25
Solving ill-posed linear systems with GMRES V. Simoncini Universit` a di Bologna (Italy) [email protected] Joint work with Lars Eld` en, Link¨oping University, Sweden 1

V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Solving ill-posed linear systems with GMRES

V. Simoncini

Universita di Bologna (Italy)[email protected]

Joint work with Lars Elden, Linkoping University, Sweden

1

Page 2: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

The problem

Solve Ax = b with GMRES assuming

• A ∈ Cn×n large, nonsymmetric

• A almost singular (or numerically singular)

• b noise-perturbed version of “consistent” rhs

Typical singular value distributions

2

Page 3: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

The problem

Solve Ax = b with GMRES assuming

• A ∈ Cn×n large, nonsymmetric

• A almost singular (or numerically singular)

• b noise-perturbed version of “consistent” rhs

0 10 20 30 40 50 60 70 80 90 100

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

0 20 40 60 80 100 120 140 160 180 20010

−18

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

Typical singular value distributions

3

Page 4: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Two different perspectives

For the analysis of the GMRES behavior:

• Ill-posed problem framework suggests using sing.values

(e.g., Jensen, Hansen 2006, Hanke, Nagy, Plemmons 1993, Brianzi, Favati,

Menchi, Romani 2006)

• The Krylov subspace setting suggests using spectral information

(e.g., Calvetti, Lewis, Reichel 2002)

4

Page 5: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Some preliminary considerations

Assume A is exactly singular: Ax = b

GMRES: Given x0 ∈ Cn, and r0 = b−Ax0,

Find xk ∈ x0 +Kk(A, r0) such that xk = arg minx∈x0+Kk(A,r0)

‖b−Ax‖

—————————————-

Brown, Walker 1997, Hayami, Sugihara 2011:

GMRES determines a least squares solution x∗ of a

singular system Ax = b, for all b and starting

approximations x0, without breakdown, if and only if

N (A) = N (A∗)

Furthermore, if the system is consistent and x0 ∈ R(A),

then x∗ is a minimum norm solution.

5

Page 6: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Some preliminary considerations

If Ax = b is written as

A11 A12

0 0

x(1)

x(2)

=

b(1)

b(2)

, A11 ∈ Cm×m

then

N (A) = N (A∗) ⇔ A12 = 0

and

consistency ⇔ b(2) = 0

Clearly, A12 = 0 corresponds to solving A11x(1) = b(1)

In practice: A12 ≈ 0 and b(2) ≈ 0 (but nonzero)

6

Page 7: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Our setting

Consider a preconditioned least squares problem

miny

‖(AM†m)y − b‖

Discrepancy principle:

Determine approx x with residual ‖Ax− b‖ ≈ δ

(δ prespecified, measure of data noise level)

⇒ right preconditioning

⇒ stopping criterion: δ = 1.1 · (data noise) · /‖b‖

* Schur decomposition AM†m = UBU∗ with U unitary. Then

min[

d(1)

d(2)

]

∥∥∥∥∥∥∥∥∥∥∥

L1 G

0 L2

︸ ︷︷ ︸

B

d(1)

d(2)

c(1)

c(2)

∥∥∥∥∥∥∥∥∥∥∥

7

Page 8: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Our setting

Consider a preconditioned least squares problem

miny

‖(AM†m)y − b‖

Discrepancy principle:

Determine approx x with residual ‖Ax− b‖ ≈ δ

(δ prespecified, measure of data noise level)

⇒ right preconditioning

⇒ stopping criterion: δ = 1.1 · (data noise) · /‖b‖

* Schur decomposition AM†m = UBU∗ with U unitary. Then

min[

d(1)

d(2)

]

∥∥∥∥∥∥∥∥∥∥∥

L1 G

0 L2

︸ ︷︷ ︸

B

d(1)

d(2)

c(1)

c(2)

∥∥∥∥∥∥∥∥∥∥∥

c = U∗b, d = U∗y

8

Page 9: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Our setting

min[

d(1)

d(2)

]

∥∥∥∥∥∥

L1 G

0 L2

d(1)

d(2)

c(1)

c(2)

∥∥∥∥∥∥

with

|λmin(L1)| ≫ |λmax(L2)|, ‖c(1)‖ ≫ ‖c(2)‖ = δ

⇒ L2 and c(2) correspond to “noise”

Moreover,

• ‖L−11 ‖ moderate; ‖G‖ moderate (high non-normality excluded)

The problem above may be viewed as a perturbation of

mind

∥∥∥∥∥∥

L1 0

0 0

d(1)

d(2)

c(1)

c(2)

∥∥∥∥∥∥

Is it possible to “solve” (1) as efficiently as we would do with (2) ?

9

Page 10: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Our setting

min[

d(1)

d(2)

]

∥∥∥∥∥∥

L1 G

0 L2

d(1)

d(2)

c(1)

c(2)

∥∥∥∥∥∥

(1)

with

|λmin(L1)| ≫ |λmax(L2)|, ‖c(1)‖ ≫ ‖c(2)‖ = δ

⇒ L2 and c(2) correspond to “noise”

Moreover,

• ‖L−11 ‖ moderate; ‖G‖ moderate (high non-normality excluded)

The problem above may be viewed as a perturbation of

min[

d(1)

d(2)

]

∥∥∥∥∥∥

L1 0

0 0

d(1)

d(2)

c(1)

c(2)

∥∥∥∥∥∥

(2)

Is it possible to “solve” (1) as efficiently as we would do with (2) ?

10

Page 11: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Spectral decomposition

B =

L1 G

0 L2

= XB0X−1 =: [X1, X2]

L1 0

0 L2

Y ∗1

Y ∗2

where [Y1, Y2]∗ = [X1, X2]

−1, and

[X1, X2] =

I P

0 I

, [Y1, Y2] =

I 0

−P ∗ I

,

and P is the unique soln of the Sylvester eqn L1P − PL2 = −G

Note that

‖X2‖ ≤ 1 + ‖P‖, ‖Y1‖ ≤ 1 + ‖P‖, where ‖P‖ ≤‖G‖

sep(L1, L2)

It also follows that: ‖X‖ ≤ 1 + ‖P‖

11

Page 12: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

The residual polynomial

Bd = c

For any polynomial ϕm,

ϕm(B)c = [X1, X2]

ϕm(L1)Y

∗1 c

ϕm(L2)Y∗2 c

= X1ϕm(L1)Y∗1 c+X2ϕm(L2) Y

∗2 c

︸︷︷︸

=c(2)

,

so that

‖ϕm(B)c‖ ≤ ‖ϕm(L1)Y∗1 c‖+ ‖X2ϕm(L2)c

(2)‖

12

Page 13: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

An explanatory example

wing example from Regularization Matlab Toolbox (Hansen, 1994-2007)

(Discretization of a 1st kind Fredholm integral eqn, discontinuous soln)

spec(A):

3.74 · 10−1, −2.55 · 10−2, 7.65 · 10−4, −1.48 · 10−5,

2.13 · 10−7, −2.45 · 10−9, 2.33 · 10−11, −1.89 · 10−13, 1.32 · 10−15, . . .

perturbed rhs: b = be + εp (p with randn entries and ‖p‖ = 1)

L1: corresponds to the abs largest six eigenvalues

‖G‖ = 2.29 · 10−5, ‖P‖ = 10.02

For ε = 10−7: ‖Y ∗1 c‖ = 1 and ‖Y ∗

2 c‖ = 6.7 · 10−7

For ε = 10−5: ‖Y ∗2 c‖ = 6.49 · 10−5

13

Page 14: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

GMRES residual bounds

m∗: grade of L1 with respect to Y ∗1 c (∃φm∗

s.t. φm∗(L1)Y ∗

1 c = 0)

rk: GMRES residual after k iterations

∆2: circle centered at the origin and having radius ρ s.t. spec(L2) ⊂ ∆2

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

real axis

imag

inar

y ax

is

∆2

spec(L1)

spec(L2)

14

Page 15: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

GMRES residual bounds

m∗: grade of L1 with respect to Y ∗1 c (∃φm∗

s.t. φm∗(L1)Y ∗

1 c = 0)

rk: GMRES residual after k iterations

∆2: circle centered at the origin and having radius ρ s.t. spec(L2) ⊂ ∆2

i) If k < m∗, let s(1)k

= φk(L1)Y ∗1 c be the GMRES residual associated with

L1z = Y ∗1 c. Then

‖rk‖ ≤ ‖s(1)k

‖+ ‖X2‖γkτ , τ = ρ maxz∈∆2

‖(zI − L2)−1c(2)‖,

where γk = maxz∈∆2

k∏

i=1

|θi − z|/|θi| and θi are the roots of φk

Wing data. m∗ = 6, ‖G‖ = 2.29 · 10−5 and ‖P‖ = 10.02. radius ρ = 2 · 10−9.

ε k ‖s(1)k

‖ ‖X2‖γkτ Bound ‖rk‖

10−7 2 1.640e-03 6.770e-06 1.647e-03 1.640e-03

3 3.594e-05 6.770e-06 4.271e-05 3.573e-05

10−5 2 1.621e-03 6.770e-04 2.298e-03 1.640e-03

3 6.568e-05 6.770e-04 7.427e-04 7.568e-05

15

Page 16: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

GMRES residual bounds

m∗: grade of L1 with respect to Y ∗1 c (∃φm∗

s.t. φm∗(L1)Y ∗

1 c = 0)

rk: GMRES residual after k iterations

∆2: circle centered at the origin and having radius ρ s.t. spec(L2) ⊂ ∆2

i) If k < m∗, let s(1)k

= φk(L1)Y ∗1 c be the GMRES residual associated with

L1z = Y ∗1 c. Then

‖rk‖ ≤ ‖s(1)k

‖+ ‖X2‖γkτ , τ = ρ maxz∈∆2

‖(zI − L2)−1c(2)‖,

where γk = maxz∈∆2

k∏

i=1

|θi − z|/|θi| and θi are the roots of φk

Wing data. m∗ = 6, ‖G‖ = 2.29 · 10−5 and ‖P‖ = 10.02. radius ρ = 2 · 10−9

ε k ‖s(1)k

‖ ‖X2‖γkτ Sum ‖rk‖

10−7 2 1.640e-03 6.770e-06 1.647e-03 1.640e-03

3 3.594e-05 6.770e-06 4.271e-05 3.573e-05

10−5 2 1.621e-03 6.770e-04 2.298e-03 1.640e-03

3 6.568e-05 6.770e-04 7.427e-04 7.568e-05

16

Page 17: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

GMRES residual bounds

m∗: grade of L1 with respect to Y ∗1 c (∃φm∗

s.t. φm∗(L1)Y ∗

1 c = 0)

rk: GMRES residual after k iterations

∆2: circle centered at the origin and having radius ρ s.t. spec(L2) ⊂ ∆2

ii) If k = m∗ + j, j ≥ 0, let s(2)j = ϕj(L2)c(2) be the GMRES residual associated

with L2z = c(2) after j iterations (note that ‖s(2)j ‖ ≤ ‖c(2)‖). Then

‖rk‖ ≤ ργm∗‖s

(2)j ‖‖X2‖ max

z∈∆2

‖(zI − L2)−1‖

where γm∗= max

z∈∆2

m∗∏

i=1

|θi − z|/|θi| and θi are the roots of the grade polyn of L1

Wing data. m∗ = 6, ‖G‖ = 2.29 · 10−5 and ‖P‖ = 10.02. radius ρ = 2 · 10−9

ε k ‖s(1)k

‖ ‖X2‖γkτ Bound ‖rk‖

10−7 10 6.712e-06 6.311e-07

10−5 10 6.442e-04 6.308e-05

17

Page 18: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

GMRES residual bounds

m∗: grade of L1 with respect to Y ∗1 c (∃φm∗

s.t. φm∗(L1)Y ∗

1 c = 0)

rk: GMRES residual after k iterations

∆2: circle centered at the origin and having radius ρ s.t. spec(L2) ⊂ ∆2

ii) If k = m∗ + j, j ≥ 0, let s(2)j = ϕj(L2)c(2) be the GMRES residual associated

with L2z = c(2) after j iterations (note that ‖s(2)j ‖ ≤ ‖c(2)‖). Then

‖rk‖ ≤ ργm∗‖s

(2)j ‖‖X2‖ max

z∈∆2

‖(zI − L2)−1‖

where γm∗= max

z∈∆2

m∗∏

i=1

|θi − z|/|θi| and θi are the roots of the grade polyn of L1

Wing data. m∗ = 6, ‖G‖ = 2.29 · 10−5 and ‖P‖ = 10.02. radius ρ = 2 · 10−9

ε k ‖s(1)k

‖ ‖X2‖γkτ Bound ‖rk‖

10−7 10 6.712e-06 6.311e-07

10−5 10 6.442e-04 6.308e-05

18

Page 19: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Application to singular preconditioning

Let M†m ∈ C

n×n be a rank-m approximation of A−1

Then rank(AM†m) = m,

B = U∗(AM†m)U =

L1 G

0 0

and the least squares problem reads

mind

{‖[L1, G]d− c(1)‖2 + ‖c(2)‖2}, c = U∗b =

c(1)

c(2)

19

Page 20: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

A preconditioned 2D ill-posed elliptic problem

(β(y)uy)y + (αux)x + γux = 0

with α = 1, γ = 2, and

β(y) =

50, 0 ≤ y ≤ 0.5,

8 0.5 < y ≤ 1.

randn perturbation s.t.

‖g − gpert‖/‖g‖ ≈ 1.8 · 10−3

u=0

u=g(x), ux=0

u=0

u=?

Rank-m preconditioner M†m:

approx to the exact soln operator: f0 = cosh(

( 1β0Lm)

12

)

, β0 = β(y)

(Elden, Simoncini, 2009)

20

Page 21: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

A preconditioned 2D ill-posed elliptic problem

(β(y)uy)y + (αux)x + γux = 0

with α = 1, γ = 2, and

β(y) =

50, 0 ≤ y ≤ 0.5,

8 0.5 < y ≤ 1.

randn perturbation s.t.

‖g − gpert‖/‖g‖ ≈ 1.8 · 10−3

u=0

u=g(x), ux=0

u=0

u=?

Rank-m preconditioner M†m (m = 9):

approx to the exact soln operator: f0 = cosh(

( 1β0Lm)

12

)

, β0 = β(y)

(Elden, Simoncini, 2009)

21

Page 22: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

The preconditioned problem solved by GMRES

miny

‖(AM†m)y − g‖, M†

m = cosh

(

(1

β0Lm)

12

)

* Operation Av: solve the well-posed problem with b.c. u(x, 1) = v(x) replacing

u(x, 0) = g(x) (dim. 10000)

Exact soln (’-’). 3 steps Prec’d GMRES (’- -’). Operation M†mg (’-.’)

22

Page 23: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

The preconditioned problem solved by GMRES

miny

‖(AM†m)y − g‖, M†

m = cosh

(

(1

β0Lm)

12

)

* Operation Av: solve the well-posed problem with b.c. u(x, 1) = v(x) replacing

u(x, 0) = g(x) (dim. 10000)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact soln (’-’). 3 steps Prec’d GMRES (’- -’). Operation M†mg (’-.’)

23

Page 24: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

The preconditioned problem solved by GMRES

miny

‖(AM†m)y − g‖, M†

m = cosh

(

(1

β0Lm)

12

)

* Operation Av: solve the well-posed problem with b.c. u(x, 1) = v(x) replacing

u(x, 0) = g(x) (dim. 10000)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

Exact solution (solid line). Unprec’d GMRES with smallest error (5 steps, dashed)

24

Page 25: V. Simoncini - unibo.itsimoncin/strath13.pdf · 2013. 6. 27. · Menchi, Romani 2006) • The Krylov subspace setting suggests using spectral information (e.g., Calvetti, Lewis, Reichel

Conclusions

• Good understanding of GMRES behavior for almost singular

systems stemming from ill-posed problems

• Applicability to singular preconditioning

Error bounds (not shown) seem to imply:

• The singular preconditioner acts as regularization operator

• For the residual rk = b−Axk, the quantity ‖A∗rk‖ could be

monitored together with ‖rk‖

Reference:

L. Elden and V. Simoncini, Solving Ill-posed Linear Systems with

GMRES and a Singular Preconditioner, SIMAX, v.33 (4), 2012.

25