase and

    nitrogen source supplementation improves itaconic acid production in

    Aspergillus niger. Biotechnol. Biofuels. 2019;12:233.

    8. Hossain AH, Hendrikx A, Punt PJ. Identification of novel citramalate

    biosynthesis pathways in Aspergillus niger. Fungal Biol. Biotechnol.

    2019;6:19.

    9. Yang L, Linde T, Hossain AH, Lübeck M, Punt PJ, Lübeck PS. Disruption

    of a putative mitochondrial oxaloacetate shuttle protein in Aspergillus

    carbonarius results in secretion of malic acid at the expense of citric acid

    production. BMC Biotechnol. 2019;19:72.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 175PDF page: 175PDF page: 175PDF page: 175

    Word of thanks

    165

    Word of thanks It has been quite a journey, which started in November 2013. And

    although 6 years seem long, time sure has flown by very fast. Performing

    the work that is presented in this thesis was challenging at times, involving

    long hours and often also working in the nights and weekends. However,

    during my PhD work and the years at DDNA thereafter, I have worked

    with much joy and pleasure with many wonderful colleagues. I owe a great

    amount of gratitude to you people for the fun times that I’ve had, learning

    new things on a regular basis and making this a memorable journey.

    Stanley and Gertien, I would like to thank both of you for supervising and

    guiding my research with valuable tips whenever needed. I got acquainted

    with you whilst pursuing my Master’s at the UvA, where I also performed

    an internship in your group. It was during this internship where I got really

    inspired to pursue a PhD, and I am grateful to you for this inspiration.

    Furthermore, Stanley, due to your kindness and patience, I always felt I

    could approach you to discuss any matters, both academic and career

    related. Gertien, your energy and enthusiasm for science is contagious

    and I always felt more energized after conversing with you.

    Peter, you were instrumental in my development as early-career scientist.

    Whenever I would find myself on a crossroads and did not know how to

    navigate further, I knew I could rely on your knowledge and advise to help

    me further. Also in the period after my PhD, whilst working with Dutch

    DNA, I have learned many things from you, for which I am grateful. Thank

    you for guiding me in the early years of my career.

    Art, we met somewhere in the corridors of TNO, if I remember correctly.

    Little did I know then that, like Peter, you would also be instrumental for

    my development in the early stages of my career. From discussing market

    trends and opportunities for biochemicals, to discussing career, religion,

    business strategies, philosophy; I’ve always enjoyed these conversations

    with you and learned new insights from them. Thank you for having faith

    in me and mentoring me when needed.

    I am also thankful to Machtelt, Wim and of course Cornelis. Machtelt, it

    was always a pleasure working with you. Your calm presence and down-

    to-earth approach to complex situations was often encouraging and gave

    me confidence. Wim, we met little more than a year ago and unfortunately

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 176PDF page: 176PDF page: 176PDF page: 176

    Word of thanks

    166

    I haven’t had the opportunity to work with you for longer than that. Your

    enormous experience in and knowledge of business development and

    business management is laudable and I wish I could have learned more

    from you. Cornelis, your energy and eternal enthusiasm is just

    commendable. It was always nice talking to you about market

    developments and how the company could maneuver itself for maximum

    results.

    I would also like to express my gratitude to the committee members Han,

    Peter, Filipe, Hans, Teun and Martijn; who took their time to thoroughly

    read and evaluate this thesis and for attending the defense.

    To the students that I’ve had over the years Anna, Jos, Wouter, Roy and

    Aiko; this thesis would not have been possible without your help. Anna,

    thank you for your efforts and the good times that we had. Jos, next to a

    very bright student you were a fun guy to hang out with. I will cherish all

    our discussions that we’ve had (the topics are just too much to mention

    as you undoubtedly will know) and the boxing classes that we used to

    follow. Such fun times! Wouter, you were an equally bright student and

    I’ve always found you way more matured beyond your years. After your

    graduation it was an honor to work with you as a colleague. Roy, you were

    the last student during my PhD studies, but the one with arguably the

    biggest impact, which is exemplified with a co-authorship in Chapter 3,

    and also providing input for two other chapters. Your structured and neat

    way of working was a good fit to complement my own working style. Aiko,

    also your contributions eventually resulted in a co-authorship, which is

    very well-deserved. Thank you for all your efforts.

    Furthermore, I wish to extend my gratitude to other colleagues of MBMFS.

    Soraya, Jan, Niels, Marloes, Yanfang, Linli, Laura you people always

    made me feel welcome when I would visit the UvA. Laura, I owe much

    gratitude to you for helping me set-up the experiments in the lab and

    inviting me for social activities that were planned. Thank all of you for your

    support and friendliness.

    And of course, I wish to thank my fellow colleagues at Dutch DNA. Sylvia,

    Ebru, Jean-Paul, Brandon, Coen, Alexander; it was nice being office

    mates with you. Somehow we always managed to combine hard work with

    fun and excitement. Rowy, I enjoyed working with you on projects. Due to

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 177PDF page: 177PDF page: 177PDF page: 177

    Word of thanks

    167

    your cheerful nature you were fun to work with, although at times I had

    difficulties keeping up with your pace in the lab. Thank you for being a

    great colleague and a friend. Karin, Lars, Pascal, Norbert, Marian, Trifa,

    Vivi, Sanaz and Hemn; thank you for your support and making my time at

    DDNA memorable.

    On a last note, I would like to thank my family and friends. My mother,

    whom I hope to make proud with this thesis, my uncle and father, both

    whom passed away too soon in 2017 and have been a great absence in

    my life since then. Ronnie, you have been an example to me. You have

    made great strides in your career and I have witnessed firsthand how

    dedicated you are. I hope I can make the same steps in my career as you

    have. I wish you all the best in your next career move to the US.

    Meem, you have been a great addition to my life. Your joyful silliness is

    often times the perfect ingredient to counter my bleak pessimism and

    exactly what I need. Thank you for always being there for me and

    supporting me all the way.

  • 539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-Hossain539290-L-sub01-bw-HossainProcessed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019Processed on: 16-12-2019 PDF page: 178PDF page: 178PDF page: 178PDF page: 178

    Word of thanks

    168

  • Rewiring m

    etabolic pathways for novel organic acid production in the filam

    entous fungus Aspergillus niger

    Abeer H

    . Hossain