22
Ann. Rev. Public Health. 1988. 9:483-501 Copyright © 1988 by Annual Reviews Inc. All rights reserved VACCINES FOR PARASITIC DISEASES Gene I. Higashi Department f Epidemiology, niversity of Michigan, School of Public Health, Ann Arbor, Michigan 48109 INTRODUCTION Protozoal and helminthic parasitic diseases remain a significant cause of morbidity and mortality in less developed countries (130). Although many these agents are worldwiden distribution, their greatest impact on the health of people and d omestic animals is found in developing countries. Most of these infectious agents have been important human athogens since antiquity, but few have been controlled as have many f the bacterial and viral agents. Advancesn the development f efficacious chemotherapeutic agents, vector control through insecticides and sanitation, provision of clean water, and elimination of vector habitat have all contributed significantly to the progress that has been made with control of parasitic diseases in many arts of the world. Nevertheless, technical problems such as drug resistance, drug toxicity, insecticide resistan ce, financial c onstraints, and operational difficul- ties have contributed to a reduction in the rate of progress toward effective control of parasitic diseases. Vaccine development or parasitic diseases has been slow to progress unt il recently. The spectacular t echnical advances n protein separation, hybridoma technology, monoclonal antibody production, and recombin ant DNA echnol- ogy are nowbeing applied to parasites for identification and production of molecularly defined vaccine candidates. Much f the slow progress can be attributed to the difficulties of both in vitro and in vivo cultivation of protozoa and helminths, difficulties that are nowbeing rapidly overcome. Availability of vaccines for the most mportant parasitic diseases will in the future be of benefit not only by protecting people against those diseases but also by reducing the detrimental effects of continued, intensive chemical 483 0163-7525/88/0510-0483502.00 www.annualreviews.org/aronline Annual Reviews    A   n   n   u  .    R   e   v  .    P   u    b    l    i   c  .    H   e   a    l    t    h  .    1    9    8    8  .    9   :    4    8    3      5    0    1  .    D   o   w   n    l   o   a    d   e    d    f   r   o   m    a   r    j   o   u   r   n   a    l   s  .   a   n   n   u   a    l   r   e   v    i   e   w   s  .   o   r   g    b   y    I   n    d    i   a   n    C   o   u   n   c    i    l   o    f    A   g   r    i   c   u    l    t   u   r   a    l    R   e   s   e   a   r   c    h      I   n   s    t    i    t   u    t   e   s   o   n    0    3    /    1    4    /    0    7  .    F   o   r   p   e   r   s   o   n   a    l   u   s   e   o   n    l   y  .

Vaccine for Parasitic Diseases

Embed Size (px)

Citation preview

Page 1: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 1/21

Ann. Rev. Public Health. 1988. 9:483-501

Copyright © 1988 by Annual Reviews Inc. All rights reserved

VACCINES FOR PARASITIC

DISEASES

Gene I. Higashi

Department f Epidemiology, niversityof Michigan,Schoolof Public Health, AnnArbor, Michigan 48109

INTRODUCTION

Protozoal and helminthic parasitic diseases remain a significant cause ofmorbidity and mortality in less developedcountries (130). Althoughmany

these agents are worldwiden distribution, their greatest impact on the health

of people and domestic animals is found in developing countries.

Mostof these infectious agents have been important human athogens sinceantiquity, but few have been controlled as have many f the bacterial and viral

agents. Advances n the development f efficacious chemotherapeuticagents,vector control through insecticides and sanitation, provision of clean water,

and elimination of vector habitat have all contributed significantly to the

progress that has been madewith control of parasitic diseases in many arts of

the world. Nevertheless, technical problems such as drug resistance, drug

toxicity, insecticide resistance, financial constraints, and operational difficul-ties have contributed to a reduction in the rate of progress toward effectivecontrol of parasitic diseases.

Vaccinedevelopmentor parasitic diseases has been slow to progress untilrecently. The spectacular technical advances n protein separation, hybridomatechnology, monoclonal antibody production, and recombinant DNAechnol-

ogy are nowbeing applied to parasites for identification and production ofmolecularly defined vaccine candidates. Much f the slow progress can be

attributed to the difficulties of both in vitro and in vivo cultivation of protozoa

and helminths, difficulties that are nowbeing rapidly overcome.Availability of vaccines for the most mportant parasitic diseases will in the

future be of benefit not only by protecting people against those diseases but

also by reducing the detrimental effects of continued, intensive chemical

483

0163-7525/88/0510-0483502.00

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 2: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 2/21

484 HIGASHI

applications in the environment o control vectors. Theprevention of infection

and disease by vaccines and other public health measures s generally more

satisfying than the continued, repetitive, and intensive use of chemotherapeu-tic agents in the infected population.

Although several candidate vaccines have been developed, none has yet

met the stringent tests of evaluation in humans.The vaccine for malaria is

nowundergoing human rials. A few vaccines for protozoal and helminthicparasites of domestic animals have been in use for some ime (58, 78, 99).

This review discusses the present status of vaccine development or malar-

ia, schistosomiasis, filariasis, leishmaniasis, and trypanosomiasis.These five

diseases are the primary targets of the WorldHealth Organization’s Special

Programmeor Research and Training in Tropical Diseases. Also consideredare the potential and need for vaccines for other parasitic diseases.

MALARIA

Malaria today remains the most important parasitic disease in the world,causing approximately 1.5 million deaths per year. Although a number of

chemotherapeutic gents and insecticides have been effective in the control of

transmission, many egions of the world remain foci of high endemicity. The

difficulties in control have been attributed to the rapidly emergingPlasmo-

dium falciparum resistance to chloroquine and the widespread resistance to

insecticides by the anopheline mosquito vectors. Combinedwith financial

constraints and operational and administrative failings, malaria is increasing

in Latin America, Africa, the Indian subcontinent, and Southeast Asia.Although four species of Plasmodium re responsible for humanmalaria, P.

falciparum is the most important, as it is responsible for almost all of the

mortality in malaria, is prevalent worldwide,and is the only species that has

developed drug resistance. P. vivax is also widely prevalent and causes

extensive morbidity. The remaining species, P. malariaeand P. ovale, are oflesser importance, with much ess prevalence and variable morbidity.

Vaccine Development

SPOROZOITEACCINEhe existence of immunity to reinfection has longbeen surmised from analysis of the epidemiological data of endemic egions.

Moreover, the experimental demonstration of vaccination against a murine

malaria species, P. berghei, by the use of either inoculated irradiated sporozo-

ites or irradiated, infected (sporozoite-bearing) anopheline mosquitoeses-

tablished that protective immunity could be readily engendered (90-93).Continuedworkon this irradiated sporozoite as a vaccine led to initial human

volunteer studies with P. falciparumand P. vivax (16, 17, 104, 105). At least6-8 exposures to irradiated mosquitoes over a 3-10 monthspan were required

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s

  o  n  a   l  u  s  e  o  n   l  y .

Page 3: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 3/21

PARASITE VACCINES 485

for effective protection. The precise quantitation of the exposure n terms of

the numberof irradiated sporozoites entering the host could not be de-

termined. These imited studies clearly demonstrated hat vaccination againstP. falciparumand P. vivax could be achieved with irradiated sporozoites. The

studies also pointed out the difficulty that wouldoccur if this vaccine was to

be utilized: obtaining a supply of viable sporozoites to prepare the live,

radiation-attenuated vaccine.The advent of monoclonal antibody and recombinant DNA echnology

provided he tools for specific identification of the sporozoite protein respon-

sible for the engendered mmunity nd for cloning in bacteria the Plasmodium

gene coding for the protein. These ools provide a virtually unlimited sourceof antibody reagents and the protein for complete analysis.

These methodsand the advent of an easy, reproducible in vitro methodof

cultivating P. falciparum (44, 124) permitted study of the P. falciparum

immunogens. t became vident that the sporozoite protein responsible forengendering immunitywas situated on the surface of the sporozoite and wasthe only protein at this site (32-34, 87). It has been designated as the

protein for circumsporozoite, ndicating its location when dentified by anti-

bodies. The gene coding for this P. falciparum polypeptide has been clonedand sequenced 21). The polypeptide is about Mr44,000 and, interestingly,

contains a large block of 41 tandem epeats of the tetrapeptide, asparagine-

alanine-asparagine-proline, or NANP. his knowledge allowed the produc-

tion of synthetic peptides containing various repeats of this tetrapeptide forsubsequent vaccination and serological studies (88, 140). A polypeptidecomprisedof three repeats of this tetrapeptide, (NANP)3, as found to serve

as antigenic epitope measuring the CSantibody in malaria sera (140). Theepitope (NANP)3 ccurred in all isolates of P. falciparum from around theworld (88, 89). Furthermore, DNAxtracted from 23 P. falciparum isolates

was found to hybridize specifically with a DNA robe corresponding to the

NANPepeat region (133). These data indicated that this putative vaccinewouldbe effective in all regions withP. falciparurn transmission. Great effort

is nowbeing made to develop this molecularly defined sporozoite-derived

vaccine. Whenhe synthetic peptide (NANP)3s coupled to a carrier protein,immunizationproduces antibodies in experimental animals. These react with

live sporozoites, producing a typical immuneeaction, the circumsporozoiteprecipitation, and neutralizes .sporozoite infectivity in vitro (3, 139).

This sporozoite-derived vaccine will probably be the first to be used for

human rials. The vaccine is currently undergoingphase I and soon phase IIclinical trials in human olunteers. However, urther experimental workhasrevealed another problem. The synthetic peptide and recombinant product

when used as an immunogen ith adjuvants will stimulate immune esponsesonly in strains of mice bearing the H-2b major histocompatibility complex

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 4: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 4/21

486 HIGASHI

haplotype (23, 138). All other strains of mice tested failed to produce

significant titers of antibodies (23,138). Thebasis for this was dentified tocontrolled by the immuneesponse genes, specifically that the responsiveness

is restricted to the I-Ab allele (23). But previously nonrespondermice,

immunized with (NANP)3 oupled to a carrier protein and mixed with

adjuvant, will readily produce antibodies (23). This indicates the need forhelper T-lymphocyteepitopes to provide antibody-stimulating help to the

B cells specific for the (NANP)3epitope (36). If this (NANP)3

munodominantpitope is to becomea vaccine for human se, suitable carrier

proteins are needed such that the vaccinated individual will be able to boostthe specific immuneesponse to (NANP)3uring natural exposure to sporozo~

ites from P. falciparum-infected mosquitoes. Otherwise the specific anti-body titers wouldbe too low to be protective. That repeated stimulation is

necessary to effect a favorable anti-sporozite antibody titer is shown nseroepidemiologic studies. The anti-sporozoite (anti-NANP3)iters are very

low or nonexistent in up to 60%of sera from 5-8-year-old children, where-

as over 90% f adult sera have significant anti-sporozoite antibodies (86,87).

It has been suggested that the unresponsiveness in children in endemicregions maybe partly related to the immuneesponse genes, similar to the

murine antibody responses (24). Such data clearly indicate the need forresearch to identify a more immunogenic porozoite-derived vaccine. This

need was further demonstratedby a recent experimental study that found that

the whole, radiation-attenuated sporozoite vaccine in mice was muchmoreefficacious in engendering protection than the synthetic peptide-carrier or

recombinant DNA-producedubunit vaccines (31). This study further demon-

strated that the live vaccine and subunit vaccines producedequivalent anti-

sporozoite antibody titers but that the former induced an effective cellularimmune esponse, which has been demonstrated to be of importance in

protection in experimental murine malaria (117, 134).

Theprospects for a sporozoite-derived vaccine that will be available for usein endemic regions are good nevertheless. Such a vaccine will be able toprevent the establishment of a P. falciparummalarial infection by eliminating

the initial exoerythrocytic phase of infection, and thus producesterile immun-ity. But this vaccine is clearly species- and stage-specific (85, 125). The

vaccine will have no effect on individuals with patent infections or infectionswith other species of parasites. Several laboratories have endeavored to

develop vaccines for the schizogonic (erythrocytic) phase and the gametocytephase.

MEROZOITEACCINEn addition to diversifying the vaccine strategies, a

merozoite vaccine might be of importance when sporozoite vaccine is not

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s

  o  n  a   l  u  s  e  o  n   l  y .

Page 5: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 5/21

PARASITE VACCINES 487

totally effective. Anysporozoites that escaped the defenses induced by the

sporozoite vaccine wouldreadily lead to a patent infection. Additionally,someantigens fromP. falciparumschizogonic stages share epitopes with the

immunodominantporozoite protein (20, 47). It is possible that a vaccine

prepared from these cross-reactive proteins from the asexual stage couldengender protection against both infective sporozoites and morozoites.

Muchecent research has been devoted to cloning P. falciparumgenes that

encode for the various surface membrane roteins and identifying those

proteins that are immunodominant y utilizing humansera from endemicregions (14, 67, 114, 118). Several vaccine-candidate antigens have been

identified (83, 102, 106, 109). Two olypeptides of approximately Mr 75,000

and 100,000 have been separated fromP. falciparumblood-stage proteins and

used successfully to vaccinate squirrel monkeys gainst a homologous hal-

lenge (30). A second candidate is a Mr155,000 glycoprotein (98, 129) that

thought to be released by the merozoitc when he erythrocyte is invaded (7).This protein is a ring-infected erythrocyte surface antigen (RESA).RESAas

been used successfully to protect nonhuman rimates against challenge P.

falciparum infections (4, 19).

Successful vaccination in these experimentalstudies has required the use ofcomplete or incomplete Freund’s adjuvant or other adjuvants. These are too

toxic for human se and so great effort is being made o utilize the variouswater-soluble derivatives of muramyldipeptide (110, 111). Although thesearch for molecularly defined candidate vaccine antigens will no doubt be

successful, such proteins will have to be used in combinationwith adjuvants

to stimulate the immuneesponse. Analternative strategy is to clone the gene

that codes for the vaccine protein in a carrier vaccine such as vaccinia virus

(115) and perhaps in the newly developed live oral typhoid vaccine (29).

GAMETOCYTEACCINEince each stage--sporozoite (exoerythrocytic),

schizogonic (asexual, erythrocytic), and gametocytic--will stimulate immun-ity that is stage-specific, a potential gametocytic vaccine wouldhave im-portance in preventing transmission but wouldbe without effect on the other

stages in humans.The initial demonstrationof this type of vaccine was made

in avian, rodent, and simian malarias (12, 41, 76). Through the use

monoclonal antibodies, passive immunity against P. falciparum could beconferred on experimental animals (43). Such antibodies wouldalso readily

prevent mosquitoes from becoming nfected if antibodies were mixed with

infected blood in cultures used to membraneeed the vectors (63, 103). The

antigens to which such monoclonalantibodies are directed appear to be Mr45,000 and 48,000 (126). Current effort is directed at cloning the genes

encoding or these antigens for large-scale production and subsequentanalysisand vaccine testing (122).

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n

  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 6: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 6/21

488 HIGASHI

SCHISTOSOMIASIS

Approximately200-250 millions of the world’s population are afflicted by

schistosomiasis caused primarily by Schistosomamansoni, S. japonicum,and

S. haematobium. n more restricted foci, S. intercalatum in Africa and S.mekongi n Southeast Asia are the remaining human pecies. This helminthic

trematode parasite lives as an adult in the mesenteric venules and vesicalplexus and discharges eggs containing larvae in the excreta. All species

require a freshwater intermediate snail host in which the larvae (miracidia)

from eggs will transform and multiply into thousands of infective larvae or

cercariae, whichemerge rom the snail and penetrate human kin during water

contact. Theparasites enter the skin and migrate via the circulation to develop

in the liver; ultimately they migrate to the venousvasculature of the gut andbladder. The adult worms re generally not the direct cause of morbidity. The

eggs laid by the femalesare trapped in the liver, intestines, and urinary tract;these are responsible for disease due to the cellular immuneesponse (granu-

loma) directed at each egg. The cumulative effect of the granulomas is

fibrosis, which leads to the clinical problems commonly ncountered.Morbidity is correlated with the tissue egg burden and thus with the adult

worm urden (131, 132). If only a few worms re present, the likelihood

the infected individual’s suffering clinical disease is relatively slight. In

control strategies, therefore, the reduction of transmission and of the adult

worm urden will ultimately lead to a reduction in morbidity even without asignificant impact on prevalence. The ideal vaccine would provide the vac-

cinee with solid (sterile) immunity,but in schistosomiasis we must consider

the practical alternative of a vaccine that wouldprevent the establishment of

large wormburdens. All current experimental approaches to vaccination

result in significant protection but never sterile immunity 22).

Radiation-Attenuated Vaccine

In 1961, the first report appeared on the induction of immunity n mice byvaccination with 6°Cobalt-irradiated S. mansonicercariae (1.28). Since that

time, a plethora of studies have confirmedand extended hese findings (6, 22,

52, 84, 101,123). There is general agreement hat high dose radiation, 20-50

Krad, keeps organisms from surviving to adulthood but allows the live,attenuated larvae to stimulate immunity n mice, rats, guinea pigs, rhesus

monkeys, and baboons (51, 53, 97, 119, 120). While these studies have

evaluated various efficacy parameters such as dose of irradiated cercariae

(500 cercariae), numberof doses (3-5 doses), duration of immunity overyear in mice), and minimum ffective time of immunization (1-2 weeks),

little is known f the vaccine’s safety. Many f these studies indicate that

none of the vaccine organisms grew to adulthood, but inoculating large

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s

  o  n  a   l  u  s  e  o  n   l  y .

Page 7: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 7/21

PARASITE VACCINES 489

numbersof animals with the vaccine disclosed that one mouse n 50 harbored1-3 stunted adult worms G. I. Higashi, unpublished observations). The

histopathologic response to the irradiated vaccine has been fully described

(9). The organismsdo induce a strong immunenflammatory esponse (9)

resolves without significant residual lesions within six weeks G. I. Higashi,

.unpublished observations). Improvedsafety and efficacy through the com-bined use of 6°Co-radiation and radiosensitizer chemicals is currently being

evaluated (H. J. Gomberg nd G. I. Higashi, unpublished observations).

Since it appears that this radiation-attenuated vaccine could serve as an

experimental modeland that any human accine for schistosomiasis should bemolecularly defined (35), current research on improving he live vaccine has

diminished.The vaccine clearly induces in murinehosts an array of antibodies directed

at various antigens of the schistosome arval surface (95, 113, 114). A recent

study has demonstrated that such serum antibodies will passively transferimmunityo naive murinehosts (74). Here also, the protection transferred

still partial. The additional role that cell-mediated immunityplays in thisvaccine modelhas not been discounted, as macrophages ctivated by specifi-

cally sensitized T lymphocytes in response to schistosome antigens are

helminthotoxic (61, 62).

Veterinary application of the radiation-attenuated vaccine has been success-ful. S. bovis and S. japonicumn cattle producea disease similar to that inhumans.6°Co-radiatedS. bovis cercarial vaccine protects cattle in the Sudan

from acquiring large worm urdens and improves the health of those vaccin-

¯ ated (8, 56). Initial effort in protecting cattle in Chinawith an X-irradiatedjaponicum ercarial vaccine also appears effective (55). Large scale applica-

tion has not been carried out.

Molecularly Defined Vaccines

Significant progress has been made n the identification of antigens derivedprimarily from the surface membranetegument) of the early larval stage, the

schistosomulum 112). That this stage is important in induction of immunityis evident from all of the live radiation-attenuated vaccine studies and recent

studies in whichkilled schistosomula, either in combinationwith an adjuvant

like Bacille-Calmette-Guerin (BCG) 59) or alone (54), engenderedprotection. Indeed, most of the positive reports of protective monoclonal

antibodies and/or active immunizationhave mostly come rom analysis of the

surface antigens of schistosomula (Table 1). Thus, an impressive number

defined antigens that confer some egree of protection have been identified. Itis not knownwhether any of these of similar molecular weights from differentlaboratories are identical. The Mr >200,000, 38,000, and 28,000 antigens

maybe identical (27, 66). Indeed, monoclonal ntibodies recognize the same

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 8: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 8/21

490 HIGASHI

epitopes on the glycoconjugates of Mr200,000 and 38,000 (66) as well as

other stages of the schistosome and on the intermediate snail host (28).

those that have had their genes cloned, the Mr 28,000 has a sequence

apparently devoid of carbohydrates and engenders 52%protection in hamsters

and 67% protection in rats after vaccination with aluminum hydroxide ad-

juvant (2). This protein is found on the tegument of schistosomula and is also

produced by adult wormRNAduring in vitro translation (1), although its

precise function is not known.

Another protein with Mr 97,000 whose gene has been cloned and se-

quenced has been identified as schistosome paramyosin; this indicates that it

is an integral component of the worm’s musculature (70). The protein confers

protection on murine hosts by intradermal immunization with BCG, which

preferentially stimulates the cell-mediated immune system (60).

Each of these defined antigens may engender partial protection varying

from 30% to 85%. No study has yet appeared in which a combination of two

or more defined antigens has been simultaneously used for vaccination. It is

entirely possible that the effect maybe additive or even synergistic and lead to

sterile immunity. Several candidate vaccines should be available for human

phase I trials in the next few years to evaluate their safety and im--

munostimulatory qualities.

FILARIASIS

Filariae, a group of helminthic parasites, are responsible for extensive and

severe morbidity, such as blindness from Onchocerca volvulus (River Blind-

Table 1 Molecularly efined antigens of S. mansonihat are protective

Immunization-Molecular Sourceof Passive ransfer by engendered Gene

weight Mr antigen monoclonal ntibody protection cloned Refs.

>200,000 schistosomula + + - (40, 42, 67)155,000 adult worms + + - (116)97,000 schistosomula - + + (70)45,000 cercariae + + - (112)38,000 schistosomula + + + (27)32,000 schistosomula + ? - (5)30,000 cercariae + + - (45)28,000 schistosomula + + + (10)

22,000-26,000 schistosomula + + (10)

22,000 schistosomula + + - (112)20,000 schistosomula + ? - (112)16,000 schistosomula + ? - (5)

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1

 .   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n

  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a

  n   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 9: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 9/21

PARASITE VACCINES 491

ness) and lymphatic obstruction (elephantiasis) from Wuchereriabancroft~,

Brugia malayi, and B. timori. Over 200 million individuals are at risk of

infection by these filarial worms.Although ery little progress has been made

toward vaccination against onchocerciasis due to the absence of a reliableanimal model nd difficulty in laboratory maintenance f O. volvulus, signifi-

cant developments have been made for the lymphatic dwelling parasites,

particularly B. malayi.Irradiated infective stage larvae of B. malayi and the related zoonotic B.

pahangi have been shown o confer somedegree of resistance to challenge

infections in monkeys135), jirds (137), and cats (94). In jirds, protection

91%can be readily induced (137) by vaccination with 75 6°Co-radiated (15

Krad) infective stage larvae. Reducingas muchas possible the establishment

of adult worms n the lymphatics is of crucial importance in this vaccinemodel, as these are the primary cause of pathology, since the microfilariaelaid by the females circulate with minimalassociated morbidity. Of particular

importance is that the vaccination does not incite lymphatic obstruction,

although studies to date have not fully characterized this feature.

A number of antigens derived from B. malayi recognized by antibodiesfrom humans nd various stages of lymphatic filariasis have been identified

(64, 72, 73), although none has been evaluated with respect to its ability

confer active immunization n experimental hosts. Based on the success of

passive transfer of immunity y vaccinated jird sera (46), it would ppear that

antibodies are responsible for the engendered esistance, but the added role ofcell mediated immunity has not been thoroughly assessed. Cross-reactive

antigens between arval and microfilarial stages mayalso be protective, as B.

malayi microfilariae were shown o induce immunity n jirds to a challenge

infection (65). Clearly, muchmore needs to be done before any candidate

molecularly defined vaccine can be proposed.

LEISHMANIASISA diverse array of species infects humans around the world, causing

cutaneous eishmaniasis (Oriental Sore), visceral leishmaniasis (Kala- Azar),

and muco-cutaneous leishmaniasis (Latin American leishmaniasis), withwidely varying degrees of clinical morbidity and mortality. Traditional

methodsof control have been hampered y the lack of safe, efficacious drugs

and, most importantly, the extensive zoonoses hat almost all species display,particularly for Oriental Sore and Latin American eishmaniasis (13). The

primary mammalianosts are all species of rodents and other small mammals

in which elimination of the parasite would be almost impossible.Fortunately, the most commonorm of cutaneous leishmaniasis due to

Leishmania major and L. tropica is self-healing, and recovery results in

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 10: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 10/21

492 HIGASHI

long-lasting immunitymediated by the cellular immune ystem (48). Histor-

ically, it has been a commonillage practice to allow the purposeful infection

of a part of the body other than the head, neck, and arms to promote the

establishment of the lesion, recovery, and then immunity, eaving a scar thatwouldnot be cosmetically disfiguring. In recent years, the USSR nd Israel

have utilized cultures of L. tropica or L. major o provide a source of infective

organisms (promastigotes) for controlled infections as prophylaxis (39).

Although tens of thousands have been vaccinated effectively in the AsiaticUSSRnd about 5000 in Israel with significantly reduced rates of subsequent

infections, untoward ide effects of secondary nfections, skin allergies, and

even immunosuppressionave been frequently noted (39). Further attempts

employing attenuated strains of Leishmania for L. major in the USSR,L.

braziliensis in South America, and L. donovani(visceral leishmaniasis)Kenya for vaccination have been uniformly unproductive. But recently,avirulent strains of L. major(75) and L. braziliensis (37) have been produced

by exposure to the mutagen, N-methy-M’-nitro-N-nitrosoguanidine n v~tro,with the latter species at reduced temperature. These attenuated strains in-

duced protective immunity n naive mice, although the resistance was notabsolute in all animals. Other L. majoravirulent strains have been selected

that readily induce protective immunityn mice (82). Lethally irradiated (150Krad) L. major cultured promastigotes will confer strong immunity n mice

after intravenous inoculation (49, 50, 71). The immunitycross-reacts with

several other Leishmaniapecies and appears to be due to the induction of thecellular immune ystem. A genus-specific vaccine could be possible if these

studies are confirmedand extended. Nevertheless, these studies suggest that a

molecularly defined vaccine is within reach in the immediate uture. Although

a number of promising candidate antigens have been identified, none have

been isolated and used actively to vaccinate susceptible mice.

TRYPANOSOMIASIS

Trypanosomiasis n Africa is caused by Trypanosoma rucei rhodesiense and

T. b. gambiense,commonlyalled African sleeping sickness, and is transmit-

ted to humans y the bite of the tsetse fly. This disease has been he scourgeofAfrica and has decimated populations. Today it is muchmore limited in

scope, although tens of thousands become nfected yearly with a very high

mortality rate, as there are no safe and totally effective drugs. T. b.rhodesienseand related trypanosomeskill hundreds of thousands of domestic

animals each year, providing a further burden to agricultural productivity.

These protozoan parasites have adapted to their hosts by a strategy ofvarying their outer surface antigenic proteins in successive wavesof parasite

populations (127). Each waveof parasitemia displays an antigen to the host

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 11: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 11/21

PARASITE VACCINES 493

different from antigens of previous parasite populations, such that the host

immuneystem is continually evaded. This process is called antigenic varia-

tion and is genetically controlled. Over a hundreddifferent variant surfaceantigens have been identified for each strain (127). Vaccinationwouldbe verydifficult unless the vaccinecontainedall of the variant antigens or at least the

predominant ones. Although a number of early studies have attempted toimmunizeagainst African trypanosomes, no vaccination strategy has been

devised that wouldcircumventantigenic variation.

In Latin America, rypanosomiasis s caused by T. cruzi, which s transmit-

ted to humansby the activities of hematophagous eduviid bugs. No fewerthan 15 million people are afflicted in Latin America.Drug herapy is almost

nonexistent. Thedisease is responsible for chronic cardiac and gastrointesti-nal problems hat are uniformly fatal.

A numberof attempts at vaccination have been tried using whole organismsor various extracts of these protozoans; findings have been inconclusive

(107). Even though vaccinated animals can be shown to have diminished

parasitemias from challenge infections, very few studies have assessedwhetherall parasites are eliminated from the host. The chronic phases of the

disease are the central issue in Americanrypanosomiasisor Chagas’Disease.

A further complication is that there appear to be cross-reactive antigens

between he T. cruzi parasite and mammalianeart and neuronal antigens, thetwo primary sites of pathology (121, 136). Thus any attempt at vaccination

mayresult in a form of autoimmunization,with resultant autodestruction ofthese tissues, a decidedly unfavorable outcome. Antigens must be sought that

do not cross-react with human issues and must be isolated free of any

extraneous components. t is plausible that protective immuneesponses canbe induced in humans y the use of the correct antigens, as specific com-

plement-dependentytic antibodies have been dentified in patients’ sera (69).

The antigen(s) inducing these antibodies have not been identified. Greater

attention is needed o characterize and isolate surface antigens. A vaccine isclearly needed,since other formsof control are of little practical value for thisdisease of the economically poor.

OTHER PARASITIC DISEASES

The literature is replete with reports of studies attempting the active im-

munization of experimental animals against almost every parasite of humanand veterinary importance (15, 57, 80, 81). Vaccinations have consisted

whole organisms, disrupted, homogenized,and fractionated, or of drug- orradiation-attenuated larval stages. In most situations, the use of radiation-

attenuated organisms has led to significant protection, such as withTrichinella spiralis in rats (38), Dictyocaulusviviparus in cattle (96), and

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 12: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 12/21

494 HIGASHI

Ancylostoma aninum n dogs (77), to nameonly a few. The D. viviparus live

vaccine is still in use, particularly in Englandand Europe. The A. caninum

was withdrawn rom the market for commercial easons unrelated to its safetyand high efficacy (77). Very little work has been done to identify the

important unctional, protective antigens in these parasites for potential isola-tion and use in vaccination. The greatest advance has come rom study of T.

spiralis larvae, wherein he specific protective antigens have been identified

and isolated (25, 26). Contemporarytudies of other helminthic parasites arestarting to elucidate the sites of immune ttack as well as the immunogenic

antigens (11, 79, 100).

Amonghe other protozoan parasites of humans, most studies on im-

munization have been directed at Entamoeba istolytica amebiasis (108) andToxoplasmagondii infections (68). Encouraging results are noted but much

more research is needed to define a useful vaccine model and then tomolecularly characterize the immunogensesponsible for the resistance.

CONCLUDING REMARKS

The introduction of monoclonal antibody and recombinant DNAmethodolo-gies has been primarily responsible for the burst of data on vaccine develop-

ment in parasitic diseases. The extreme difficulty of in vitro and in vivocultivation that retarded the identification and recovery of candidate vaccine

antigens from the important humanand veterinary parasites has to a largeextent been circumvented with these technological advances.

The rapidity with which the malaria sporozoite vaccine has been developedsuggests that humanrials in endemicareas will be conducted n the next few

years. If such a vaccine were to, if not eliminate falciparum malaria, but

drastically reduce the morbidity and mortality currently seen, it wouldhave

accomplished its goal. Despite the significant progress toward a malaria

vaccine, concurrent research is needed to develop better adjuvants and novelstrategies to improve he immunogenic ualities of the molecularly defined

(synthetic or recombinantprotein) vaccines. Analternative strategy that hasnot been fully investigated is to search for anti-idiotype antibodies that upon

inoculation into a host would nduce the production of antibodies specific for

the parasite epitope responsible for protection.Progress too has been made n the search for a defined antigen vaccine for

schistosomiasis. Several antigens are clearly protective, but the lack of solid

(sterile) immunity till provides a significant obstacle. Most tudies with all

vaccine candidates find no more than 60-70%protection. Is this enough toprevent large wormburdens and thus prevent the development of chronicmorbidity?Although t is generally accepted that morbidity is correlated withwormburdens, nothing is known n humansabout the threshold level. Inno-

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 13: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 13/21

PARASITE VACCINES 495

vative epidemiological investigations are still needed to ascertain the worm

burdens that trigger the onset of clinical morbidity. It is unfortunate that the

live, attenuated vaccine is not developed enough for application.

The technological advances described above will afford greater attention to

the other important parasitic diseases of humans. The developing world’s

inhabitants suffer extensively from a multitude of parasitic infections (poly-

parasitism), which in aggregate contribute to significant morbidity. A need

exists for a more diversified armamentarium of parasitic vaccines.

ACKNOWLEDGMENT

The author thanks Anne Glas for expert secretarial assistance in the prepara-

tion of this manuscript.

Literature Cited

1. Balloul, J. M., Pierce, R. J., Gryzch,J.M., Capron, A. 1985. In vitro synthesisof a 28 kilodalton antigen present on thesurface of the schistosomulum f Schis-tosoma mansoni. Molec. Biochem. Par-asitol. 17:105-14

2. Balloul, J. M., Sondermeyer, P.,Dreyer, D., Capron, M., Gryzch, J. M.,et al. 1987. Molecularcloning of a pro-

tective antigen of schistosomes. Nature326:149-543. Ballou, W. R., Rothbard, J., Wirtz, R.

A., Gordon, D. M., Williams, J. S., etal. 1985. lmmunogenicity of syntheticpeptides from circumsporozoite proteinof Plasmodium falciparurn. Science228:996-99

4. Berzins, K., Perlmann, H., Wahlin, B.,Carlsson, J., Wahlgren,M., et al. 1986.Rabbit and human antibodies to a re-peated amino acid sequence of a Plas-modium falciparum antigen, Pf 155,react with the native protein and inhibitmerozoite invasion. Proc. Natl. Acad.Sci. USA83:1065-69

5. Bickle, Q. D., Andrews, B. J., Taylor,M. G. 1986. Schistosoma rnansoni:Characterization of two protectivemonoclonal antibodies. Parasite Im-rnunol. 8:93-107

6. Bickle, Q. D., Taylor, M. G.,Doenhoff, M. J., Nelson, G. S. 1979.Immunization of mice with gamma-irradiated intramuscularly njected schis-tosomula of S. mansoni. Parasitology79:209-22

7. Brown, G. V., Culvenor, J. G., Crew-ther, P. E., Bianco, A. E., Coppel, R.L., et al. 1985.Localizationof the ring-infected erythrocyte surface antigen(RESA) of Plasmodium falciparum in

merozoites and ring-infected erythro-cytes. J. Exp. Med.162:774-79

8. Bushara, N. O., Hussein, M. F., Saad,A. M., Taylor, M. G., Dargie, J. D., etal. 1978. Immunization f calves againstSchistosomabovis using irradiated cer-cariae or schistosomula of S. bovis.Parasitology 77:303-11

9. Byram, J. E., yon Lichtenberg, F.,

Lewis, F. A., Stirewalt, M. A. 1983.Pathology of a live attenuated anti-schistosome vaccine in mice. Am. J.Trop. Med. Hyg. 32:94-105

10. Capron, M., Capron, A. 1986. Rats,mice and men--Models for immuneeffector mechanisms gainst schistoso-miasis. Parasitol. Today2:69-75

11. Carr, A., Pritchard, D. I. 1987. Antigenexpression during development of thehuman hookworm, Necator americanus(Nematoda). Parasite Immunol. 9:219-

3412. Carter, R., Chen, D. H. 1976. Malaria

transmission blocked by immunizationwith gametes of the malaria parasite.Nature 263:57-58

13. Chang, K.-P., Bray, R. S., eds. 1985.Leishmaniasis. Amsterdam/NewYork/Oxford: Elsevier. 490 pp.

14. Cheung, A., Shaw, A. R., Leban, J.,Perrin, L. H. 1985. Cloning and expres-sion in Escherichia oli of a surface anti-gen of Plasmodium alciparum merozo-ites. EMBO . 4:1007-12

15. Clegg, J. A., Smith, M. A. 1978. Pros-pects for the developmentof dead vac-

cines against helminths. Adv. Parasitol.16:165-21816. Clyde, D. F., McCarthy,V., Miller, R.

M., Woodward, W. E. 1975. Im-munization of man against falciparum

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 14: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 14/21

496 HIGASHI

and vivax malaria by use of attenuatedsporozoites. Am. J. Trop. Med. Hyg.

24:397-40117. Clyde, D. F., McCarthy, V. C., Miller,

R. M., Homick,R. B. 1973. Specificityof protection of man mmunized gainstsporozoite-induced falciparum malaria.Am. J. Med. Sci. 266:398-403

18. Cohen, S., Warren, K. S., eds. 1982.Immunology f Parasitic Infections. Ox-ford: Blackwell. 848 pp.

19. Collins, W. E., Anders, R. F., Pap-paioanou, M., Campbell, G. H.,Brown, G. V., et al. 1986. Immuniza-tion of Aotus monkeyswith recombinantproteins of an erythrocyte surface anti-gen of Plasmodium alciparum. Nature

323:259-6220. Coppel, R. L., Favaloro, J. M., Crew-

ther, P. E., Burkot, T. R., Bianco, A.E., et al. 1985. A blood stage antigen ofPlasmodium alciparum shares determi-nants with the sporozoite coat protein.Proc. Natl. Acad. Sci. USA82:5121 25

21. Dame,J. B., Williams, J. L., McCutch-an, T. F., Weber, . L., Wirtz, R. A., etal. 1984. Structure of the gene encodingthe immunodominanturface antigen onthe sporozoite of the humanmalaria par-asite Plasmodium alciparum. Science.

225:593-9922. Dean, D. A. 1983. A. Review. Schisto-somaand related genera: acquired resis-tance in mice. Exp. Parasitol. 55:1-104

23. Del Giudice, G., Cooper, J. A., Merino,J., Verdini, A. S., Pessi, A., et al.1986. The antibody response in mice tocarder-free synthetic polymers of Plas-modiumfalciparumcircumsporozoite re-petitive epitope is l-Ab-restricted: Possi-ble implications for malaria vaccines. J.lmmunol. 137:2952-55

24. Del Giudice, G., Engers, H. D.,Tougne, C., Biro, S. S., Weiss, N., etal. 1987. Antibodies to the repetitiveepitope of Plasmodium alciparum cir-cumsporozoiteprotein in a rural Tanza-nian community:A longitudinal study of132 children. Am. J. Trop. Med. Hyg.36:203-12

25. Despommier, . D. 1981. Partial purifi-cation and characterization of pro-tection-inducing antigens from the mus-cle larvae of Trichinella spiralis bymolecular sizing chromatography andpreparative flatbed isoelectric focusing.Parasite lmmunol. 3:261-72

26. Despommier,D. D., Laccetti, A. Trich-inella spiralis: Partial characterizationofantigens isolated by immuno-affinitychromatography rom the large-particlefraction of the muscle larva. J. Para-sitol. 67:332-39

27. Dissous, C., Gryzch, J. M., Capron, A.1982. Schistosomamansonisurface anti-gen defined by a rat monoclonal IgG2a.J. lmmunol. 129:2232-34 "

28. Dissous, C., Gryzch, J. M., Capron, A.1986. Schistosoma mansoni shares aprotective oligosaccharide epitope withfreshwater and marine snails. Nature323:443-45

29. Dougan, G., Hormaeche, C. E., Mas-kell, D. J. 1987. Live oral Salmonellavaccines: Potential use of attenuatedstrains as carriers of heterologous anti-gens of the immunesystem. Parasitelmmunol. 9:151-60

30. Dubois, P., Dedet, J.-P., Fandeur, T.,Roussilhon, C., Jendoubi, M., et al.

1984. Protective immunization of thesquirrel monkeyagainst asexual bloodstages of Plasmodium alciparum by useof parasite protein fractions. Proc. Natl.Acad. Sci. USA81:229-32

31. Egan, J. E., Weber, J. L., Ballou, W.R., Hollingdale, M. R., Majarian, N.R., et al. 1987. Efficacy of murinemalaria sporozoite vaccines: Implica-tions for human vaccine development.Science 236:453-56

32. Ellis, J., Ozaki, L. S., Gwadz,R. W.,Cochrane, A. N., Nussenzweig, V., et

al. 1983. Cloning and expression of thePlasmodium nowlesi sporozoite surfaceantigen in E. coli. Nature 302:536--38

33. Enea, V., Arnot, D., Schmidt, E. C.,Cochrane, A., Gwadz, R., et al. CSgene of P. cynomolgi (Gombak): cDNAcloning and expression of the repetitiveCS epitope. Proc. Natl. Acad. Sci. USA81:7520-24

34. Enea, V., Ellis J., Zavala, F., Amot,D.E., Asavanich, A., et al. 1984. DNAcloning of Plasmodium alciparum cir-cumsporozoite gene: Amino acid se-quence of repetitive epitope. Science

225:628-3035. Fogarty International Center. 1984.

Contended ssues of immunity o schisto-somes. Conference, April 9-11, 1984.Bethesda: Natl. Inst. Health

36. Good, M. F., Maloy, W. L., Lunde, M.N., Margalit, H., Cornette, J. L., et al.1987. Construction of synthetic im-munogen: Use of new T-helper epitopeon malaria circumsporozoite protein.Science 235:1059-62

37. Gorczynski, R. M. 1985. Immunizationof susceptible BALB/cmice against

Leishmaniabraziliensis. II. Use of tem-perature-sensitive avirulent clones of pa-rasite for vaccination purposes.Cell. lm-munol. 94:11-20

38. Gould, S. E., Gomberg,H. J., Bethell,F. H., Villela, J. B., Hertz, C. S. 1955.

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n

  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 15: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 15/21

PARASITE VACCINES 497

Studies on Trichinella spiralis. IV.Effect of feeding irradiated Trichinellalarvae on production of immunity toreinfection. Am. J. Pathol. 31:949-53

39. Greenblatt, C. L. 1985. Vaccination forleishmaniasis. See Ref. 13, pp. 163-76

40. Gryzch, J. M., Capron, M., Bazin, H.,Capron, A. 1982. In vitro and in vivoeffector function of rat IgG2amonoclon-al anti-S, mansoni antibodies. J. Im-munol. 129:2739-43

41. Gwadz, R. W., Green, I. 1979. Malariaimmunization in rhesus monkeys. Avaccine effective against both the sexualand asexual stages of Plasmodium now-lesi. J. Exp. Med.148:1311-23

42. Ham, D. A., Mitsugama, M., David, J.

R. 1984. Schistosoma mansoni: Anti-egg monoclonal antibodies protectagainst cercarial challenge in vivo. J.Exp. Med. 159:1371-87

43. Harte, P. G., Rogers, N. C., Targett, G.A. T. 1985. Monoclonal anti-gameteantibodies prevent transmission of mu-fine malaria. Parasite lrnmunol. 7:607-15

44. Haynes, J. D., Diggs, C. L., Hines, F.A., Desjardin, R. E. 1976. Culture ofhuman malaria parasites, Plasmodium

falciparum. Nature 263:767-69

45. Hazdai, R. T., Levi-Schaffer, F., Bren-ner, V., Horowitz,S., Eshhar, Z., et al.1985. Protective monoclonal antibodyagainst Schistosoma mansoni: Antigenisolation, characterization, and suitabil-ity for active immunization. . lmmunol.135:2772-79

46. Higashi, G. I., Yates, J. A. 1987. Im-munity to Brugia malayi infection in-duced by radiation-attenuated infectivestage larvae. Presented at workshop,Protective Immunity and Vaccination inOnchocerciasis and Lymphatic Filar-

iasis, 6-9 April 1987, Woods Hole,Mass.47. Hope, I. A., Hall, R., Simmons,D. L.,

Hyde, J. E. Scaife, J. G. 1984. Evi-dence for immunologicalcross-reactionbetween porozoites and blood stages ofa humanmalaria parasite. Nature 308:191-94

48. Howard, J. G. 1985. Host immunity toleishmaniasis. See Ref. 13, pp. 139-62

49. Howard, J. G., Liew, F. Y., Hale, C.,Nicklin, S. 1984. Prophylactic immuni-zation against experimental leish-maniasis. II. Further characterization ofthe protective immunity against fatalLeishmania ropica infection induced byirradiated promastigotes. J. Immunol.132:450-55

50. Howard, J. G., Nicklin, S., Hale, C.,Liew, F. Y. 1982. Prophylactic ira-

munization against experimental leish-maniasis. I. Protection induced in micegenetically vulnerable to fatal Leish-mania tropica infection. J. lmmunol.129:2206-12

51. Hs~i, H. F., HsO, S. Y. L., Osborne, J.W. 1962. Schistosoma japonicum inrhesus monkeysproduced by irradiatedcercariae. Nature 194:98-99

52. Hsti, S. Y. L., Hsi.i, H. F., Burmeister,L. F. 1981. Schistosoma mansoni: Vac-cination of mice with highly X-irradiatedcercariae. Exp. Parasitol. 52:91-104

53. Hs0, S. Y. L., Hs~i, H. F., Osborne, J.W. 1969. Immunization of rhesus mon-keys against schistosome infection by

cercariae exposed to high doses of X-radiation. Proc. Soc. Exp. Biol. Med.131:1146-49

54. Hsii, S. Y. L., Hs~i, H. F., Svestka,K. W., Clarke, W. 1986. Vaccinationagainst schistosomiasis in mice withkilled schistosomula without adjuvant.Proc. Soc. Eap. Biol. Med. 181:454-58

55. HsiJ, S. Y. L., Zu, S. T., He, Y. X.,Shi, F. H., Shen, W., et al. 1984.Vaccination of bovines against schisto-somiasis japonica with highly irradiatedschistosomula in China. Am. J. Trop.

Med. Hyg. 33:891-9856. Hussein, M. F. 1982. The development

of irradiated vaccines for the control ofanimal schistosomiasis. Proc. Intl.Symp. Appl. Technol. Ion. Rad. 1:589-613. Riyadh: King Saud Univ. Press

57. Jackson, G. J., Herman,R., Singer, I.,eds. 1970. Immunity to Parasitic An-imals, Vol. 2. NewYork: Appleton-Century-Crofts. 1217 pp.

58. Jarrett, W. F. H., Hennings, F. W.,Mertin, B., Mclntyre, W. I. M., Mul-ligan, M., et al. 1958. A field trial of

parasitic bronchitis vaccine. Vet. Rec.70:451-5459. James, S. L. 1985. Induction of pro-

tective immunity against Schistosomamansoniby a non-living vaccine is de-pendent on the method of antigen pre-sentation. J. Immunol. 134:1956-60

60. James, S. L., Pearce, E. J., Sher, A.1985. Induction of protective immunityagainst Schistosoma mansoniby a non-living vaccine. I. Partial characterizationof antigens recognized by antibodiesfrom mice immunized with solubleschistosome extracts. J. Immunol.134:3432-38

61. James, S. L., Sher, A. 1985. Mech-anisms of protective immunity againstSchistosoma mansoni infection in micevaccinatedwith irradiated cercariae. III.Identification of a mouse strain, P/N,

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .   P

  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n

  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n   C

  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o

  n  a   l  u  s  e  o  n   l  y .

Page 16: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 16/21

498 HIGASHI

that fails to respond o vaccination. Par-asite lmmunol. 5:567-76

62. James, S., Skamene,E., Meltzer, M. S.1983. Macrophages s effector cells ofprotective immunity n murine schisto-somiasis. V. Variations in macrophageschistosomulacidal and tumoricidal ac-tivities amongmouse trains and correla-tion with resistance to re-infection. J.lmmunol. 131:945-53

63. Kaushal, D. C., Carter, R., Rener, J.,Grotendorst, C. A., Miller, L. H., et al.1983. Monoclonal antibodies againstsurface determinants of gametesof Plas-

modium allinaceum block transmissionof malaria parasites to mosquitoes. J.Immunol. 131:2557-62

64. Kaushal, N. A., Hussain, R., Nash, T.E., Ottesen, E. A. 1982. Identificationand characterization of excretory-secre-tory products of Brugia malayi, adultfilarial parasites. J. lmmunol.129:338-

4365. Kazura, J., Cicirello, H., McCall,J. W.

1986. Induction of protection againstBrugia malayi infection in jirds by mic-rofilarial antigens. J. lmmunol. 136:1422-26

66. Kelly, C., Simpson, A. J. G., Fox, E.,Phillips, S. M., Smithers, S. R. 1986.

The identification of Schistosoma man-soni surface antigens recognized by pro-tective monoclonalantibodies. Parasitelmmunol. 8:193-98

67. Kemp, D. J., Coppel, R. L., Cowman,A. F., Saint, R. B., Brown,G. V., et al.1983. Expression of Plasmodium alci-parum blood-stage antigens in Es-cherichia coli: Detection with antibodiesfrom immune humans. Proc. Natl.Acad. Sci. USA80:3738-91

68. Krahenbuhl, J. L., Remington, J. S.1982. See Ref. 18, pp. 356-421

69. Krettli, A. V., Brener, Z. 1982. Resis-tance against Trypanosoma ruzi associ-ated to anti-living trypomastigote anti-bodies. J. lmmunol. 128:2009-12

70. Lanar, D. E., Pearce, E. J., James, S.L., Sher, A. 1986. Identification of par-amyosin as schistosome antigen recog-nized by intradermally .vaccinated mice.Science 234:593-96

71. Liew, F. Y., Howard, J. G., Hale,C. 1984. Prophylactic immunizationagainst experimental eishmaniasis. III.Protection against fatal Leishmania ro-pica infection induced by irradiated pro-

mastigotes involve Lyt-l+2- cells thatdo not mediate cutaneous DTH.J. Im-munol. 132:456-61

72. Maizels, R. M., Partono, F., Oemijati,S., Denham, D. A. Ogilvie, B. M.1983. Cross-reactive antigens on three

stages of Brugia malayi, B. pahangiandB. timori. Parasitology 87:249-63

73. Maizels, R. M., Partono, F., Oemijati,S., Ogilvie, B. M. 1983. Antigenicanalysis of Brugia timori, a filarialnematodeof man: Initial characteriza-tion by surface radioiodination andevaluation of diagnostic potential. Clin.Exp. Immunol. 51:269-77

74. Mangold, B. L., Dean, D. A. 1986.Passive transfer with serum and IgGantibodies of irradiated cercariae in-duced resistance against Schistosomamansoni in mice. J. lmmunol. 136:2644-48

75. Marchand, M., Daoud, S., Titus, R. G.,Lovis, J., Boon, T. 1987. Variants with

reduced virulence derived from Leish-mania major after mutagen treatment.Parasite lmmunol. 9:81-92

76. Mendis, K. N., Targett, G. A. T. 1979.Immunizationagainst gametes and asex-ual erythrocytic stages of a rodent malar-ia parasite. Nature 277:389-90

77. Miller, T. A. 1965. Effect of route ofadministration of vaccine and challengeon the immunogenic fficiency of dou-ble vaccination with irradiated An-cylostoma caninum arvae. J. Parasitol.51:200-6

78. Miller, T. A. 1971. Vaccination againstthe canine hookwormdiseases. Adv.Parasitol. 9:153-83

79. Miller, T. A. 1978. Industrial develop-ment and field use of the canine hook-worm accine. Adv. Parasitol. 16:333-42

80. Miller, H. R. P. ~1987. Vaccinationagainst intestinal parasites. Int. J. Para-sitol. 17:43-51

81. Mitchell, G. F. 1979. Effector cells,molecules and mechanisms in host-protective immunity o parasites. Im-munology 38:209-23

82. Mitchell, G. F., Curtis, J. M., Hand-man, E., McKenzie, I. F. C. 1980.Cutaneous leishmaniasis in mice: Dis-ease patterns in reconstituted nude miceof several genotypes nfected with Leish-mania ropica. Aust. J. Exp. Biol. Med.Sci. 58:521-32

83. Mitchell, G. H., Butcher, G. A.,Richards, W. H. G., Cohen, S. 1977.Merozoite vaccination of douroucoulimonkeys against falciparum malaria.Lancet 1:1335-38

84. Minard, P., Dean, D. A., Jacobson,

R. H., Vannier, W. E., Murrell, K.D. 1978. Immunization of mice withcobalt-60 irradiated Schistosoma man-soni cercariae. Am. J. Trop. Med. Hyg.27:76-86

85. Nardin, E. H., Nussenzweig, R. S.

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n

  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 17: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 17/21

PARASITE VACCINES 499

1978. Stage-specific antigens on the sur-face membrane f sporozoites of malariaparasites. Nature 274:15-57

86. Nardin, E. H., Nussenzweig, R. S.,McGregor, . A., Bryan, J. 1979. Anti-sporozoite antibodies: Their frequentoccurrence in individuals living in anarea of hyperendemic malaria. Science206:597-99

87. Nardin, E. H., Nussenzweig, V., Nus-senzweig, R. S., Collins, W. E., Hari-nasuta, K. T., et al. 1982. Circumsporo-zoitc proteins of humanmalaria parasitesPlasmodium falciparum and Plasmo-dium vivax. J. Exp. Med. 154:1225-36

88. Nussenzweig, R. S., Nussenzweig, V.1984. Developmentof sporozoite vac-cine. Proc. Trans. R. Soc. LondonSer.B 397:117-28

89. Nussenzweig, R. S., Nussenzweig, V.1985. Development f a sporozoite vac-cine. Parasitol. Today1 : 150-52

90. Nussenzweig, R., Vandenberg, J.,Most, H. 1969. Protective immunityproducedby the injection of X-irradiatedsporozoites of Plasmodium erghei. IV.Dose response, specificity and humoralimmunity. Milit. Med. 134:1176-82(Suppl.)

91. Nussenzweig, R., Vandenberg, J.,Most, H., Orton, C. 1967. Protectiveimmunityproduced by the injection ofX-irradiated sporozoites of Plasrnodiumberghei. Nature 216:160-62

92. Nussenzweig, R. S., Vandenberg, J.,Most, H., Orton, C. 1970. Immunity insimian malaria induced by irradiatedsporozoites. J. Parasitol. 56:252 (Sect.I1, 2ndInt’l Congr.)

93. Nussenzweig,R. S., Vandenberg,J. P.,Spitalny, G., Rivera, C. I. O., Orton,C., et al. 1972. Sporozoite-induced im-

munity in mammalian malaria: A re-view. Am. J. Trop. Med. Hyg. 21:722-28

94. Oothuman, P., Denham, D. A.McGreevy,P. B., Nelson, G. S., Rog-ers, R. 1979. Successful vaccination ofcats against Brugia pahangiwith larvaeattenuated by irradiation with 10 Kradcobalt 60. Parasite Irnmunol. 1:209-16

95. Othman, M. I. 1986. Immunogenicity ofthe irradiated Schistoma rnansoni schis-tosomula vaccine. PhD thesis, Univ.

Mich., Ann Arbor. 120 pp.96. Peacock, R., Poynter, D. 1980. Fieldexperience with a bovine lungworm ac-cine. Syrup. Br. Soc. Parasitol. 18:141-

4897. Pearce, E. J., McLaren, D. J. 1983.

Schistosomamansoni: n vivo and in vit-

ro studies of immunityusing the guineapig model. Parasitology 87:465-79

98. Perlmann, H., Berzins, K., Wahlgren,

M., Carlsson, J., Bjorkman,A., et al.1984. Antibodies n malaria sera to para-site antigens in the membrand oferythrocytes infected with early axexualstages of Plasmodium alciparurn. J.Exp. Med. 159:1686-1704

99. Pipano, E. 1980. Immunization againstintracellular blood protozoansof cattle.Prog. Clin. Biol. Res. 47:301-14

100. Pritchard, D. I., Behnke, J. M., Carr,A., Wells, C. 1986. The recognition ofantigens on the surface of adult and L4Necator americanus by the human andhamsterpost-infection sera. Parasite Im-munol. 8:359-68

I01. Radke, M. G., Sadun, E. H. 1963. Re-sistance produced n mice by exposure toirradiated Schistosoma mansonicercar-iae. Exp. Parasitol. 13:134-42

102. Reese, R. T., Trager, W., Jensen, J. T.,Miller, D. R., Tantravati, R. 1978. Im-munization against malaria with antigenfrom in vitro cultivated Plasmodiumfal-ciparum. Proc. Natl. Acad. Sci. USA75:5665-68

103. Rener, J., Graves, P. M., Carter, R.,Williams, J. L., Burkot, T. R. 1983.

Target antigens of transmission-blockingimmunity on gametes of Plasmodium

falciparum. J. Exp. Med. 158:976-81104. Rieckmann, K. H., Beaudoin, R. L.,

Cassells, J., Sell, K. W. 1979. Clinicalstudies with a sporozoite vaccine againstfalciparum malaria. Bull, WHO7:261-65 (Suppl. 1)

105. Rieckmann, K. H., Carson, P. E., Be-audoin, R. L., Cassels, J., Sell, K. W.1974. Sporozoite induced immunity inmanagainst an Ethiopian strain of Plas-modium falciparum. Trans. R. Soc.

Trop. Med. Hyg. 68:258-59106. Sadun, E. H., Wellde, B. T., Hickman,R. L. 1969. Resistance produced in owlmonkeysAotus trivirgatus) by inocula-tion with irradiated Plasmodiumalci-parum. Milit. Med. 134:1165-75

107. Scott, M. T., Snary, D. 1982. See Ref.18, pp. 261-98

108. Sepulveda, B., Martinez-Palomo, A.1982. See Ref. 18, 170-91

109. Siddiqui, W. A. 1977. An effective im-munization of experimental monkeysagainst a humanmalaria parasite, Plas-modium alciparum. Science 197:388-

89110. Siddiqui, W. A., Kan, S. C., Kramer,

K., Case, S., Palmer, K., et al. 1981.Use of a synthetic adjuvant in an effec-tive vaccination of monkeys againstmalaria. Nature 289:64--66

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .   P

  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .   D

  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -

   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o

  n  a   l  u  s  e  o  n   l  y .

Page 18: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 18/21

500 HIGASHI

11 I. Siddiqui, W. A., Taylor, D. W., Kan,

S. C., Kramer, K., Richmond-Crum,S.M., et al. 1978. Vaccination of ex-perimental monkeys against Plasmo-dium falciparum: A possible safe ad-juvant. Science 201:1237-39

112. Simpson,A. J. G., Cioli, D. 1987. Pro-gress towarda defined vaccine for schis-tosomiasis. Parasitol. Today3:26-28

113. Simpson,A. J. G., Hackett, F., Walker,T., DeRossi, R., Smithers, S. R. 1985.Antibody esponse against schistosomu-lum surface antigens and protective im-munity following immunization withhighly irradiated cercariae of Schistoso-ma mansoni. Parasite lmmunol. 7:133-52

114. Simpson,A. J. G., James, S. L., Sher,A. 1983. Identification of surface anti-gens of schistosomula of Schistosomamansonirecognized by antibodies frommice immunized by chronic infectionand by exposure o highly irradiated cer-cariae. Infect. lmmunol. 41:591-97

115. Smith, G. L., Godson, G. N., Nussenz-weig, V., Nussenzweig, R. S., Barn-well, J. W., et al. 1984. Plasmodiumknowlesi sporozoite antigen: Expressionby infectious recombinant vacciniavirus. Science 224:397-99

116. Smith, M. A., Clegg, J. A. 1985. Vac-cination against Schistosoma mansoniwith purified surface antigens. Science227:535-38

117. Spitalny, G. L., Verhave, J. P., Meu-wissen, J. H. E. T., Nussenzweig,R. S.1977. Plasmodiumberghei: T cell de-pendence of sporozoite-induced immun-ity in rodents. Exp. Parasitol. 42:73-81

118. Stahl, H. D., Coppel, R. L., Brown, G.V., Saint, R., Lingelbach, K., et al.1984. Differential antibody screening ofcloned Plasmodium falciparum se-quences expressed in Escherichia coli:

Procedure for isolation of defined anti-gens and analysis of human antisera.Proc. Natl. Acad. Sci. USA81:2456-

60119. Stek, M. Jr., Minard, P., Dean, D. A.,

Hall, J. E. 1981. Immunization of ba-boons with Schistosoma mansonicercar-iae attenuated by gamma rradiation.Science 212:1518-20

120. Sturrock, R. F., James, C., James, E.R., Webbe, G. 1980. Immunization ofbaboons(Papio anubis) against Schisto-soma haematobiumwith irradiated cer-

cariae or schistosomula. Trans. R. Soc.Trop. Med. Hyg. 74:834-35121. Szarfman, A., Cossio, P. M., Diez, C.,

Arana, R. M., Sadun, E. 1974. Anti-bodies against endocardium, vascularstructures, and interstitium of striated

muscle hat cross-react withT. cruzi andT. rhodesiense. J. Parasitol. 60:1024

122. TargetS, G. A. T., Sinden, R. E. 1985.Transmission blocking vaccines. Para-sitol. Today1:155-58

123. Taylor, M. G., James, E. R., Bickle, Q.D., Doenhoff, M. J., Nelson, G. S.,et al. 1977. Vaccination in schistoso-miasis. INSERM72:291-305

124. Trager, W., Jensen, J. B. 1976. Humanmalaria parasites in continuous culture.Science 193:673-75

125. Vandenberg, J. P., Nussenzweig, R.,Sanabria, Y., Nawrot, R., Most, H.1972. Stage specificity of antisporozoiteantibodies in rodent malaria and itsrelationship to protective immunity.

Proc. Helminthol. Soc. Wash. 39:514-25

126. Vermeulen, A. N., Ponnudurai, T.,Beckers, P. J. A., Verhave, J. P.,Smits, M. A., et al. 1985. Sequentialexpression of antigens on sexual stagesof Plasmodiumalciparum accessible totransmission blocking antibodies in themosquito. J. Exp. Med. 162:1460-76

127. Vickerroan, K., Barry, J. D., Hajouk,S. L., Tetley, L. 1980. Antigenic varia-tion in trypanosomes. In The Host In-vader Interplay, ed. H. Von den Boss-

che, pp. 170-90. Amsterdam:Elsevier/North-Holland Biomedical Press. 766

PP.128. Villela, J. B.’, Gomberg,H. J., Gould,

S. E. 1961. Immunization o Schistoso-ma mansoni in mice inoculated withradiated cercariae. Science 134:1073-75

129. Wahlgren, M., Berzins, K., Perlmann,H., Wahlin, B., Carlsson, J., et al.1985. Pf 155, a vaccine candidate forprotection against asexual bloodstages ofthe malaria parasite Plasmodium alci-parum. In Vaccines 85: Molecular and

ChemicalBasis of Resistance to Parasi-tic, Bacterial, and Viral Diseases, ed.R. A. Lerner, R. M. Chanock, F.Brown, pp. 51-56. Cold Spring Harbor:Cold Spring Harbor Lab. 407 pp.

130. Walsh, J. A., Warren, K. S. 1979.Selective primary health care. An in-terim strategy for disease control in de-veloping countries. N. Engl J. Med.301:967-74

131. Warren, K. S. 1966. The pathogenesisof ’clay pipe-stem cirrhosis’ in micewith chronic schistosomiasis mansoni,

with a note on the longevity of schisto-somes. Am. J. Pathol. 49:477-89132. Warren, K. S. 1975. Hepatosplenic

schistosomiasis mansoni: An immuno-logic disease. Bull. NY Acad. Med.51:545-55

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n

   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h

  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 19: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 19/21

PARASITE VACCINES 501

133. Weber, J. L., Hockmeyer,W. T. 1985.Structure of the circumsporozoite pro-tein gene in 18 strains of Plasmodiumfalciparum. Molec. Biochem. Parasitol.15:305-16

134. Weinbaum,F. I., Evans, C. B., Tige-laar, R. E. 1976. Immunity o Plasmo-dium berghei yoelii in mice. I. Thecourse of infection in T cell and B celldeficient mice. J. lmmunol. 1999-2005

135. Wong, M. M., Fredericks, H. J.,Ramachandran, C. P. 1969. Studies onimmunization against Brugia malayi inthe rhesus monkey. Bull. WHO0:493-501

136. Wood, J., Hudson, L., Jessel, T.,Yamamoto, M. 1982. A monoclonalantibody defining antigenic determinantson subpopulations of mamalianneuronesand Trypanosomacruzi parasites. Na-ture 296:34-38

137. Yates, J. A., Higashi, G. I. 1985. Bru-gia malayi: Vaccination of jirds with

6°Cobalt-attenuated infective stage lar-vae protects against homologous hal-lenge. Am. J. Trop. Med. Hyg. 34:1132-37

138. Young, J. F., Hockmeyer, W. T.,Gross, M., Ballou, W. R., Wirtz, R.A., et al. 1985. Expression of Plasmo-dium falciparum circumsporozoite pro-teins in Escherichia oli for potential usein a human malaria vaccine. Science228:958-62

139. Zavala, F., Masuda,A., Graves, P. M.,Nussenzweig, V., Nussenzweig, R. S.1985. Ubiquity of the repetitive epitopeof the CSprotein in different isolates ofhuman malaria parasites. J. lmmunol.135:2790-93

140. Zavala, F., Tam, . P., Hollingdale, M.R., Cochrane, A. H., Quakyi, I., et al.1985. Rationale for development of asynthetic vaccine against Plasmodiumfalciparum malaria. Science 228:1436-40

www.annualreviews.org/aronlineAnnual Reviews

   A  n  n  u .

   R  e  v .   P

  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n

  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n   C

  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o

  n  a   l  u  s  e  o  n   l  y .

Page 20: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 20/21

   A  n  n  u .

   R  e  v .

   P  u   b

   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n   C  o  u

  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -   I  n  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a   l  u  s  e  o  n   l  y .

Page 21: Vaccine for Parasitic Diseases

8/4/2019 Vaccine for Parasitic Diseases

http://slidepdf.com/reader/full/vaccine-for-parasitic-diseases 21/21

   A  n  n  u .

   R  e  v .

   P  u   b   l   i  c .

   H  e  a   l   t   h .

   1   9   8   8 .   9  :   4   8   3  -   5   0   1 .

   D  o

  w  n   l  o  a   d  e   d   f  r  o  m   a

  r   j  o  u  r  n  a   l  s .  a  n  n  u  a   l  r  e  v   i  e  w  s .  o  r  g

   b  y   I  n   d   i  a  n   C  o  u  n  c   i   l  o   f   A  g  r   i  c  u   l   t  u  r  a   l   R  e  s  e  a  r  c   h  -   I  n

  s   t   i   t  u   t  e  s  o  n   0   3   /   1   4   /   0   7 .

   F  o  r  p  e  r  s  o  n  a

   l  u  s  e  o  n   l  y .