13
Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020

Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Vector Calculuspart IV

By Dr. Michael Medvinsky, NCSU

online lectures 03/2020

Page 2: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Stokes’ Theorem

• Let S be an oriented piecewise-smooth surface that is bounded by a simple closed piecewise-smooth boundary curve C with positive orientation. Let F be a vector field whole components have continuous partial derivatives on an open region in that contains S. Then,

3

curlS S

d d

= F r F S

Page 3: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Stokes’ Theorem(cont)

• Stokes’ Theorem says that the line integral around the boundary curve of S of the tangential component of F is equal to the surface integral over of the normal component of the curl of F.

• One of the important uses of Stoke’s Theorem is in calculating surface integrals over “non convenient” surface using surface integral over more convenient surface with the same boundary:

1 1 2 2

curl curlS S S S S

d d d= =

= = F S F r F S

Page 4: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Stokes’ Theorem(cont)

• One see Stokes’ Theorem as a sort of higher dimensional version of Green’s theorem. Really, if S is flat and lies in xy plane, then n=k and therefore

which is a vector form of Green’s theorem.

• Thus, Green’s theorem is a private case of Stokes Theorem.

( )curl curlS S S

d d dS

= = F r F S F k

Page 5: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Stokes’ Theorem(cont)

• Proof (of the light version): We restrict our proof only for the case of S given as z=g(x,y).

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )'

, , , , , ,

b b

x yS

a a

b

x y y xGreen s

a D

x z x x z x

d P x y z dx Q x y z dy R x y z dz Pdx Qdy R z dx z dy

P Rz dx Q Rz dy Q Rz P Rz dAx y

Q Q z R R z

= + + = + + +

= + + + = + − +

= + + +

F r

( ) y yxz Rz+( ) y z y y z yP P z R R z− + + +( ) x xyz Rz+( )

( ) ( ) ( )

( )( ): ,

, , , ,1 curl

D

y z x z x y x y

D

x y u v

D D D z g x y

R Q P R Q P

y z z x x y

dA

R Q z P R z Q P dA

z z dA r r dA d =

− − −

= − − − − + −

= − − = =

F F S

( ) ( )( ),

' 'x y

f x g x y x

f g g y

= = +

Page 6: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Stokes’ Theorem(cont)

• Example: Verify Stokes’ Theorem for over S:

• From the other side we have, , therefore

, ,yz xz xy=F 2 2 1z x y= +

( )2

cos ,sin ,1 0

2

0

2 2

2 2

00 0

cos ,sin ,1 sin ,cos ,0

sin ,cos ,cos sin sin ,cos ,0

sin 2sin cos cos 2 0

2

t t

d t t t t dt

t t t t t t dt

tt tdt tdt

= −

= −

= − + = = =

F r F

xyz= F curl 0 0S S

d d = = F S S

Page 7: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Stokes’ Theorem(cont)

• Example: Evaluate

• Solution: It is clear that a direct evaluation of the line integral is

awkward. Therefore, denote , and

use Stokes’ Theorem. We also need . Finally,

( )2

, , 2 2 6 6 6Stokes

disc discz

I x y z dS dA A disc ==

= − + = = = n kn

𝐼 = ර

cos𝑡,sin𝑡,2

𝑒− Τ𝑥2 2 − 𝑦𝑧 𝑑𝑥 + 𝑒− Τ𝑦2 2 + 𝑥𝑧 + 2𝑥 𝑑𝑦 + 𝑒− Τ𝑧2 2 + 5 𝑑𝑧

curl , , 2 2x y z= − +F

2 2 2/2 /2 /2, 2 , 5x y ze yz e xz x e− − −= − + + +F

Page 8: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Stokes’ Theorem(cont)

• Example: Let and C be an intersection between cylinderand . Evaluate .

• Thus direct integration won’t be nice; therefore we try Stokes. Let the surface S be elliptical region on plane .

2 2, ,y x z= −F2 2 1x y+ = 2y z+ =

( )32

2 2

1

0

: 2 : 1 curl

22 1 2 2

00 0 0 03

1 2

2 3 3

1 12 sin

2 2

curl 0,0,1 2 , ,1 1 2

1 2 sin 2 sin cos

x y

C S z y DD x y

rr

d d y g g dA ydA

r rdrd d d

= − + =

+

= = + − − = +

= + = = + = − =

F n

F r F S

C

d F r

( )

( )( ) ( )

( )

22

23 2

cos ,sin ,2 sin

sin ,cos , 2 sin sin ,cos , cos

sin cos 2 sin cos

r t t t t

r t d t t t t t t

t t t t

= −

= − − − −

= + − −

F r

2y z+ =

Page 9: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Divergence Theorem

• Let E be a simple solid region and let S be the boundary surface of E, given with positive (outward) orientation. Let F be a vector field whose component functions have continuous partial derivatives on an open region that contains E. Then

• Note the similarity with Normal Component Green’s Theorem:

( )div ,C D

ds x y dA = F n F

divS E

d dV = F S F

Page 10: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Divergence Theorem(cont)

• Proof: Let F=<P,Q,R>, we want to show

• Consider , then

• are proved in a similar manner using the expressions for E as a type II or type III region, respectively.

div zyE

xE E SE Ss Show

S S

P dV P dQ dV Q dSdV R dV R dSS

dS d

= + + = + +

=

=

iF k n

F n F S

nn j

( )

( )

( )( ) ( )( )

1 3

2

1

,

1

,

2 ,, , ,, ,

u x y

zE

D u x

S

y D

S

R x y u x y

R

R dV RdzdA R x y u x y

d SS

dA

R d

= = −

+ =

k nk n2

3either 0 or

S S

S

R dS R dS = =

− = k n

k n k n

( ) ( ) ( ) ( ) 1 2type I

, , : , , , ,E x y z x y D u x y z u x y=

,S E SE

yx Q dVP dV QP S dSd == j ni n

Page 11: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Divergence Theorem(cont)

• Example: Let and S be defined by

on top, on sides and at the bottom.

212

, ,xy y z= −F

0z =

2 24 3 3 ,1 4z x y z= − −

2 2 1,0 1x y z+ =

divS E

d dV y y = = − F S F

( )

2

22 1 4 3 2 1

4 3

0

0 0 0 0 0

12 1

2 2 4

00 0

1

3 54 3 2 2

4 2

rr

E

dV rdzdrd rz drd

r r drd r r

−−

+ = =

= − = − =

Page 12: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Divergence Theorem(cont)

• Example: Let , S spherical solid of radius 2 in first octant.

• Example: Let

3 3 3, ,x y z=F

/2 /2 2

2 2 2 4

0 0 0

2/2 /2 /25/2

0

0 0 00

div 3 3 sin

3 32 48 483 sin sin cos

5 5 2 5 5

S E E

d dV x y z dV d d d

d d d

= = + + = =

= = = − =

F S F

23 cos , , sinzy z x e x y=F

div 0 0S E E

d dV dV = = = F S F

Page 13: Vector Calculus - mmedvin.math.ncsu.edu · Vector Calculus part IV By Dr. Michael Medvinsky, NCSU online lectures 03/2020. Stokes’ Theorem •Let S be an oriented piecewise-smooth

Decision Tree Vector CalculusQuestion

Line Integral Surface Integral

ClosedCurve?

ClosedSurface?

The Divergence Theorem

Parametrize,Solve Directly

yes no

Work/FluxLine/Surface

yes no

2D/3DConservative?

Green’s Theorem Stoke’s Theorem

2D 3D

Fundamental Theorem of Line

Integral

Parametrize,Solve Directly

yes no